首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epithelial Na+ channel (ENaC), composed of three subunits (alphabetagamma), is expressed in various Na(+)-absorbing epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. By using patch clamp techniques, we have examined the effect of cytosolic ATP on the activity of the rat alphabetagammaENaC (rENaC) stably expressed in NIH-3T3 cells and in Madin-Darby canine kidney epithelial cells. The inward whole-cell current attributable to rENaC activity ran down when these cells were dialyzed with an ATP-free pipette solution in the conventional whole-cell voltage-clamping technique. This run down was prevented by 2 mM ATP (but not by AMP or ADP) in the pipette solution or by the poorly or non-hydrolyzable analogues of ATP (adenosine 5'-O-(thiotriphosphate) and adenosine 5'-(beta,gamma-imino)triphosphate) in both cell lines, suggesting that protection from run down was mediated through non-hydrolytic nucleotide binding. Accordingly, we demonstrate binding of ATP (but not AMP) to alpharENaC expressed in Madin-Darby canine kidney cells, which was inhibited upon mutation of the two putative nucleotide-binding motifs of alpharENaC. Single channel analyses indicated that the run down of currents observed in the whole-cell recording was attributable to run down of channel activity, defined as NPo (the product of the number of channels and open probability). We propose that this novel ATP regulation of ENaC may be, at least in part, involved in the fine-tuning of ENaC activity under physiologic and pathophysiologic conditions.  相似文献   

2.
CK2 is a ubiquitous, pleiotropic, and constitutively active Ser/Thr protein kinase that controls protein expression, cell signaling, and ion channel activity. Phosphorylation sites for CK2 are located in the C terminus of both beta- and gamma-subunits of the epithelial Na(+) channel (ENaC). We examined the role of CK2 on the regulation of both endogenous ENaC in native murine epithelia and in Xenopus oocytes expressing rENaC. In Ussing chamber experiments with mouse airways, colon, and cultured M1-collecting duct cells, amiloride-sensitive Na(+) transport was inhibited dose-dependently by the selective CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB). In oocytes, ENaC currents were also inhibited by TBB and by the structurally unrelated inhibitors heparin and poly(E:Y). Expression of a trimeric channel lacking both CK2 sites (alphabeta(S631A)gamma(T599A)) produced a largely attenuated amiloride-sensitive whole cell conductance and rendered the mutant channel insensitive to CK2. In Xenopus oocytes, CK2 was translocated to the cell membrane upon expression of wt-ENaC but not of alphabeta(S631A)gamma(T599A)-ENaC. Phosphorylation by CK2 is essential for ENaC activation, and to a lesser degree, it also controls membrane expression of alphabetagamma-ENaC. Channels lacking the Nedd4-2 binding motif in beta-ENaC (R561X, Y618A) no longer required the CK2 site for channel activity and siRNA-knockdown of Nedd4-2 eliminated the effects of TBB. This implies a role for CK2 in inhibiting the Nedd4-2 pathway. We propose that the C terminus of beta-ENaC is targeted by this essential, conserved pleiotropic kinase that directs its constitutive activity toward many cellular protein complexes.  相似文献   

3.
Regulation of the epithelial Na(+) channel by extracellular acidification   总被引:2,自引:0,他引:2  
The effect of extracellular acidification wastested on the native epithelial Na+ channel (ENaC) in A6epithelia and on the cloned ENaC expressed in Xenopusoocytes. Channel activity was determined utilizing blocker-inducedfluctuation analysis in A6 epithelia and dual electrode voltage clampin oocytes. In A6 cells, a decrease of extracellular pH(pHo) from 7.4 to 6.4 caused a slow stimulation of theamiloride-sensitive short-circuit current (INa)by 68.4 ± 11% (n = 9) at 60 min. This increaseof INa was attributed to an increase of openchannel and total channel (NT) densities. Similar changes were observed with pHo 5.4. The effects ofpHo were blocked by buffering intracellularCa2+ with 5 µM1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Inoocytes, pHo 6.4 elicited a small transient increase of theslope conductance of the cloned ENaC (11.4 ± 2.2% at 2 min)followed by a decrease to 83.7 ± 11.7% of control at 60 min (n = 6). Thus small decreases of pHostimulate the native ENaC by increasing NT butdo not appreciably affect ENaC expressed in Xenopus oocytes.These effects are distinct from those observed with decreasingintracellular pH with permeant buffers that are known to inhibit ENaC.

