首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we test the hypothesisthat in newborn hearts (as in adults) hypoxia and acidificationstimulate increased Na+ uptake, in part via pH-regulatoryNa+/H+ exchange. Resulting increases inintracellular Na+ (Nai) alter the force drivingthe Na+/Ca2+ exchanger and lead to increasedintracellular Ca2+. NMR spectroscopy measuredNai and cytosolic Ca2+ concentration([Ca2+]i) and pH (pHi) inisolated, Langendorff-perfused 4- to 7-day-old rabbit hearts. AfterNa+/K+ ATPase inhibition, hypoxic hearts gainedNa+, whereas normoxic controls did not [19 ± 3.4 to139 ± 14.6 vs. 22 ± 1.9 to 22 ± 2.5 (SE) meq/kg drywt, respectively]. In normoxic hearts acidified using theNH4Cl prepulse, pHi fell rapidly and recovered,whereas Nai rose from 31 ± 18.2 to 117.7 ± 20.5 meq/kg dry wt. Both protocols caused increases in [Ca]i;however, [Ca]i increased less in newborn hearts than inadults (P < 0.05). Increases in Nai and[Ca]i were inhibited by theNa+/H+ exchange inhibitormethylisobutylamiloride (MIA, 40 µM; P < 0.05), aswell as by increasing perfusate osmolarity (+30 mosM) immediately before and during hypoxia (P < 0.05). The data supportthe hypothesis that in newborn hearts, like adults, increases inNai and [Ca]i during hypoxia and afternormoxic acidification are in large part the result of increased uptakevia Na+/H+ and Na+/Ca2+exchange, respectively. However, for similar hypoxia and acidification protocols, this increase in [Ca]i is less in newborn thanadult hearts.

  相似文献   

2.
Evidence suggests that 1) ischemia-reperfusion injury is due largely to cytosolic Ca2+ accumulation resulting from functional coupling of Na+/Ca2+ exchange (NCE) with stimulated Na+/H+ exchange (NHE1) and 2) 17-estradiol (E2) stimulates release of NO, which inhibits NHE1. Thus we tested the hypothesis that acute E2 limits myocardial Na+ and therefore Ca2+ accumulation, thereby limiting ischemia-reperfusion injury. NMR was used to measure cytosolic pH (pHi), Na+ (Na), and calcium concentration ([Ca2+]i) in Krebs-Henseleit (KH)-perfused hearts from ovariectomized rats (OVX). Left ventricular developed pressure (LVDP) and lactate dehydrogenase (LDH) release were also measured. Control ischemia-reperfusion was 20 min of baseline perfusion, 40 min of global ischemia, and 40 min of reperfusion. The E2 protocol was identical, except that 1 nM E2 was included in the perfusate before ischemia and during reperfusion. E2 significantly limited the changes in pHi, Na and [Ca2+]i during ischemia (P < 0.05). In control OVX vs. OVX+E2, pHi fell from 6.93 ± 0.03 to 5.98 ± 0.04 vs. 6.96 ± 0.04 to 6.68 ± 0.07; Na rose from 25 ± 6 to 109 ± 14 meq/kg dry wt vs. 25 ± 1 to 76 ± 3; [Ca2+]i changed from 365 ± 69 to 1,248 ± 180 nM vs. 293 ± 66 to 202 ± 64 nM. E2 also improved recovery of LVDP and diminished release of LDH during reperfusion. Effects of E2 were diminished by 1 µM N-nitro-L-arginine methyl ester. Thus the data are consistent with the hypothesis. However, E2 limitation of increases in [Ca2+]i is greater than can be accounted for by the thermodynamic effect of reduced Na accumulation on NCE. myocardial ischemia; Na+/H+ exchange; Na+/Ca2+ exchange; nuclear magnetic resonance; ischemic biology; ion channels/membrane transport; transplantation  相似文献   

