首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
MreB, a major component of the bacterial cytoskeleton, exhibits high structural homology to its eukaryotic counterpart actin. Live cell microscopy studies suggest that MreB molecules organize into large filamentous spirals that support the cell membrane and play a key shape-determining function. However, the basic properties of MreB filament assembly remain unknown. Here, we studied the assembly of Thermotoga maritima MreB triggered by ATP in vitro and compared it to the well-studied assembly of actin. These studies show that MreB filament ultrastructure and polymerization depend crucially on temperature as well as the ions present on solution. At the optimal growth temperature of T. maritima, MreB assembly proceeded much faster than that of actin, without nucleation (or nucleation is highly favorable and fast) and with little or no contribution from filament end-to-end annealing. MreB exhibited rates of ATP hydrolysis and phosphate release similar to that of F-actin, however, with a critical concentration of approximately 3 nm, which is approximately 100-fold lower than that of actin. Furthermore, MreB assembled into filamentous bundles that have the ability to spontaneously form ring-like structures without auxiliary proteins. These findings suggest that despite high structural homology, MreB and actin display significantly different assembly properties.  相似文献   

2.
MreB, a major component of the recently discovered bacterial cytoskeleton, displays a structure homologous to its eukaryotic counterpart actin. Here, we study the assembly and mechanical properties of Thermotoga maritima MreB in the presence of different nucleotides in vitro. We found that GTP, not ADP or GDP, can mediate MreB assembly into filamentous structures as effectively as ATP. Upon MreB assembly, both GTP and ATP release the gamma phosphate at similar rates. Therefore, MreB is an equally effective ATPase and GTPase. Electron microscopy and quantitative rheology suggest that the morphologies and micromechanical properties of filamentous ATP-MreB and GTP-MreB are similar. In contrast, mammalian actin assembly is favored in the presence of ATP over GTP. These results indicate that, despite high structural homology of their monomers, T. maritima MreB and actin filaments display different assembly, morphology, micromechanics, and nucleotide-binding specificity. Furthermore, the biophysical properties of T. maritima MreB filaments, including high rigidity and propensity to form bundles, suggest a mechanism by which MreB helical structure may be involved in imposing a cylindrical architecture on rod-shaped bacterial cells.  相似文献   

3.
In this report, we examine how the cell can selectively stabilize anchored filaments and suppress spontaneous filament assembly. Because microtubules and actin filaments have an organized distribution in cells, the cell must have a mechanism for suppressing spontaneous and random polymerization. Though the mechanism for suppressing spontaneous polymerization is unknown, an unusual property of these filaments has been demonstrated recently, i.e., under steady-stae conditions, in vitro actin filaments and microtubules can exhibit a flux of subunits through the polymers called "treadmilling." In vivo, however, most, if not all, of these polymers are attached at one end to specific structures and treadmilling should not occur. The function of treadmilling in vivo is, therefore, unclear at present. However, as shown here, the same physicochemical property of coupling assembly to ATP or GTP hydrolysis that leads to treadmilling in vitro can act to selectively stabilize anchored polymers in vivo. I show here that the theory of treadmilling implies that the concentration of subunits necessary for assembly of the nonanchored polymer will in general be higher than the concentration necessary for the assembly of polymers anchored with a specific polarity. This disparity in the monomer concentrations required for assembly can lead to a selective stabilization of anchored polymers and complete suppression of spontaneous polymerization at apparent equilibrium in vivo. It is possible, therefore, that the phenomenon of treadmilling is an in vitro manifestation of a mechanism designed to use ATP or GTP hydrolysis to control the spatial organization of filaments in the cell.  相似文献   

4.
We present evidence for a new mechanism by which two major actin monomer binding proteins, thymosin beta 4 and profilin, may control the rate and the extent of actin polymerization in cells. Both proteins bind actin monomers transiently with a stoichiometry of 1:1. When bound to actin, thymosin beta 4 strongly inhibits the exchange of the nucleotide bound to actin by blocking its dissociation, while profilin catalytically promotes nucleotide exchange. Because both proteins exchange rapidly between actin molecules, low concentrations of profilin can overcome the inhibitory effects of high concentrations of thymosin beta 4 on the nucleotide exchange. These reactions may allow variations in profilin concentration (which may be regulated by membrane polyphosphoinositide metabolism) to control the ratio of ATP-actin to ADP-actin. Because ATP-actin subunits polymerize more readily than ADP-actin subunits, this ratio may play a key regulatory role in the assembly of cellular actin structures, particularly under circumstances of rapid filament turnover.  相似文献   

