首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substance P (SP) and calcitonin gene-related peptide (CGRP) released from capsaicin-sensitive afferents induce neurogenic inflammation via NK(1), NK(2) and CGRP1 receptor activation. This study examines the role of capsaicin-sensitive fibres and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity with functional, morphological and biochemical techniques in mice. Carbachol-induced bronchoconstriction was measured with whole body plethysmography 24 h after intranasal lipopolysaccharide administration. SP and CGRP were determined with radioimmunoassay, myeloperoxidase activity with spectrophotometry, interleukin-1beta with ELISA and histopathological changes with semiquantitative scoring from lung samples. Treatments with resiniferatoxin for selective destruction of capsaicin-sensitive afferents, NK(1) antagonist SR 140333, NK(2) antagonist SR 48968, their combination, or CGRP1 receptor antagonist CGRP(8-37) were performed. Lipopolysaccharide significantly increased lung SP and CGRP concentrations, which was prevented by resiniferatoxin pretreatment. Resiniferatoxin-desensitization markedly enhanced inflammation, but decreased bronchoconstriction. CGRP(8-37) or combination of SR 140333 and SR 48968 diminished neutrophil accumulation, MPO levels and IL-1beta production, airway hyperresponsiveness was inhibited only by SR 48968. This is the first evidence that capsaicin-sensitive afferents exert a protective role in endotoxin-induced airway inflammation, but contribute to increased bronchoconstriction. Activation of CGRP1 receptors or NK(1)+NK(2) receptors participate in granulocyte accumulation, but NK(2) receptors play predominant role in enhanced airway resistance.  相似文献   

2.
We have shown earlier that H(2)S acts as a mediator of inflammation. In this study, we have investigated the involvement of substance P and neurogenic inflammation in H(2)S-induced lung inflammation. Intraperitoneal administration of NaHS (1-10 mg/kg), an H(2)S donor, to mice caused a significant increase in circulating levels of substance P in a dose-dependent manner. H(2)S alone could also cause lung inflammation, as evidenced by a significant increase in lung myeloperoxidase activity and histological evidence of lung injury. The maximum effect of H(2)S on substance P levels and on lung inflammation was observed 1 h after NaHS administration. At this time, a significant increase in lung levels of TNF-alpha and IL-1beta was also observed. In substance P-deficient mice, the preprotachykinin-A knockout mice, H(2)S did not cause any lung inflammation. Furthermore, pretreatment of mice with CP-96345 (2.5 mg/kg ip), an antagonist of the neurokinin-1 (NK(1)) receptor, protected mice against lung inflammation caused by H(2)S. However, treatment with antagonists of NK(2), NK(3), and CGRP receptors did not have any effect on H(2)S-induced lung inflammation. Depleting neuropeptide from sensory neurons by capsaicin (50 mg/kg sc) significantly reduced the lung inflammation caused by H(2)S. In addition, pretreatment of mice with capsazepine (15 mg/kg sc), an antagonist of the transient receptor potential vanilloid-1, protected mice against H(2)S-induced lung inflammation. These results demonstrate a key role of substance P and neurogenic inflammation in H(2)S-induced lung injury in mice.  相似文献   

3.
Although chronic inhalation of endotoxin or lipopolysaccharide (LPS) causes all of the classic features of asthma, including airway hyperreactivity, airway inflammation, and airway remodeling, the mechanisms involved in this process are not clearly understood. The objective of this study was to determine whether intratracheal treatment with LPS antagonist (E5564, a lipid A analog) prevented the development of chronic endotoxin-induced airway disease in a mouse model of environmental airway disease. Pretreatment with 10 and 100 microg of E5564 was found to inhibit the airway response (hyperreactivity and inflammation) for up to 48 h after the administration of the compound. Repeated dosing with 50 microg of E5564 intratracheally did not cause any measurable toxicity. Therefore, in a chronic experiment, mice were treated with either E5564 (50 microg) or vehicle three times weekly for 5 wk and simultaneously daily exposed to either LPS (4.65 +/- 0.30 microg/m3) or saline aerosol. E5564 was effective in decreasing the airway hyperreactivity to methacholine, the air space neutrophilia, the interleukin-6 in the lung lavage fluid, and the neutrophil infiltration of the airways 36 h after 5 wk of LPS inhalation. Less collagen deposition was observed in the airways of E5564-treated mice compared with vehicle-treated mice after a 4-wk recovery period. Our results indicate that E5564, a Toll-like receptor 4 antagonist, minimizes the physiological and biological effects of chronic LPS inhalation, suggesting a therapeutic role for competitive LPS antagonists in preventing or reducing endotoxin-induced environmental airway disease.  相似文献   