3.
Regulation of the epithelial Na(+) channel by extracellular acidification   总被引:2,自引:0,他引:2  
The effect of extracellular acidification wastested on the native epithelial Na+ channel (ENaC) in A6epithelia and on the cloned ENaC expressed in Xenopusoocytes. Channel activity was determined utilizing blocker-inducedfluctuation analysis in A6 epithelia and dual electrode voltage clampin oocytes. In A6 cells, a decrease of extracellular pH(pHo) from 7.4 to 6.4 caused a slow stimulation of theamiloride-sensitive short-circuit current (INa)by 68.4 ± 11% (n = 9) at 60 min. This increaseof INa was attributed to an increase of openchannel and total channel (NT) densities. Similar changes were observed with pHo 5.4. The effects ofpHo were blocked by buffering intracellularCa2+ with 5 µM1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Inoocytes, pHo 6.4 elicited a small transient increase of theslope conductance of the cloned ENaC (11.4 ± 2.2% at 2 min)followed by a decrease to 83.7 ± 11.7% of control at 60 min (n = 6). Thus small decreases of pHostimulate the native ENaC by increasing NT butdo not appreciably affect ENaC expressed in Xenopus oocytes.These effects are distinct from those observed with decreasingintracellular pH with permeant buffers that are known to inhibit ENaC.

  相似文献   

4.
The myoplasmic free Ca2+concentration([Ca2+]i)was measured in intact single fibers from mouse skeletal muscle withthe fluorescent Ca2+ indicatorindo 1. Some fibers were perfused in a solution in which theconcentration of Na+ was reducedfrom 145.4 to 0.4 mM (low-Na+solution) in an attempt to activate reverse-modeNa+/Ca2+exchange (Ca2+ entry in exchangefor Na+ leaving the cell). Undernormal resting conditions, application oflow-Na+ solution only increased[Ca2+]iby 5.8 ± 1.8 nM from a mean resting[Ca2+]iof 42 nM. In other fibers,[Ca2+]iwas elevated by stimulating sarcoplasmic reticulum (SR)Ca2+ release with caffeine (10 mM)and by inhibiting SR Ca2+ uptakewith2,5-di(tert-butyl)-1,4-benzohydroquinone(TBQ; 0.5 µM) in an attempt to activate forward-modeNa+/Ca2+exchange (Ca2+ removal from thecell in exchange for Na+ influx).These two agents caused a large increase in[Ca2+]i,which then declined to a plateau level approximately twice the baseline[Ca2+]iover 20 min. If the cell was allowed to recover between exposures tocaffeine and TBQ in a solution in whichCa2+ had been removed, theincrease in[Ca2+]iduring the second exposure was very low, suggesting thatCa2+ had left the cell during theinitial exposure. Application of caffeine and TBQ to a preparation inlow-Na+ solution produced a large,sustained increase in[Ca2+]iof ~1 µM. However, when cells were exposed to caffeine and TBQ in alow-Na+ solution in whichCa2+ had been removed, a sustainedincrease in[Ca2+]iwas not observed, although[Ca2+]iremained higher and declined slower than in normalNa+ solution. This suggests thatforward-modeNa+/Ca2+exchange contributed to the fall of[Ca2+]iin normal Na+ solution, but whenextracellular Na+ was low, aprolonged elevation of[Ca2+]icould activate reverse-modeNa+/Ca2+exchange. The results provide evidence that skeletal muscle fibers possess aNa+/Ca2+exchange mechanism that becomes active in its forward mode when [Ca2+]iis increased to levels similar to that obtained during contraction.

  相似文献   

5.
We hypothesized that highextracellular K+ concentration([K+]o)-mediated stimulation ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) may result in a net gain of K+ and Cland thus lead to high-[K+]o-induced swellingand glutamate release. In the current study, relative cell volumechanges were determined in astrocytes. Under 75 mM[K+]o, astrocytes swelled by 20.2 ± 4.9%. This high-[K+]o-mediated swelling wasabolished by the NKCC1 inhibitor bumetanide (10 µM, 1.0 ± 3.1%; P < 0.05). Intracellular36Cl accumulation was increased from acontrol value of 0.39 ± 0.06 to 0.68 ± 0.05 µmol/mgprotein in response to 75 mM [K+]o. Thisincrease was significantly reduced by bumetanide (P < 0.05). Basal intracellular Na+ concentration([Na+]i) was reduced from 19.1 ± 0.8 to16.8 ± 1.9 mM by bumetanide (P < 0.05).[Na+]i decreased to 8.4 ± 1.0 mM under75 mM [K+]o and was further reduced to5.2 ± 1.7 mM by bumetanide. In addition, the recovery rate of[Na+]i on return to 5.8 mM[K+]o was decreased by 40% in the presenceof bumetanide (P < 0.05). Bumetanide inhibitedhigh-[K+]o-induced 14C-labeledD-aspartate release by ~50% (P < 0.05).These results suggest that NKCC1 contributes tohigh-[K+]o-induced astrocyte swelling andglutamate release.