5.
In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae.  相似文献   

6.
Actin binding proteins control actin assembly and disassembly by altering the critical concentration and by changing the kinetics of polymerization. All of these control mechanisms in some way or the other make use of the energy of hydrolysis of actin-bound ATP. Capping of barbed filament ends increases the critical concentration as long as ATP hydrolysis maintains a difference in the actin monomer binding constants of the two ends. A further increase in the critical concentration on adding a second cap, tropomodulin, to the other, pointed filament end also requires ATP hydrolysis as described by the model presented here. Changes in the critical concentration are amplified into much larger changes of the monomer pool by actin sequestering proteins, provided their actin binding equilibrium constants fall within a relatively narrow range around the values for the two critical concentrations of actin. Cofilin greatly speeds up treadmilling, which requires ATP hydroysis, by increasing the rate constant of depolymerization. Profilin increases the rate of elongation at the barbed filament end, coupled to a lowering of the critical concentration, only if ATP hydrolysis makes profilin binding to the barbed end independent of its binding constant for actin monomers.  相似文献   

7.
We recently established an in vitro assay that monitors the fusion between latex-bead phagosomes and endocytic organelles in the presence of J774 macrophage cytosol (). Here, we show that different reagents affecting the actin cytoskeleton can either inhibit or stimulate this fusion process. Because the membranes of purified phagosomes can assemble F-actin de novo from pure actin with ATP (), we focused here on the ability of membranes to nucleate actin in the presence of J774 cytosolic extracts. For this, we used F-actin sedimentation, pyrene actin assays, and torsional rheometry, a biophysical approach that could provide kinetic information on actin polymerization and gel formation. We make two major conclusions. First, under our standard in vitro conditions (4 mg/ml cytosol and 1 mM ATP), the presence of membranes actively catalyzed the assembly of cytosolic F-actin, which assembled into highly viscoelastic gels. A model is discussed that links these results to how the actin may facilitate fusion. Second, cytosolic actin paradoxically polymerized more under ATP depletion than under high-ATP conditions, even in the absence of membranes; we discuss these data in the context of the well described, large increases in F-actin seen in many cells during ischemia.  相似文献   

8.
The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μm.  相似文献   

9.
In Myxococcus xanthus the gliding motility machinery is assembled at the leading cell pole to form focal adhesions, translocated rearward to propel the cell, and disassembled at the lagging pole. We show that MglA, a Ras-like small G-protein, is an integral part of this machinery. In this function, MglA stimulates the assembly of the motility complex by directly connecting it to the MreB actin cytoskeleton. Because the nucleotide state of MglA is regulated spatially and MglA only binds MreB in the guanosine triphosphate–bound form, the motility complexes are assembled at the leading pole and dispersed at the lagging pole where the guanosine triphosphatase activating protein MglB disrupts the MglA–MreB interaction. Thus, MglA acts as a nucleotide-dependent molecular switch to regulate the motility machinery spatially. The function of MreB in motility is independent of its function in peptidoglycan synthesis, representing a coopted function. Our findings highlight a new function for the MreB cytoskeleton and suggest that G-protein–cytoskeleton interactions are a universally conserved feature.  相似文献   

10.
《The Journal of cell biology》1983,97(6):1745-1752
Extracts of the soluble cytoplasmic proteins of the sea urchin egg form gels of different composition and properties depending on the temperature used to induce actin polymerization. At temperatures that inactivate myosin, a gel composed of actin, fascin, and a 220,000-mol- wt protein is formed. Fascin binds actin into highly organized units with a characteristic banding pattern, and these actin-fascin units are the structural core of the sea urchin microvilli formed after fertilization and of the urchin coelomocyte filopods. Under milder conditions a more complex myosin-containing gel is formed, which contracts to a small fraction of its original volume within an hour after formation. What has been called "structural" gel can be assembled by combining actin, fascin, and the 220,000-mol-wt protein in 50-100 mM KCl; the aim of the experiments reported here was to determine whether myosin could be included during assembly, thereby interconverting structural and contractile gel. This approach is limited by the aggregation of sea urchin myosin at the low salt concentrations utilized in gel assembly. A method has been devised for the sequential combination of these components under controlled KCl and ATP concentrations that allows the formation of a gel containing dispersed myosin at a final concentration of 60-100 mM KCl. These gels are stable at low (approximately 10 micron) ATP concentrations, but contract to a small volume in the presence of higher (approximately 100 micron) ATP. Contraction can be controlled by forming a stable gel at low ATP and then overlaying it with a solution containing sufficient ATP to induce contraction. This system may provide a useful model for the study of the interrelations between cytoplasmic structure and motility.  相似文献   