  相似文献   

4.
In amphibian epithelia and in cortical collecting duct the antidiuretic peptide arginine-vasopressin (AVP) stimulates activity of epithelial Na+ channels (ENaCs). Generally, the AVP action upon Na+ (re)absorption is believed to be a cAMP/protein-kinase-A mediated mechanism. In the Xenopus oocyte expression system, however, a clear stimulation of ENaC activity by cAMP could not be reproduced with channel subunits cloned from A6 cells or rat colon. We have recently shown that membrane-permeant 8-(4-chlorophenylthio)-cAMP (cpt-cAMP) stimulates activity of a hybrid ENaC in Xenopus oocytes, that consists of an alpha-subunit cloned from guinea-pig colon and the beta- and gamma-subunit originating from rat colon (gpalpharbetagammaENaC). In the present study, we have further investigated the mechanisms by which cpt-cAMP upregulates gpalpharbetagammaENaC activity. Interestingly, we found AVP to stimulate the gpalpharbetagammaENaC in oocytes. Also, treatment with GTP-gamma-S largely activated this channel. In contrast, as a conflicting result, forskolin had no stimulatory effect on the cAMP-sensitive gpalpharbetagammaENaC. Experiments with Brefeldin A (BFA) or nocodazole suggested that only a minor part of cpt-cAMP-induced activation is probably due to an additional translocation of channel proteins into the oocyte membrane. In conclusion, the stimulatory effect of synthetic cpt-cAMP does not seem to be exclusively provided by classical cAMP/PKA-associated transduction mechanisms, i.e., as in A6 cells.  相似文献   

5.
Indirect activation of the epithelial Na+ channel by trypsin   总被引:1,自引:0,他引:1  
We tested the hypothesis that the serine protease trypsin can indirectly activate the epithelial Na(+) channel (ENaC). Experiments were carried out in Xenopus oocytes and examined the effects on the channel formed by all three human ENaC subunits and that formed by Xenopus epsilon and human beta and gamma subunits (epsilonbetagammaENaC). Low levels of trypsin (1-10 ng/ml) were without effects on the oocyte endogenous conductances and were specifically used to test the effects on ENaC. Addition of 1 ng/ml trypsin for 60 min stimulated the amiloride-sensitive human ENaC conductance (g(Na)) by approximately 6-fold. This effect on the g(Na) was [Na(+)]-independent, thereby ruling out an interaction with channel feedback inhibition by Na(+). The indirect nature of this activation was confirmed in cell-attached patch clamp experiments with trypsin added to the outside of the pipette. Trypsin was comparatively ineffective at activating epsilonbetagammaENaC, a channel that exhibited a high spontaneous open probability. These observations, in combination with surface binding experiments, indicated that trypsin indirectly activated membrane-resident channels. Activation by trypsin was also dependent on catalytic activity of this protease but was not accompanied by channel subunit proteolysis. Channel activation was dependent on downstream activation of G-proteins and was blocked by G-protein inhibition by injection of guanyl-5'-yl thiophosphate and by pre-stimulation of phospholipase C. These data indicate a receptor-mediated activation of ENaC by trypsin. This trypsin-activated receptor is distinct from that of protease-activated receptor-2, because the response to trypsin was unaffected by protease-activated receptor-2 overexpression or knockdown.  相似文献   