  相似文献   

6.
Bovine adrenalzona fasciculata cells (AZF) express a noninactivatingK+ current(IAC) whoseinhibition by adrenocorticotropic hormone and ANG II may be coupled tomembrane depolarization andCa2+-dependentcortisol secretion. We studiedIACinhibition byCa2+ and theCa2+ionophore ionomycin in whole cell and single-channel patch-clamp recordings of AZF. In whole cell recordings with intracellular (pipette)Ca2+concentration([Ca2+]i)buffered to 0.02 µM,IAC reachedmaximum current density of 25.0 ± 5.1 pA/pF(n = 16); raising[Ca2+]ito 2.0 µM reduced it 76%. In inside-out patches, elevated[Ca2+]idramatically reducedIAC channelactivity. Ionomycin inhibited IAC by 88 ± 4% (n = 14) without altering rapidlyinactivating A-type K+ current.Inhibition of IACby ionomycin was unaltered by adding calmodulin inhibitory peptide tothe pipette or replacing ATP with its nonhydrolyzable analog5'-adenylylimidodiphosphate.IAC inhibition byionomycin was associated with membrane depolarization. When[Ca2+]iwas buffered to 0.02 µM with 2 and 11 mM1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), ionomycin inhibitedIAC by 89.6 ± 3.5 and 25.6 ± 14.6% and depolarized the same AZF by 47 ± 8 and 8 ± 3 mV, respectively (n = 4). ANG II inhibitedIAC significantlymore effectively when pipette BAPTA was reduced from 11 to 2 mM. Raising[Ca2+]iinhibits IACthrough a mechanism not requiring calmodulin or protein kinases,suggesting direct interaction withIAC channels. ANGII may inhibitIAC anddepolarize AZF by activating parallel signaling pathways, one of whichuses Ca2+ asa mediator.

  相似文献   

7.
In fura 2-loaded N1E-115 cells, regulationof intracellular Ca2+ concentration([Ca2+]i) following a Ca2+ loadinduced by 1 µM thapsigargin and 10 µM carbonylcyanidep-trifluoromethyoxyphenylhydrazone (FCCP) wasNa+ dependent and inhibited by 5 mM Ni2+. Incells with normal intracellular Na+ concentration([Na+]i), removal of bath Na+,which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unlesscell Ca2+ buffer capacity was reduced. When N1E-115 cellswere Na+ loaded using 100 µM veratridine and 4 µg/mlscorpion venom, the rate of the reverse mode of theNa+/Ca2+ exchanger was apparently enhanced,since an ~4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loadedcells, we were able to demonstrate forward operation of theNa+/Ca2+ exchanger (net efflux ofCa2+) by observing increases (~ 6 mM) in[Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could onlybe observed when a continuous ionomycin-induced influx ofCa2+ occurred. The voltage-sensitive dyebis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used tomeasure changes in membrane potential. Ionomycin (1 µM) depolarizedN1E-115 cells (~25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250-500 µMbenzamil. These data provide evidence for the presence of anelectrogenic Na+/Ca2+ exchanger that is capableof regulating [Ca2+]i after release ofCa2+ from cell stores.