4.
Endogenous agonists of transient receptor potential vanilloid-1 (TRPV1) (endovanilloids) are implicated as mediators of lung injury during inflammation. This study tested the hypothesis that endovanilloids produced following lipopolysaccharide (LPS) treatment activate TRPV1 and cause endoplasmic reticulum stress/GADD153 expression in lung cells, representing a mechanistic component of lung injury. The TRPV1 agonist nonivamide induced GADD153 expression and caused cytotoxicity in immortalized and primary human bronchial, bronchiolar/alveolar, and microvascular endothelial cells, proportional to TRPV1 mRNA expression. In CF-1 mice, Trpv1 mRNA was most abundant in the alveoli, and intratracheal nonivamide treatment promoted Gadd153 expression in the alveolar region. Treatment of CF-1 mice with LPS increased Gadd153 in the lung, lactate dehydrogenase (LDH) in bronchoalveolar lavage (BAL) fluid, and lung wet-to-dry weight ratio. Cotreating mice with LPS and the TRPV1 antagonist LJO-328 reduced Gadd153 induction and LDH in BAL but did not inhibit increases in lung wet-to-dry ratio. In Trpv1(-/-) mice treated with LPS, Gadd153 induction and LDH in BAL were reduced relative to wild-type mice, and the wet-to-dry weight ratios of lungs from both wild-type and Trpv1(-/-) mice decreased. Organic extracts of blood collected from LPS-treated mice were more cytotoxic to TRPV1-overexpressing cells compared with BEAS-2B cells and extracts from control mice, however, most pure endovanilloids did not produce cytotoxicity in a characteristic TRPV1-dependent manner. Collectively, these data indicate a role for TRPV1, and endogenous TRPV1 agonists, in ER stress and cytotoxicity in lung cells but demonstrate that ER stress and cytotoxicity are not essential for pulmonary edema.  相似文献   

5.
The presence of pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors in capsaicin-sensitive peptidergic sensory nerves, inflammatory and immune cells suggest its involvement in inflammation. However, data on its role in different inflammatory processes are contradictory and there is little known about its functions in the airways. Therefore, our aim was to examine intranasal endotoxin-induced subacute airway inflammation in PACAP gene-deficient (PACAP−/−) and wild-type (PACAP+/+) mice. Airway responsiveness to inhaled carbachol was determined in unrestrained mice with whole body plethysmography 6 h and 24 h after LPS. Myeloperoxidase (MPO) activity referring to the number of accumulated neutrophils and macrophages was measured with spectrophotometry and interleukin-1β (IL-1β) concentration with ELISA from the lung homogenates. Histological evaluation and semiquantitative scoring were also performed. Bronchial responsiveness, as well as IL-1β concentration and MPO activity markedly increased at both timepoints. Perivascular edema dominated the histological picture at 6 h, while remarkable peribronchial granulocyte accumulation, macrophage infiltration and goblet cell hyperplasia were seen at 24 h. In PACAP−/− mice, airway hyperreactivity was significantly higher 24 h after LPS and inflammatory histopathological changes were more severe at both timepoints. MPO increase was almost double in PACAP−/− mice compared to the wild-types at 6 h. In contrast, there was no difference between the IL-1β concentrations of the PACAP+/+ and PACAP−/− mice. These results provide evidence for a protective role for PACAP in endotoxin-induced airway inflammation and hyperreactivity.  相似文献   