6.
Using the Xenopus oocyteexpression system, we examined the mechanisms by which the - and-subunits of an epithelial Na+channel (ENaC) regulate -subunit channel activity and the mechanisms by which -subunit truncations cause ENaC activation. Expression of-ENaC alone produced small amiloride-sensitive currents (43 ± 10 nA, n = 7). These currentsincreased >30-fold with the coexpression of - and -ENaC to1,476 ± 254 nA (n = 20).This increase was accompanied by a 3.1- and 2.7-fold increase ofmembrane fluorescence intensity in the animal and vegetal poles of theoocyte, respectively, with use of an antibody directed against the-subunit of ENaC. Truncation of the last 75 amino acids of the-subunit COOH terminus, as found in the original pedigree ofindividuals with Liddle's syndrome, caused a 4.4-fold(n = 17) increase of theamiloride-sensitive currents compared with wild-type -ENaC.This was accompanied by a 35% increase of animal pole membranefluorescence intensity. Injection of a 30-amino acid peptide withsequence identity to the COOH terminus of the human -ENaCsignificantly reduced the amiloride-sensitive currents by 40-50%.These observations suggest a tonic inhibitory role on the channel'sopen probability (Po) by the COOH terminus of -ENaC. We conclude that the changes of current observed with coexpression of the - and -subunits or those observed with -subunit truncation are likely the result ofchanges of channel density in combination with large changes ofPo.

  相似文献   

7.
The epithelial Na+ channel (ENaC), composed of three subunits (alpha beta gamma), plays a critical role in salt and fluid homeostasis. Abnormalities in channel opening and numbers have been linked to several genetic disorders, including cystic fibrosis, pseudohypoaldosteronism type I and Liddle syndrome. We have recently identified the ubiquitin-protein ligase Nedd4 as an interacting protein of ENaC. Here we show that ENaC is a short-lived protein (t1/2 approximately 1 h) that is ubiquitinated in vivo on the alpha and gamma (but not beta) subunits. Mutation of a cluster of Lys residues (to Arg) at the N-terminus of gamma ENaC leads to both inhibition of ubiquitination and increased channel activity, an effect augmented by N-terminal Lys to Arg mutations in alpha ENaC, but not in beta ENaC. This elevated channel activity is caused by an increase in the number of channels present at the plasma membrane; it represents increases in both cell-surface retention or recycling of ENaC and incorporation of new channels at the plasma membrane, as determined by Brefeldin A treatment. In addition, we find that the rapid turnover of the total pool of cellular ENaC is attenuated by inhibitors of both the proteasome and the lysosomal/endosomal degradation systems, and propose that whereas the unassembled subunits are degraded by the proteasome, the assembled alpha beta gamma ENaC complex is targeted for lysosomal degradation. Our results suggest that ENaC function is regulated by ubiquitination, and propose a paradigm for ubiquitination-mediated regulation of ion channels.  相似文献   

8.
9.
The PY and YXXphi motifs are canonical sorting signals involved in trafficking. Nedd4-2 and the mu(2)-subunit of the AP-2 complex target these motifs to facilitate internalization. Epithelial Na(+) channel (ENaC) subunits contain both motifs in their cytosolic COOH termini where they overlap ((S/T)PPPXYX(S/T)phi). Just preceding the PY and embedded within the YXXphi motifs are conserved serine/threonine. We test here whether these conserved Ser/Thr modulate ENaC activity by influencing the function of the internalization domains. We find that co-expression of dominant-negative dynamin (K44A) with ENaC increases channel activity. Conversely, co-expression of Nedd4-2 and epsin with ENaC decrease activity. Alanine substitution of the conserved Thr(628) preceding the PY motif in gamma-mENaC had no effect on basal activity. Channels with this mutation, however, responded to K44A and epsin but not Nedd4-2. Similarly, mutation of the proline repeat in the PY motif of gamma-mENaC disrupted only Nedd4-2 regulation having no effect on regulation by K44A and epsin. Alanine substitution of the conserved Thr within the YXX motif of gamma-mENaC (T635A) increased basal activity. Channels containing this mutation responded to Nedd4-2 but not K44A and epsin. Channels containing the T635(D/E) substitution in gamma-mENaC did not have increased basal activity and responded to Nedd4-2 but not K44A. The double mutant T628A,T635A did not respond to Nedd4-2 or K44A. Mutation of Thr(628) and Thr(635) also disrupted ENaC precipitation with the mu(2)-subunit of the AP-2 complex. Moreover, the YXXphi motif, independent of the PY motif, was sufficient to target degradation with T635A disrupting this effect. These results demonstrate that the overlapping PY and YXXphi motifs in ENaC are, in some instances, capable of independent function and that the Ser/Thr just preceding and within these domains impact this function.  相似文献   