  相似文献   

8.
We report, for the epithelialNa+ channel (ENaC) in A6 cells,the modulation by cell pH (pHc)of the transepithelial Na+ current(INa), thecurrent through the individual Na+channel (i), the openNa+ channel density(No), and thekinetic parameters of the relationship betweenINa and theapical Na+ concentration. Thei andNo were evaluatedfrom the Lorentzian INa noise inducedby the apical Na+ channel blocker6-chloro-3,5-diaminopyrazine-2-carboxamide.pHc shifts were induced, understrict and volume-controlled experimental conditions, byapical/basolateral NH4Cl pulses orbasolateral arrest of theNa+/H+exchanger (Na+ removal; block byethylisopropylamiloride) and were measured with the pH-sensitive probe2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Thechanges in pHc were positivelycorrelated to changes inINa and theapically dominated transepithelial conductance. The sole pHc-sensitive parameter underlyingINa wasNo. Only thesaturation value of theINa kinetics wassubject to changes in pHc.pHc-dependent changes inNo may be causedby influencingPo, the ENaC openprobability, or/and the total channel number,NT = No/Po.

  相似文献   

9.
Rapamycin and FK-506 are immunosuppressive drugs thatbind a ubiquitous immunophilin, FKBP12, but immunosuppressivemechanisms and side effects appear to be different. Rapamycin bindsrenal FKBP12 to change renal transport. We used cell-attached patch clamp to examine rapamycin's effect on Na+ channels in A6cells. Channel NPo was 0.5 ± 0.08 (n = 6)during the first 5 min but fell close to zero after 20 min. Application of 1 µM rapamycin reactivated Na+ channels(NPo = 0.47 ± 0.1; n=6), but 1 µMFK-506 did not. Also, GF-109203X, a protein kinase C (PKC) inhibitor,mimicked the rapamycin-induced reactivation in a nonadditive manner.However, rapamycin did not reactivate Na+ channels if cellswere exposed to 1 µM FK-506 before rapamycin. In PKC assays,rapamycin was as effective as the PKC inhibitor; however, epithelialNa+ channel (ENaC) phosphorylation was low under baselineconditions and was not altered by PKC inhibitors or activators. Theseresults suggest that rapamycin activates Na+ channels bybinding FKBP12 and inhibiting PKC, and, in renal cells, despite bindingthe same immunophilin, rapamycin and FK-506 activate differentintracellular signaling pathways.

  相似文献   

10.
Several studies suggest the involvement of Na+ and HCO3 transport in the formation of cerebrospinal fluid. Two Na+-dependent HCO3 transporters were recently localized to the epithelial cells of the rat choroid plexus (NBCn1 and NCBE), and the mRNA for a third protein was also detected (NBCe2) (Praetorius J, Nejsum LN, and Nielsen S. Am J Physiol Cell Physiol 286: C601–C610, 2004). Our goal was to immunolocalize the NBCe2 to the choroid plexus by immunohistochemistry and immunogold electronmicroscopy and to functionally characterize the bicarbonate transport in the isolated rat choroid plexus by measurements of intracellular pH (pHi) using a dual-excitation wavelength pH-sensitive dye (BCECF). Both antisera derived from COOH-terminal and NH2-terminal NBCe2 peptides localized NBCe2 to the brush-border membrane domain of choroid plexus epithelial cells. Steady-state pHi in choroidal cells increased from 7.03 ± 0.02 to 7.38 ± 0.02 (n = 41) after addition of CO2/HCO3 into the bath solution. This increase was Na+ dependent and inhibited by the Cl and HCO3 transport inhibitor DIDS (200 µM). This suggests the presence of Na+-dependent, partially DIDS-sensitive HCO3 uptake. The pHi recovery after acid loading revealed an initial Na+ and HCO3-dependent net base flux of 0.828 ± 0.116 mM/s (n = 8). The initial flux in the presence of CO2/HCO3 was unaffected by DIDS. Our data support the existence of both DIDS-sensitive and -insensitive Na+- and HCO3-dependent base loader uptake into the rat choroid plexus epithelial cells. This is consistent with the localization of the three base transporters NBCn1, Na+-driven Cl bicarbonate exchanger, and NBCe2 in this tissue. bicarbonate metabolism; BCECF; cerebrospinal fluid; acid/base transport; ammonium prepulse  相似文献   