6.
To determine whether the inflammatory effects of inhaled endotoxin could be prevented, we pretreated mice with synthetic competitive antagonists (975, 1044, and 1287) for lipopolysaccharide (LPS) before a LPS inhalation challenge. In preliminary studies, we found that these LPS antagonists did not act as agonists in vitro (THP-1 cells) or in vivo (after intratracheal instillation of 10 microg) and that these compounds (at least 1 microg/ml) effectively antagonized the release of tumor necrosis factor-alpha by LPS-stimulated THP-1 cells. Pretreatment of mice with 10 microg of either 1044 or 1287 resulted in a decrease in the LPS-induced airway hyperreactivity. Moreover, pretreatment of mice with 10 microg of 975, 1044, or 1287 resulted in significant reductions in LPS-induced lung lavage fluid concentrations of total cells, neutrophils, and specific proinflammatory cytokines compared with mice pretreated with sterile saline. Using residual oil fly ash to induce airway inflammation, we found that the action of the LPS antagonists was specific to LPS-induced airway disease. These results suggest that LPS antagonists may be an effective and potentially safe treatment for endotoxin-induced airway disease.  相似文献   

7.
This study was designed to investigate the mechanisms through which tumor necrosis factor (Tnf) modulates ozone (O(3))-induced pulmonary injury in susceptible C57BL/6J (B6) mice. B6 [wild-type (wt)] mice and B6 mice with targeted disruption (knockout) of the genes for the p55 TNF receptor [TNFR1(-/-)], the p75 TNF receptor [TNFR2(-/-)], or both receptors [TNFR1/TNFR2(-/-)] were exposed to 0.3 parts/million O(3) for 48 h (subacute), and lung responses were determined by bronchoalveolar lavage. All TNFR(-/-) mice had significantly less O(3)-induced inflammation and epithelial damage but not lung hyperpermeability than wt mice. Compared with air-exposed control mice, O(3) elicited upregulation of lung TNFR1 and TNFR2 mRNAs in wt mice and downregulated TNFR1 and TNFR2 mRNAs in TNFR2(-/-) and TNFR1(-/-) mice, respectively. Airway hyperreactivity induced by acute O(3) exposure (2 parts/million for 3 h) was diminished in knockout mice compared with that in wt mice, although lung inflammation and permeability remained elevated. Results suggested a critical role for TNFR signaling in subacute O(3)-induced pulmonary epithelial injury and inflammation and in acute O(3)-induced airway hyperreactivity.  相似文献   

8.
This study was designed to test the hypothesis that the transient receptor potential vanilloid type 1 (TRPV1) channel, expressed primarily in sensory nerves, and substance P (SP), released by sensory nerves, play a protective role against lipopolysaccharide (LPS)-induced hypotension. LPS (10 mg/kg iv) elicited tachycardia and hypotension in anesthetized male Wistar rats, which peaked at 10 min and gradually recovered 1 h after the injection. Blockade of TRPV1 with its selective antagonist capsazepine (CAPZ, 3 mg/kg iv) impaired recovery given that the fall in mean arterial pressure (MAP) was greater 1 h after CAPZ plus LPS injections compared with LPS injection alone (45 +/- 5 vs. 25 +/- 4 mmHg, P < 0.05). Blockade of the neurokinin 1 (NK1) receptor with its selective antagonists RP-67580 (5 mg/kg iv) or L-733,060 (4 mg/kg iv) prevented recovery, considering that falls in MAP were not different 1 h after injections of NK1 antagonists plus LPS from their peak decreases (66 +/- 9 vs. 74 +/- 5 mmHg or 60 +/- 7 vs. 69 +/- 3 mmHg, respectively, P > 0.05). LPS increased plasma SP, norepinephrine (NE), and epinephrine (Epi) levels compared with vehicles, and the increases in plasma SP, NE, and Epi were significantly inhibited by CAPZ or RP-67580. The survival rate at 24 or 48 h after LPS injection (20 mg/kg ip) was lower in conscious rats pretreated with CAPZ or RP-67580 compared with rats treated with LPS alone (P < 0.05). Thus our results show that the TRPV1, possibly via triggering release of SP which activates the NK1 and stimulates the sympathetic axis, plays a protective role against endotoxin-induced hypotension and mortality, suggesting that TRPV1 receptors are essential in protecting vital organ perfusion and survival during the endotoxic condition.  相似文献   