10.
Cl- interference with the epithelial Na+ channel ENaC   总被引:2,自引:0,他引:2  
The cystic fibrosis transmembrane conductance regulator (CFTR) is a protein kinase A and ATP-regulated Cl- channel that also controls the activity of other membrane transport proteins, such as the epithelial Na+ channel ENaC. Previous studies demonstrated that cytosolic domains of ENaC are critical for down-regulation of ENaC by CFTR, whereas others suggested a role of cytosolic Cl- ions. We therefore examined in detail the anion dependence of ENaC and the role of its cytosolic domains for the inhibition by CFTR and the Cl- channel CLC-0. Coexpression of rat ENaC with human CFTR or the human Cl- channel CLC-0 caused inhibition of amiloride-sensitive Na+ currents after cAMP-dependent stimulation and in the presence of a 100 mM bath Cl- concentration. After activation of CFTR by 3-isobutyl-1-methylxanthine and forskolin or expression of CLC-0, the intracellular Cl- concentration was increased in Xenopus oocytes in the presence of a high bath Cl- concentration, which inhibited ENaC without changing surface expression of alpha beta gammaENaC. In contrast, a 5 mM bath Cl- concentration reduced the cytosolic Cl- concentration and enhanced ENaC activity. ENaC was also inhibited by injection of Cl- into oocytes and in inside/out macropatches by exposure to high cytosolic Cl- concentrations. The effect of Cl- was mimicked by Br-, Br-, NO3(-), and I-. Inhibition by Cl- was reduced in trimeric channels with a truncated COOH terminus of betaENaC and gammaENaC, and it was no longer detected in dimeric alpha deltaCbeta ENaC channels. Deletion of the NH2 terminus of alpha-, beta-, or gammaENaC, mutations in the NH2-terminal phosphatidylinositol bisphosphate-binding domain of betaENaC and gammaEnaC, and activation of phospholipase C, all reduced ENaC activity but allowed for Cl(-)-dependent inhibition of the remaining ENaC current. The results confirm a role of the carboxyl terminus of betaENaC for Cl(-)-dependent inhibition of the Na+ channel, which, however, may only be part of a complex regulation of ENaC by CFTR.  相似文献   

11.
The epithelial Na(+) channel/degenerin (ENaC/DEG) protein family includes a diverse group of ion channels, including nonvoltage-gated Na(+) channels of epithelia and neurons, and the acid-sensing ion channel 1 (ASIC1). In mammalian epithelia, ENaC helps regulate Na(+) and associated water transport, making it a critical determinant of systemic blood pressure and pulmonary mucosal fluidity. In the nervous system, ENaC/DEG proteins are related to sensory transduction. While the importance and physiological function of these ion channels are established, less is known about their structure. One hallmark of the ENaC/DEG channel family is that each channel subunit has only two transmembrane domains connected by an exceedingly large extracellular loop. This subunit structure was recently confirmed when Jasti and colleagues determined the crystal structure of chicken ASIC1, a neuronal acid-sensing ENaC/DEG channel. By mapping ENaC to the structural coordinates of cASIC1, as we do here, we hope to provide insight toward ENaC structure. ENaC, like ASIC1, appears to be a trimeric channel containing 1alpha, 1beta, and 1gamma subunit. Heterotrimeric ENaC and monomeric ENaC subunits within the trimer possibly contain many of the major secondary, tertiary, and quaternary features identified in cASIC1 with a few subtle but critical differences. These differences are expected to have profound effects on channel behavior. In particular, they may contribute to ENaC insensitivity to acid and to its constitutive activity in the absence of time- and ligand-dependent inactivation. Experiments resulting from this comparison of cASIC1 and ENaC may help clarify unresolved issues related to ENaC architecture, and may help identify secondary structures and residues critical to ENaC function.  相似文献   