11.
Muchevidence supports the view that hypoxic/ischemic injury is largely dueto increased intracellular Ca concentration([Ca]i) resulting from 1) decreasedintracellular pH (pHi), 2) stimulated Na/H exchangethat increases Na uptake and thus intracellular Na (Nai),and 3) decreased Na gradient that decreases or reverses net Catransport via Na/Ca exchange. The Na/H exchanger (NHE) is alsostimulated by hypertonic solutions; however, hypertonic media mayinhibit NHE's response to changes in pHi (Cala PM and Maldonado HM. J Gen Physiol 103: 1035-1054, 1994). Thus wetested the hypothesis that hypertonic perfusion attenuates acid-induced increases in Nai in myocardium and, thereby, decreasesCai accumulation during hypoxia. Rabbit hearts wereLangendorff perfused with HEPES-buffered Krebs-Henseleit solutionequilibrated with 100% O2 or 100% N2. Hypertonic perfusion began 5 min before hypoxia or normoxicacidification (NH4Cl washout). Nai,[Ca]i, pHi, and high-energyphosphates were measured by NMR. Control solutions were 295 mosM, andhypertonic solutions were adjusted to 305, 325, or 345 mosM by additionof NaCl or sucrose. During 60 min of hypoxia (295 mosM),Nai rose from 22 ± 1 to 100 ± 10 meq/kg dry wt while[Ca]i rose from 347 ± 11 to 1,306 ± 89 nM.During hypertonic hypoxic perfusion (325 mosM), increases inNai and [Ca]i were reduced by 65 and 60%, respectively (P < 0.05). Hypertonicperfusion also diminished Na uptake after normoxic acidification by87% (P < 0.05). The data are consistent with the hypothesisthat mild hypertonic perfusion diminishes acid-induced Na accumulationand, thereby, decreases Na/Ca exchange-mediated Caiaccumulation during hypoxia.

  相似文献   

12.
Schepkin, V. D., I. O. Choy, and T. F. Budinger. Sodiumalterations in isolated rat heart during cardioplegic arrest. J. Appl. Physiol. 81(6):2696-2702, 1996.Triple-quantum-filtered (TQF) Na nuclearmagnetic resonance (NMR) without chemical shift reagent is used toinvestigate Na derangement in isolated crystalloid perfused rat heartsduring St. Thomas cardioplegic (CP) arrest. Theextracellular Na contribution to the NMR TQF signal of a rat heart isfound to be 73 ± 5%, as determined by wash-out experiments atdifferent moments of ischemia and reperfusion. With the use of thiscontribution factor, the estimated intracellular Na([Na+]i)TQF signal is 222 ± 13% of preischemic level after 40 min of CParrest and 30 min of reperfusion, and the heart rate pressure productrecovery is 71 ± 8%. These parameters aresignificantly better than for stop-flow ischemia: 340 ± 20% and 6 ± 3%, respectively. At 37°C, the initial delay of 15 min in[Na+]igrowth occurs during CP arrest along with reduced growth later (~4.0%/min) in comparison with stop-flow ischemia (~6.7%/min). The hypothermia (21°C, 40 min) for the stop-flow ischemia and CPdramatically decreases the[Na+]igain with the highest heart recovery for CP (~100%). These studiesconfirm the enhanced sensitivity of TQF NMR to[Na+]iand demonstrate the potential of NMR without chemical shift reagent tomonitor[Na+]iderangements.