11.
Assembled actin filaments support cellular signaling, intracellular trafficking, and cytokinesis. ATP hydrolysis triggered by actin assembly provides the structural cues for filament turnover in vivo. Here, we present the cryo-electron microscopic (cryo-EM) structure of filamentous actin (F-actin) in the presence of phosphate, with the visualization of some α-helical backbones and large side chains. A complete atomic model based on the EM map identified intermolecular interactions mediated by bound magnesium and phosphate ions. Comparison of the F-actin model with G-actin monomer crystal structures reveals a critical role for bending of the conserved proline-rich loop in triggering phosphate release following ATP hydrolysis. Crystal structures of G-actin show that mutations in this loop trap the catalytic site in two intermediate states of the ATPase cycle. The combined structural information allows us to propose a detailed molecular mechanism for the biochemical events, including actin polymerization and ATPase activation, critical for actin filament dynamics.  相似文献   

12.
《Biophysical journal》2021,120(20):4442-4456
Formins stimulate actin polymerization by promoting both filament nucleation and elongation. Because nucleation and elongation draw upon a common pool of actin monomers, the rate at which each reaction proceeds influences the other. This interdependent mechanism determines the number of filaments assembled over the course of a polymerization reaction, as well as their equilibrium lengths. In this study, we used kinetic modeling and in vitro polymerization reactions to dissect the contributions of filament nucleation and elongation to the process of formin-mediated actin assembly. We found that the rates of nucleation and elongation evolve over the course of a polymerization reaction. The period over which each process occurs is a key determinant of the total number of filaments that are assembled, as well as their average lengths at equilibrium. Inclusion of formin in polymerization reactions speeds filament nucleation, thus increasing the number and shortening the lengths of filaments that are assembled over the course of the reaction. Modulation of the elongation rate produces modest changes in the equilibrium lengths of formin-bound filaments. However, the dependence of filament length on the elongation rate is limited by the number of filament ends generated via formin’s nucleation activity. Sustained elongation of small numbers of formin-bound filaments, therefore, requires inhibition of nucleation via monomer sequestration and a low concentration of activated formin. Our results underscore the mechanistic advantage for keeping formin’s nucleation efficiency relatively low in cells, where unregulated actin assembly would produce deleterious effects on cytoskeletal dynamics. Under these conditions, differences in the elongation rates mediated by formin isoforms are most likely to impact the kinetics of actin assembly.  相似文献   

13.
The hydrolysis of ATP accompanying actin polymerization destabilizes the filament, controls actin assembly dynamics in motile processes, and allows the specific binding of regulatory proteins to ATP- or ADP-actin. However, the relationship between the structural changes linked to ATP hydrolysis and the functional properties of actin is not understood. Labeling of actin Cys374 by tetramethylrhodamine (TMR) has been reported to make actin non-polymerizable and enabled the crystal structures of ADP-actin and 5'-adenylyl beta,gamma-imidodiphosphate-actin to be solved. TMR-actin has also been used to solve the structure of actin in complex with the formin homology 2 domain of mammalian Dia1. To understand how the covalent modification of actin by TMR may affect the structural changes linked to ATP hydrolysis and to evaluate the functional relevance of crystal structures of TMR-actin in complex with actin-binding proteins, we have analyzed the assembly properties of TMR-actin and its interaction with regulatory proteins. We show that TMR-actin polymerized in very short filaments that were destabilized by ATP hydrolysis. The critical concentrations for assembly of TMR-actin in ATP and ADP were only an order of magnitude higher than those for unlabeled actin. The functional interactions of actin with capping proteins, formin, actin-depolymerizing factor/cofilin, and the VCA-Arp2/3 filament branching machinery were profoundly altered by TMR labeling. The data suggest that TMR labeling hinders the intramolecular movements of actin that allow its specific adaptative recognition by regulatory proteins and that determine its function in the ATP- or ADP-bound state.  相似文献   