9.
In type 1 diabetes, T cell-mediated death of pancreatic beta cells produces insulin deficiency. However, what attracts or restricts broadly autoreactive lymphocyte pools to the pancreas remains unclear. We report that TRPV1(+) pancreatic sensory neurons control islet inflammation and insulin resistance. Eliminating these neurons in diabetes-prone NOD mice prevents insulitis and diabetes, despite systemic persistence of pathogenic T cell pools. Insulin resistance and beta cell stress of prediabetic NOD mice are prevented when TRPV1(+) neurons are eliminated. TRPV1(NOD), localized to the Idd4.1 diabetes-risk locus, is a hypofunctional mutant, mediating depressed neurogenic inflammation. Delivering the neuropeptide substance P by intra-arterial injection into the NOD pancreas reverses abnormal insulin resistance, insulitis, and diabetes for weeks. Concordantly, insulin sensitivity is enhanced in trpv1(-/-) mice, whereas insulitis/diabetes-resistant NODxB6Idd4-congenic mice, carrying wild-type TRPV1, show restored TRPV1 function and insulin sensitivity. Our data uncover a fundamental role for insulin-responsive TRPV1(+) sensory neurons in beta cell function and diabetes pathoetiology.  相似文献   

10.
瞬时受体电位香草酸亚型1 (transient receptor potential vanilloid 1, TRPV1)在心肌缺血激活后可传导心绞痛信号和释放P物质(substance P, SP).SP是速激肽家族成员之一,主要通过结合并激活神经激肽1 (neurokinin 1,NK1)受体发挥作用. TRPV1和SP在缺血性心脏病中对心功能的恢复和重塑有一定保护作用,但对心肌梗死后凋亡的作用及具体机制尚不明确.本研究用TRPV1基因敲除(TRPV1-/- )小鼠和野生型(wide type, WT)小鼠建立心肌梗死模型,并外源性给予SP和NK1受体拮抗剂RP67580,用TTC染色法观察梗死的面积,TUNEL法检测心肌细胞凋亡指数,Western印迹方法检测caspase-3、Bcl-2、Bax、p53的蛋白表达.结果发现,心肌梗死24 h后,TRPV1-/-小鼠比WT小鼠梗死面积更大,凋亡指数和caspase-3活性更高,Bcl-2/Bax和p53蛋白表达更低. SP预处理可以明显缩小TRPV1-/-小鼠梗死面积,降低凋亡指数、caspase-3活性和升高Bcl-2/Bax比值,而在WT小鼠中改善不明显.外源性给予RP67580,阻断SP与NK1受体结合后,与相应对照组相比,WT小鼠梗死面积和凋亡指数更大,caspase-3蛋白表达更高,Bcl-2/Bax比值更低;TRPV1-/-小鼠与相应对照组比较,凋亡指数和caspase-3表达升高,Bcl-2/Bax比值降低.研究结果表明,SP可能介导了TRPV1在急性心肌梗死后凋亡中的保护作用.  相似文献   