  相似文献   

13.
Blocker-inducednoise analysis of epithelial Na+ channels (ENaCs) was usedto investigate how inhibition of an LY-294002-sensitive phosphatidylinositol 3-kinase (PI 3-kinase) alters Na+transport in unstimulated and aldosterone-prestimulated A6 epithelia. From baseline Na+ transport rates(INa) of 4.0 ± 0.1 (unstimulated) and9.1 ± 0.9 µA/cm2 (aldosterone), 10 µM LY-294002caused, following a relatively small initial increase of transport, acompletely reversible inhibition of transport within 90 min to 33 ± 6% and 38 ± 2% of respective baseline values. Initialincreases of transport could be attributed to increases of channel openprobability (Po) within 5 min to 143 ± 17% (unstimulated) and 142 ± 10% of control (aldosterone) frombaseline Po averaging near 0.5. Inhibition oftransport was due to much slower decreases of functional channeldensities (NT) to 28 ± 4% (unstimulated)and 35 ± 3% (aldosterone) of control at 90 min. LY-294002 (50 µM) caused larger but completely reversible increases ofPo (215 ± 38% of control at 5 min) andmore rapid but only slightly larger decreases ofNT. Basolateral exposure to LY-294002 induced nodetectable effect on transport, Po or NT. We conclude that an LY-294002-sensitive PI3-kinase plays an important role in regulation of transport bymodulating NT and Po ofENaCs, but only when presented to apical surfaces of the cells.

  相似文献   

14.
The general phosphate need in mammalian cells is accommodated by members of the Pi transport (PiT) family (SLC20), which use either Na+ or H+ to mediate inorganic phosphate (Pi) symport. The mammalian PiT paralogs PiT1 and PiT2 are Na+-dependent Pi (NaPi) transporters and are exploited by a group of retroviruses for cell entry. Human PiT1 and PiT2 were characterized by expression in Xenopus laevis oocytes with 32Pi as a traceable Pi source. For PiT1, the Michaelis-Menten constant for Pi was determined as 322.5 ± 124.5 µM. PiT2 was analyzed for the first time and showed positive cooperativity in Pi uptake with a half-maximal activity constant for Pi of 163.5 ± 39.8 µM. PiT1- and PiT2-mediated Na+-dependent Pi uptake functions were not significantly affected by acidic and alkaline pH and displayed similar Na+ dependency patterns. However, only PiT2 was capable of Na+-independent Pi transport at acidic pH. Study of the impact of divalent cations Ca2+ and Mg2+ revealed that Ca2+ was important, but not critical, for NaPi transport function of PiT proteins. To gain insight into the NaPi cotransport function, we analyzed PiT2 and a PiT2 Pi transport knockout mutant using 22Na+ as a traceable Na+ source. Na+ was transported by PiT2 even without Pi in the uptake medium and also when Pi transport function was knocked out. This is the first time decoupling of Pi from Na+ transport has been demonstrated for a PiT family member. Moreover, the results imply that putative transmembrane amino acids E55 and E575 are responsible for linking Pi import to Na+ transport in PiT2. inorganic phosphate transport; retroviral receptor; SLC20  相似文献   

15.
The ability to image calciumsignals at subcellular levels within the intact depolarizing heartcould provide valuable information toward a more integratedunderstanding of cardiac function. Accordingly, a system combiningtwo-photon excitation with laser-scanning microscopy was developed tomonitor electrically evoked [Ca2+]itransients in individual cardiomyocytes within noncontracting Langendorff-perfused mouse hearts. [Ca2+]itransients were recorded at depths 100 µm from the epicardial surface with the fluorescent indicators rhod-2 or fura-2 in the presence of the excitation-contraction uncoupler cytochalasin D. Evoked[Ca2+]i transients were highly synchronizedamong neighboring cardiomyocytes. At 1 Hz, the times from 90 to 50%(t90-50%) and from 50 to 10%(t50-10%) of the peak[Ca2+]i were (means ± SE) 73 ± 4 and 126 ± 10 ms, respectively, and at 2 Hz, 62 ± 3 and94 ± 6 ms (n = 19, P < 0.05 vs.1 Hz) in rhod-2-loaded cardiomyocytes.[Ca2+]i decay was markedly slower infura-2-loaded hearts (t90-50% at 1 Hz,128 ± 9 ms and at 2 Hz, 88 ± 5 ms;t50-10% at 1 Hz, 214 ± 18 ms and at2 Hz, 163 ± 7 ms; n = 19, P < 0.05 vs. rhod-2). Fura-2-induced deceleration of[Ca2+]i decline resulted from increasedcytosolic Ca2+ buffering, because the kinetics of rhod-2decay resembled those obtained with fura-2 after incorporation of theCa2+ chelator BAPTA. Propagating calcium waves and[Ca2+]i amplitude alternans were readilydetected in paced hearts. This approach should be of general utility tomonitor the consequences of genetic and/or functional heterogeneity incellular calcium signaling within whole mouse hearts at tissue depthsthat have been inaccessible to single-photon imaging.