14.
Cell polarity determines the direction of cell growth in bacteria. MreB actin spatially regulates peptidoglycan synthesis to enable cells to elongate bidirectionally. MreB densely localizes in the cylindrical part of the rod cell and not in polar regions in Escherichia coli. When treated with A22, which inhibits MreB polymerization, rod‐shaped cells became round and MreB was diffusely distributed throughout the cytoplasmic membrane. A22 removal resulted in restoration of the rod shape. Initially, diffuse MreB started to re‐assemble, and MreB‐free zones were subsequently observed in the cytoplasmic membrane. These MreB‐free zones finally became cell poles, allowing the cells to elongate bidirectionally. When MreB was artificially located at the cell poles, an additional pole was created, indicating that artificial localization of MreB at the cell pole induced local peptidoglycan synthesis. It was found that the anionic phospholipids (aPLs), phosphatidylglycerol and cardiolipin, which were enriched in cell poles preferentially interact with monomeric MreB compared with assembled MreB in vitro. MreB tended to localize to cell poles in cells lacking both aPLs, resulting in production of Y‐shaped cells. Their findings indicated that aPLs exclude assembled MreB from cell poles to establish cell polarity, thereby allowing cells to elongate in a particular direction.  相似文献   

15.
MreB, the bacterial ancestor of eukaryotic actin, is responsible for shape in most rod-shaped bacteria. Despite belonging to the actin family, the relevance of nucleotide-driven polymerization dynamics for MreB function is unclear. Here, we provide insights into the effect of nucleotide state on membrane binding of Spiroplasma citri MreB5 (ScMreB5). Filaments of ScMreB5WT and an ATPase-deficient mutant, ScMreB5E134A, assemble independently of the nucleotide state. However, capture of the filament dynamics revealed that efficient filament formation and organization through lateral interactions are affected in ScMreB5E134A. Hence, the catalytic glutamate functions as a switch, (a) by sensing the ATP-bound state for filament assembly and (b) by assisting hydrolysis, thereby potentially triggering disassembly, as observed in other actins. Glu134 mutation and the bound nucleotide exhibit an allosteric effect on membrane binding, as observed from the differential liposome binding. We suggest that the conserved ATP-dependent polymerization and disassembly upon ATP hydrolysis among actins has been repurposed in MreBs for modulating filament organization on the membrane.  相似文献   

16.
Substoichiometric concentrations of cytochalasin D inhibited the rate of polymerization of actin in 0.5 mM MgCl2, increased its critical concentration and lowered its steady state viscosity. Stoichiometric concentrations of cytochalasin D in 0.5 mM MgCl2 and even substoichiometric concentrations of cytochalasin D in 30 mM KCl, however, accelerated the rate of actin polymerization, although still lowering the final steady state viscosity. Cytochalasin B, at all concentrations in 0.5 mM MgCl2 or in 30 mM KCl, accelerated the rate of polymerization and lowered the final steady state viscosity. In 0.5 mM MgCl2, cytochalasin D uncoupled the actin ATPase activity from actin polymerization, increasing the ATPase rate by at least 20 times while inhibiting polymerization. Cytochalasin B had a very much lower stimulating effect. Neither cytochalasin D nor B affected the actin ATPase activity in 30 mM KCl. The properties of cytochalasin E were intermediate between those of cytochalasin D and B. Cytochalasin D also stimulated the ATPase activity of monomeric actin in the absence of MgCl2 and KCl and, to a much greater extent, stimulated the ATPase activity of monomeric actin below its critical concentration in 0.5 mM MgCl2. Both above and below its critical concentration and in the presence and absence of cytochalasin D, the initial rate of actin ATPase activity, when little or no polymerization had occurred, was directly proportional to the actin concentration and, therefore, apparently was independent of actin-actin interactions. To rationalize all these data, a working model has been proposed in which the first step of actin polymerization is the conversion of monomeric actin-bound ATP, A . ATP, to monomeric actin-bound ADP and Pi, A* . ADP . Pi, which, like the preferred growing end of an actin filament, can bind cytochalasins.  相似文献   

17.
To understand the intracellular role of G-actin concentration in stimulus-induced actin assembly and lamellipodium extension during cell migration, we developed a novel technique for quantifying spatiotemporal changes in G-actin concentration in live cells, consisting of sequential measurements of fluorescent decay after photoactivation (FDAP) of Dronpa-labeled actin. Cytoplasmic G-actin concentrations decreased by ~40% immediately after cell stimulation and thereafter the cell area extended. The extent of stimulus-induced G-actin loss and cell extension correlated linearly with G-actin concentration in unstimulated cells, even at concentrations much higher than the critical concentration of actin filaments, indicating that cytoplasmic G-actin concentration is a critical parameter for determining the extent of stimulus-induced G-actin assembly and cell extension. Multipoint FDAP analysis revealed that G-actin concentration in lamellipodia was comparable to that in the cell body. We also assessed the cellular concentrations of free G-actin, profilin- and thymosin-β4-bound G-actin, and free barbed and pointed ends of actin filaments by model fitting of jasplakinolide-induced temporal changes in G-actin concentration.  相似文献   