12.
13.
SRC family kinases mediate epithelial Na+ channel inhibition by endothelin   总被引:2,自引:0,他引:2  
The epithelial Na(+) channel (ENaC) is implicated in the pathogenesis of salt-sensitive hypertension. Recent evidence from animal models suggests that the vasoactive peptide, endothelin (ET-1), may be an important negative regulator of ENaC in vivo. We investigated the signaling pathway involved in endothelin-mediated ENaC inhibition. Experiments were performed in NIH 3T3 cells stably expressing genes for the three (alpha, beta, and gamma) ENaC subunits. In whole cell patch clamp experiments, we found that ET-1 treatment induced a dose-dependent decrease in amiloride-sensitive currents. Using receptor-specific antagonists, we determined that the effects of ET-1 were attributed to activation of the ET(B) receptor. Moreover, the inhibitory effect of ET-1 on ENaC could be completely blocked when cells were pretreated with the selective Src family kinase inhibitor, PP2. Further studies revealed that basal Src family kinase activity strongly regulates ENaC whole cell currents and single channel gating. These results suggest that Src family kinases lie in a signaling pathway activated by ET-1 and are components of a novel negative regulatory cascade resulting in ENaC inhibition.  相似文献   

14.
Sensitivity of oocyte-expressed epithelial Na+ channel to glibenclamide   总被引:1,自引:0,他引:1  
The effect of glibenclamide on heterologously expressed amiloride-sensitive sodium channels (ENaCs) was investigated in Xenopus oocytes. The ENaC is a heteromer and consists of alpha-, beta- and gamma-subunits and the alpha- and beta-subunits have previously been shown to confer sensitivity to glibenclamide. We coexpressed either colonic rat alpha- (ralpha) or guinea-pig alpha-subunit (gpalpha) with Xenopus betagamma-subunits. The gpalphaxbetagamma was significantly stimulated by glibenclamide (100 microM) (184+/-15%), whereas the ralpha-combination was slightly down-regulated by the sulfonylurea (79+/-4%). The stimulating effect did not interfere with Na(+)-self-inhibition resulting from intracellular accumulation of Na(+)-ions. We exchanged cytosolic termini between both orthologs but the gpalpha-chimera with the termini from rat retained sensitivity to glibenclamide. The effect of glibenclamide on Xenopus ENaC (xENaC) was inhibited by ADP-beta-S but not by ATP-gamma-S, when applied intracellularly. Intracellular loading with Na(+)-ions after inhibition of Na(+)/K(+)-ATPases with ouabain prevented an up-regulation of ENaC activity by glibenclamide. Pretreatment of oocytes expressing xENaC with edelfosine (ET-18-OCH(3)) slightly reduced stimulation of I(ami) (118+/-12%; control: 132+/-9%) while phosphatidylinositol-4,5-biphosphate (PIP(2)) significantly reduced the effect of glibenclamide to 101+/-3%.  相似文献   

15.
The epithelial Na+ channel (ENaC) is the apical entry pathway for Na+ in many Na+-reabsorbing epithelia. ENaC is a heterotetrameric protein composed of homologous alpha, beta, and gamma subunits. Mutations in ENaC cause severe hypertension or salt wasting in humans; and consequently, ENaC activity is tightly controlled. According to the concept of Na+ self-inhibition, the extracellular Na+ ion itself can reduce ENaC activity. The molecular basis for Na+ self-inhibition is unknown. Here, we describe cloning of a new ENaC subunit from Xenopus laevis (epsilonxENaC). epsilonxENaC can replace alphaxENaC and formed functional, highly selective, amiloride-sensitive Na+ channels when coexpressed with betaxENaC and gammaxENaC. Channels containing epsilonxENaC showed strong inhibition by extracellular Na+. This Na+ self-inhibition was significantly slower than for alphaxENaC-containing channels. Using site-directed mutagenesis, we show that the proximal part of the large extracellular domain controls the speed of self-inhibition. This suggests that this region is involved in conformational changes during Na+ self-inhibition.  相似文献   