  相似文献   

16.
We have clonedand functionally characterized the human Na+-dependenthigh-affinity dicarboxylate transporter (hNaDC3) from placenta. ThehNaDC3 cDNA codes for a protein of 602 amino acids with 12 transmembrane domains. When expressed in mammalian cells, the clonedtransporter mediates the transport of succinate in the presence ofNa+ [concentration of substrate necessary for half-maximaltransport (Kt) for succinate = 20 ± 1 µM]. Dimethylsuccinate also interacts with hNaDC3. TheNa+-to-succinate stoichiometry is 3:1 and concentration ofNa+ necessary for half-maximal transport(KNa+0.5) is 49 ± 1 mM as determined by uptake studies withradiolabeled succinate. When expressed in Xenopuslaevis oocytes, hNaDC3 induces Na+-dependent inwardcurrents in the presence of succinate and dimethylsuccinate. At amembrane potential of 50 mV,KSuc0.5 is 102 ± 20 µM andKNa+0.5 is 22 ± 4 mM as determined by the electrophysiological approach. Simultaneous measurements of succinate-evoked charge transfer andradiolabeled succinate uptake in hNaDC3-expressing oocytes indicate acharge-to-succinate ratio of 1:1 for the transport process, suggestinga Na+-to-succinate stoichiometry of 3:1. pH titration ofcitrate-induced currents shows that hNaDC3 accepts preferentially thedivalent anionic form of citrate as a substrate. Li+inhibits succinate-induced currents in the presence of Na+.Functional analysis of rat-human and human-rat NaDC3 chimeric transporters indicates that the catalytic domain of the transporter lies in the carboxy-terminal half of the protein. The humanNaDC3 gene is located on chromosome20q12-13.1, as evidenced by fluorescent in situ hybridization. Thegene is >80 kbp long and consists of 13 exons and 12 introns.

  相似文献   

17.
The role of theNa+/Ca2+exchanger in intracellular Ca2+regulation was investigated in freshly dissociated catfish retinalhorizontal cells (HC).Ca2+-permeable glutamate receptorsand L-type Ca2+ channels as wellas inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitiveintracellular Ca2+ stores regulateintracellular Ca2+ in these cells.We used the Ca2+-sensitive dyefluo 3 to measure changes in intracellularCa2+ concentration([Ca2+]i)under conditions in whichNa+/Ca2+exchange was altered. In addition, the role of theNa+/Ca2+exchanger in the refilling of the caffeine-sensitiveCa2+ store followingcaffeine-stimulated Ca2+ releasewas assessed. Brief applications of caffeine (1-10 s) producedrapid and transient changes in[Ca2+]i.Repeated applications of caffeine produced smallerCa2+ transients until no furtherCa2+ was released. Store refillingoccurred within 1-2 min and required extracellularCa2+. Ouabain-induced increases inintracellular Na+ concentration([Na+]i)increased both basal free[Ca2+]iand caffeine-stimulated Ca2+release. Reduction of external Na+concentration([Na+]o)further and reversibly increased[Ca2+]iin ouabain-treated HC. This effect was not abolished by the Ca2+ channel blocker nifedipine,suggesting that increases in[Na+]ipromote net extracellular Ca2+influx through aNa+/Ca2+exchanger. Moreover, when[Na+]owas replaced by Li+, caffeine didnot stimulate release of Ca2+ fromthe caffeine-sensitive store afterCa2+ depletion. TheNa+/Ca2+exchanger inhibitor 2',4'-dimethylbenzamil significantlyreduced the caffeine-evoked Ca2+response 1 and 2 min after store depletion.