18.
When KCl is added to a solution of G-actin to induce full polymerization, a decrease in the rate at which actin undergoes enzymatic proteolysis occurs. This decrease cannot be accounted for by factors affecting the enzymes employed, but rather appears to be due to a change in the conformation of G-actin. Partially polymerized actin solutions also show a reduction in digestibility which is dependent on the F-actin content, suggesting that F-actin is essentially indigestible. Moreover, low rates of digestion were also observed at sub-critical actin concentrations, where actin in the presence of 0.1 m-KCl does not polymerize. This indicates that a confomational change occurs in G-actin before the polymerization step.At sub-critical concentrations in 0.1 m-KCl, actin is in a truly monomeric state as judged by its viscosity characteristics, its inability to enhance the rate of polymerization of G-actin and its possession of ATP as the actin-bound nucleotide. These data support the existence of a new species of actin, called F-ATP-actin monomer, which has the same physical properties and the same bound nucleotide as G-actin, but digestion characteristics like F-actin. Since F-ATP-actin monomers have the same low susceptibility to proteolysis as F-ADP-actin polymers, and because both G-ATP-actin and G-ADP-actin have similar high rates of digestion, the observed change in the conformation of actin cannot be due to the phosphorylated state of the actin-bound nucleotide. Instead, the conformational change appears to be caused by the addition of KCl to G-actin.The newly-detected monomeric species is considered to be an intermediate in the polymerization process where F-ATP-actin monomers form a population of polymerizable molecules which must reach a critical concentration before nucleation and F-actin polymer formation begin.  相似文献   

19.
Tubulin was extracted from spindles isolated from embryos of the sea urchin Strongylocentrotus purpuratus, repolymerized in vitro, and purified through three cycles of temperature-dependent assembly and disassembly. In addition to the tubulin, these preparations contain a protein of 80 kdaltons and a small but variable amount of actin. At 37 degrees C, the tubulin polymerizes with a critical concentration of 0.15-0.2 mg/ml into smooth-walled polymers which contain predominantly 14 protofilaments. Removal of the 80 kdalton protein and the actin by DEAE-chromatography does not change the critical concentration for polymerization. At 15 degrees C, which is within the range of physiological temperatures for S. purpuratus embryos, the spindle tubulin will self-assemble, but the rate of total polymer formation is very slow, requiring hours in the test tube. This rate can be increased by shearing the polymerizing microtubules, creating more ends for assembly, indicating that the slow rate of polymer formation is due to a slow rate of self-initiation. If spindle tubulin is polymerized at 37 degrees C and then lowered to 15 degrees C, some polymer will be retained, the percentage of which depends on the protein concentration. These results demonstrate that spindle tubulin from S. purpuratus will assemble at 37 degrees C with a low critical concentration for polymerization in the absence of detectable MAPs and will self-assemble and maintain steady state levels of polymer at physiological temperatures.  相似文献   

20.
Abstract. Acetyl-N-SerAspLysPro (AcSDKP), known as a negative regulator of haematopoiesis, has been principally reported as an inhibitor of haematopoietic pluripotent stem cell proliferation. The tetrapeptide sequence is identical to the N-terminus of thymosin β4 (Tβ4), from which it has been suggested that it may be derived. Recently, evidence was shown that Tβ4 plays a role as a negative regulator of actin polymerization leading to the sequestration of its monomeric form. The structural similarity between the N-terminus of Tβ4 and AcSDKP has raised the possibility that AcSDKP may also participate in intracellular events leading to actin sequestration.
The effect of Tβ4 on the proliferation of haematopoietic cells was compared to that of AcSDKP. The results revealed that Tβ4, like AcSDKP, exerts an inhibitory effect on the entry of murine primitive bone marrow cells into cell cycle in vitro . Qualitative electrophoretic analysis and quantitative polymerization assays were used to investigate the role of AcSDKP in actin polymerization. AcSDKP does not affect actin assembly at concentrations up to 50 μM, and does not compete with Tβ4 for binding to G-actin. These results suggest that AcSDKP is not involved in cell cycle regulation via an effect on the process of actin polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号