16.
Purified bovine renal epithelial Na+ channels when reconstituted into planar lipid bilayers displayed a specific orientation when the membrane was clamped to -40 mV (cis-side) during incorporation. The trans-facing portion of the channel was extracellular (i.e., amiloride- sensitive), whereas the cis-facing side was intracellular (i.e., protein kinase A-sensitive). Single channels had a main state unitary conductance of 40 pS and displayed two subconductive states each of 12- 13 pS, or one of 12-13 pS and the second of 24-26 pS. Elevation of the [Na+] gradient from the trans-side increased single-channel open probability (Po) only when the cis-side was bathed with a solution containing low [Na+] (< 30 mM) and 10-100 microM [Ca2+]. Under these conditions, Po saturated with increasing [Na+]trans. Buffering of the cis compartment [Ca2+] to nearly zero (< 1 nM) with 10 mM EGTA increased the initial level of channel activity (Po = 0.12 +/- 0.02 vs 0.02 +/- 0.01 in control), but markedly reduced the influence of both cis- and trans-[Na+] on Po. Elevating [Ca2+]cis at constant [Na+] resulted in inhibition of channel activity with an apparent [KiCa2+] of 10-100 microM. Protein kinase C-induced phosphorylation shifted the dependence of channel Po on [Ca2+]cis to 1-3 microM at stationary [Na+]. The direct modulation of single-channel Po by Na+ and Ca2+ demonstrates that the gating of amiloride-sensitive Na2+ channels is indeed dependent upon the specific ionic environment surrounding the channels.  相似文献   

17.
We have studied the modulation by intracellular Ca2+ of the epithelial Ca2+ channel, ECaC, heterologously expressed in HEK 293 cells. Whole-cell and inside-out patch clamp current recordings were combined with FuraII-Ca2+ measurements:1. Currents through ECaC were dramatically inhibited if Ca2+ was the charge carrier. This inhibition was dependent on the extracellular Ca2+ concentration and occurred also in cells buffered intracellularly with 10 mM BAPTA.2. Application of 30 mM [Ca(2)]e induced in non-Ca2+] buffered HEK 293 cells at -80 m V an increase in intracellular Ca2+([Ca2]i) with a maximum rate of rise of 241 +/-15nM/s (n= 18 cells) and a peak value of 891 +/- 106 nM. The peak of the concomitant current with a density of 12.3 +/- 2.6 pA/pF was closely correlated with the peak of the first-time derivative of the Ca2+ transient, as expected if the Ca2+ transient is due to influx of Ca2+. Consequently, no Ca2+] signal was observed in cells transfected with the Ca2+ impermeable ECaC mutant, D542A, in which an aspartate in the pore region was neutralized.3. Increasing [Ca2+]i by dialyzing the cell with pipette solutions containing various Ca2+] concentrations, all buffered with 10 mM BAPTA, inhibited currents through ECaC carried by either Na+ or Ca2+] ions. Half maximal inhibition of Ca(2+)currents in the absence of monovalent cations occurred at 67 nM (n between 6 and 8), whereas Na+ currents in the absence of Ca2+] and Mg2+ were inhibited with an IC50 of 89 nM (n between 6 and 10). Currents through ECaC in the presence of 1 mM Ca2+ and Na+, which are mainly carried by Ca2+, are inhibited by [Ca2]i with an IC50of 82 nM (n between 6 and 8). Monovalent cation currents through the Ca2+impermeable D542A ECaC mutant were also inhibited by an elevation of [Ca2]i (IC50 = 123 nM, n between 7 and 18). 4. The sensitivity of ECaC currents in inside-out patches for [Ca2]i was slightly shifted to higher concentrations as compared with whole cell measurements. Half-maximal inhibition occurred at 169 nM if Na+ was the charge carrier (n between 4 and 11) and 228 nM at 1 mM [Ca2]e (n between 4 and 8).5. Recovery from inhibition upon washout of extracellular Ca2+ (whole-cell configuration) or removal of Ca2+ from the inner side of the channel (inside-out patches) was slow in both conditions. Half-maximal recovery was reached after 96 +/- 34 s (n= 15) in whole-cell mode and after 135 +/- 23 s (n = 17) in inside-out patches.6. We conclude that influx of Ca2+ through ECaC and [Ca2]i induce feedback inhibition of ECaC currents, which is controlled by the concentration of Ca2+ in a micro domain near the inner mouth of the channel. Slow recovery seems to depend on dissociation of Ca( 2+ from an internal Ca2+ binding site at ECaC.  相似文献   