  相似文献   

18.
Putative chemoreceptors in the solitary complex (SC) are sensitive to hypercapnia and oxidative stress. We tested the hypothesis that oxidative stress stimulates SC neurons by a mechanism independent of intracellular pH (pHi). pHi was measured by using ratiometric fluorescence imaging microscopy, utilizing either the pH-sensitive fluorescent dye BCECF or, during whole cell recordings, pyranine in SC neurons in brain stem slices from rat pups. Oxidative stress decreased pHi in 270 of 436 (62%) SC neurons tested. Chloramine-T (CT), N-chlorosuccinimide (NCS), dihydroxyfumaric acid, and H2O2 decreased pHi by 0.19 ± 0.007, 0.20 ± 0.015, 0.15 ± 0.013, and 0.08 ± 0.002 pH unit, respectively. Hypercapnia decreased pHi by 0.26 ± 0.006 pH unit (n = 95). The combination of hypercapnia and CT or NCS had an additive effect on pHi, causing a 0.42 ± 0.03 (n = 21) pH unit acidification. CT slowed pHi recovery mediated by Na+/H+ exchange (NHE) from NH4Cl-induced acidification by 53% (n = 20) in -buffered medium and by 58% (n = 10) in HEPES-buffered medium. CT increased firing rate in 14 of 16 SC neurons, and there was no difference in the firing rate response to CT with or without a corresponding change in pHi. These results indicate that oxidative stress 1) decreases pHi in some SC neurons, 2) together with hypercapnia has an additive effect on pHi, 3) partially inhibits NHE, and 4) directly affects excitability of CO2/H+-chemosensitive SC neurons independently of pHi changes. These findings suggest that oxidative stress acidifies SC neurons in part by inhibiting NHE, and this acidification may contribute ultimately to respiratory control dysfunction. hyperoxic hyperventilation; O2 toxicity; pH regulation; brain stem; reactive oxygen species  相似文献   

19.
A method ispresented to measure the absolute concentration of intracellularNa+([Na+]i)in vivo by using interleaved 23Na-and 31P-nuclear magnetic resonance(NMR) spectroscopy andTmDOTP5 as shift reagentand chemical marker of tissue extracellular space (ECS). The techniquewas used to determine[Na+]iand relative ECS in livers of control rats (21 ± 3 and0.11 ± 0.02 mM, respectively) and in rats exposed to carbontetrachloride (103 ± 29 and 0.23 ± 0.03 mM, respectively). TheNMR measurements were confirmed independently on excised tissue samplesby using atomic absorption spectroscopy. The results confirm thatTmDOTP5 can be used as acombined cation shift reagent and ECS marker, thereby allowingquantitation of[Na+]iin vivo by NMR.

  相似文献   

20.
We havefunctionally characterized Na+-driven bicarbonatetransporter (NBC)4, originally cloned from human heart by Pushkin etal. (Pushkin A, Abuladze N, Newman D, Lee I, Xu G, and Kurtz I. Biochem Biophys Acta 1493: 215-218, 2000). Of the fourNBC4 variants currently present in GenBank, our own cloning efforts yielded only variant c. We expressed NBC4c (GenBank accession no.AF293337) in Xenopus laevis oocytes and assayed membrane potential (Vm) and pH regulatory function withmicroelectrodes. Exposing an NBC4c-expressing oocyte to a solutioncontaining 5% CO2 and 33 mM HCOelicited a large hyperpolarization, indicating that the transporter iselectrogenic. The initial CO2-induced decrease inintracellular pH (pHi) was followed by a slow recovery thatwas reversed by removing external Na+. Two-electrodevoltage clamp of NBC4c-expressing oocytes revealed largeHCO- and Na+-dependent currents. When wevoltage clamped Vm far from NBC4c's estimatedreversal potential (Erev), the pHirecovery rate increased substantially. Both the currents andpHi recovery were blocked by 200 µM4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). We estimatedthe transporter's HCO:Na+ stoichiometryby measuring Erev at different extracellularNa+ concentration ([Na+]o)values. A plot of Erev againstlog[Na+]o was linear, with a slope of 54.8 mV/log[Na+]o. This observation, as well asthe absolute Erev values, are consistent with a2:1 stoichiometry. In conclusion, the behavior of NBC4c, which wepropose to call NBCe2-c, is similar to that of NBCe1, the firstelectrogenic NBC.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号