11.
This study was carried out to determine whether tachykinins released from lung C-fiber afferents play a part in the bronchial hyperreactivity induced in guinea pigs by chronic exposure to cigarette smoke (CS). Two matching groups of young guinea pigs were exposed to either mainstream CS (CS group) or air (control group) for 20 min twice daily for 14-17 days. There was no difference in the baseline total pulmonary resistance (RL) between the two groups, but the baseline dynamic lung compliance was reduced ( approximately 19%) in CS animals. The responses of RL to intravenous injections of ACh, neurokinin (NK) A, and capsaicin were all markedly increased in CS animals; for example, ACh at the same dose of 5.06 microg/kg increased RL by 207% in the control group and by 697% (n = 8; P < 0. 001) in the CS group. The increased responsiveness was accompanied by significant increases in the numbers of neutrophils, eosinophils, and macrophages in the bronchoalveolar lavage fluid in CS animals. Pretreatment with SR-48968 and CP-99994, antagonists of NK(1) and NK(2) receptors, respectively, did not alter the response of RL to ACh in control animals, but it abolished the elevated bronchoconstrictive response in the CS animals. Furthermore, the immunoreactivities of substance P and calcitonin gene-related peptide in the bronchoalveolar lavage fluid collected after capsaicin challenge were significantly increased in CS animals. These results show that chronic exposure to CS induced airway mucosal inflammation accompanied by bronchial hyperreactivity in guinea pigs and that the tachykininergic mechanism plays an important role in this augmented responsiveness.  相似文献   

12.
Primary sensory neurons of the C and Adelta subtypes express the vanilloid capsaicin receptor TRPV1 and contain proinflammatory peptides such as substance P (SP) that mediate neurogenic inflammation. Pancreatic injury stimulates these neurons causing the release of SP in the pancreas resulting in pancreatic edema and neutrophil infiltration that contributes to pancreatitis. Axons of primary sensory neurons innervating the pancreas course through the celiac ganglion. We hypothesized that disruption of the celiac ganglion by surgical excision or inhibition of C and Adelta fibers through blockade of TRPV1 would reduce the severity of experimental pancreatitis by inhibiting neurogenic inflammation. Resiniferatoxin (RTX) is a specific TRPV1 agonist that, in high doses, selectively destroys C and Adelta fibers. Sprague-Dawley rats underwent surgical ganglionectomy or application of 10 microg RTX (vs. vehicle alone) to the celiac ganglion. One week later, pancreatitis was induced by six hourly intraperitoneal injections of caerulein (50 microg/kg). The severity of pancreatitis was assessed by serum amylase, pancreatic edema, and pancreatic myeloperoxidase (MPO) activity. SP receptor (neurokinin-1 receptor, NK-1R) internalization in acinar cells, used as an index of endogenous SP release, was assessed by immunocytochemical quantification of NK-1R endocytosis. Caerulein administration caused significant increases in pancreatic edema, serum amylase, MPO activity, and NK-1R internalization. RTX treatment and ganglionectomy significantly reduced pancreatic edema by 46% (P < 0.001) and NK-1R internalization by 80% and 51% (P < 0.001 and P < 0.05, respectively). RTX administration also significantly reduced MPO activity by 47% (P < 0.05). Neither treatment affected serum amylase, consistent with a direct effect of caerulein. These results demonstrate that disruption of or local application of RTX to the celiac ganglion inhibits SP release in the pancreas and reduces the severity of acute secretagogue-induced pancreatitis. It is possible that selectively disrupting TRPV1-bearing neurons could be used to reduce pancreatitis severity.  相似文献   

13.
Exposure to airborne particulate matter (PM) is a world-wide health problem mainly because it produces adverse cardiovascular and respiratory effects that frequently result in morbidity. Despite many years of epidemiological and basic research, the mechanisms underlying PM toxicity remain largely unknown. To understand some of these mechanisms, we measured PM-induced apoptosis and necrosis in normal human airway epithelial cells and sensory neurons from both wild-type mice and mice lacking TRPV1 receptors using Alexa Fluor 488-conjugated annexin V and propidium iodide labeling, respectively. Exposure of environmental PMs containing residual oil fly ash and ash from Mount St. Helens was found to induce apoptosis, but not necrosis, as a consequence of sustained calcium influx through TRPV1 receptors. Apoptosis was completely prevented by inhibiting TRPV1 receptors with capsazepine or by removing extracellular calcium or in sensory neurons from TRPV1(-/-) mice. Binding of either one of the PMs to the cell membrane induced a capsazepine-sensitive increase in cAMP. PM-induced apoptosis was augmented upon the inhibition of PKA. PKA inhibition on its own also induced apoptosis, thereby suggesting that this pathway may be endogenously protective against apoptosis. In summary, it was found that inhibiting TRPV1 receptors prevents PM-induced apoptosis, thereby providing a potential mechanism to reduce their toxicity.  相似文献   