18.
Epithelial Na+ channels (ENaCs) and related channels have large extracellular domains where specific factors interact and induce conformational changes, leading to altered channel activity. However, extracellular structural transitions associated with changes in ENaC activity are not well defined. Using crosslinking and two-electrode voltage clamp in Xenopus oocytes, we identified several pairs of functional intersubunit contacts where mouse ENaC activity was modulated by inducing or breaking a disulfide bond between introduced Cys residues. Specifically, crosslinking E499C in the β-subunit palm domain and N510C in the α-subunit palm domain activated ENaC, whereas crosslinking βE499C with αQ441C in the α-subunit thumb domain inhibited ENaC. We determined that bridging βE499C to αN510C or αQ441C altered the Na+ self-inhibition response via distinct mechanisms. Similar to bridging βE499C and αQ441C, we found that crosslinking palm domain αE557C with thumb domain γQ398C strongly inhibited ENaC activity. In conclusion, we propose that certain residues at specific subunit interfaces form microswitches that convey a conformational wave during ENaC gating and its regulation.  相似文献   

19.
The epithelial Na(+) channel (ENaC) is typically formed by three homologous subunits (alpha, beta, and gamma) that possess a characteristic large extracellular loop (ECL) containing 16 conserved cysteine (Cys) residues. We investigated the functional role of these Cys residues in Na(+) self-inhibition, an allosteric inhibition of ENaC activity by extracellular Na(+). All 16 Cys residues within alpha and gamma ECLs and selected beta ECL Cys residues were individually mutated to alanine or serine residues. The Na(+) self-inhibition response of wild type and mutant channels expressed in Xenopus oocytes was determined by whole cell voltage clamp. Individual mutation of eight alpha (Cys-1, -4, -5, -6, -7, -10, -13, or -16), one beta (Cys-7), and nine gamma (Cys-3, -4, -6, -7, -10, -11, -12, -13, or -16) residues significantly reduced the magnitude of Na(+) self-inhibition. Na(+) self-inhibition was eliminated by simultaneous mutations of either the last three alpha ECL Cys residues (Cys-14, -15, and -16) or Cys-7 within both alpha and gamma ECLs. By analyzing the Na(+) self-inhibition responses and the effects of a methanethiosulfonate reagent on channel currents in single and double Cys mutants, we identified five Cys pairs within the alphaECL (alphaCys-1/alphaCys-6, alphaCys-4/alphaCys-5, alphaCys-7/alphaCys-16, alphaCys-10/alphaCys-13, and alphaCys-11/alphaCys-12) and one pair within the gammaECL (gammaCys-7/gammaCys-16) that likely form intrasubunit disulfide bonds. We conclude that approximately half of the ECL Cys residues in the alpha and gamma ENaC subunits are required to establish the tertiary structure that ensures a proper Na(+) self-inhibition response, likely by formation of multiple intrasubunit disulfide bonds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号