14.
Soluble guanylyl cyclase (sGC) is an enzyme highly expressed in the lung that generates cGMP contributing to airway smooth muscle relaxation. To determine whether the bronchoconstriction observed in asthma is accompanied by changes in sGC expression, we used a well-established murine model of allergic asthma. Histological and biochemical analyses confirmed the presence of inflammation in the lungs of mice sensitized and challenged with ovalbumin (OVA). Moreover, mice sensitized and challenged with OVA exhibited airway hyperreactivity to methacholine inhalation. Steady-state mRNA levels for all sGC subunits (alpha1, alpha2, and beta1) were reduced in the lungs of mice with allergic asthma by 60-80%, as estimated by real-time PCR. These changes in mRNA were paralleled by changes at the protein level: alpha1, alpha2, and beta1 expression was reduced by 50-80% as determined by Western blotting. Reduced alpha1 and beta1 expression in bronchial smooth muscle cells was demonstrated by immunohistochemistry. To study if sGC inhibition mimics the airway hyperreactivity seen in asthma, we treated na?ve mice with a selective sGC inhibitor. Indeed, in mice receiving ODQ the methacholine dose response was shifted to the left. We conclude that sGC expression is reduced in experimental asthma contributing to the observed airway hyperreactivity.  相似文献   

15.
趋化因子受体最早是在研究白细胞迁移过程中发现的,它在大鼠和小鼠的背根神经节外周感觉神经细胞上也有表达.在炎症情况下,激活的趋化因子受体可以诱导神经细胞上一类重要的镇痛受体—μ-鸦片受体的异源性脱敏,抑制其功能;同时,激活的趋化因子受体还可以增强一类对于痛觉感受非常关键的受体——辣椒素受体的敏感性,使其敏化.趋化因子受体诱导的这2种效应可以通过Gi蛋白信号传导通路增强生物体对痛觉的敏感度.这些结果提示,趋化因子受体可能是免疫系统和神经系统之间交叉调节的桥梁.  相似文献   

16.
The mechanism of pancreatitis-induced pain is unknown. In other tissues, inflammation activates transient receptor potential vanilloid 1 (TRPV1) on sensory nerves to liberate CGRP and substance P (SP) in peripheral tissues and the dorsal horn to cause neurogenic inflammation and pain, respectively. We evaluated the contribution of TRPV1, CGRP, and SP to pancreatic pain in rats. TRPV1, CGRP, and SP were coexpressed in nerve fibers of the pancreas. Injection of the TRPV1 agonist capsaicin into the pancreatic duct induced endocytosis of the neurokinin 1 receptor in spinal neurons in the dorsal horn (T10), indicative of SP release upon stimulation of pancreatic sensory nerves. Induction of necrotizing pancreatitis by treatment with L-arginine caused a 12-fold increase in the number of spinal neurons expressing the proto-oncogene c-fos in laminae I and II of L1, suggesting activation of nociceptive pathways. L-arginine also caused a threefold increase in spontaneous abdominal contractions detected by electromyography, suggestive of referred pain. Systemic administration of the TRPV1 antagonist capsazepine inhibited c-fos expression by 2.5-fold and abdominal contractions by 4-fold. Intrathecal, but not systemic, administration of antagonists of CGRP (CGRP(8-37)) and SP (SR140333) receptors attenuated c-fos expression in spinal neurons by twofold. Thus necrotizing pancreatitis activates TRPV1 on pancreatic sensory nerves to release SP and CGRP in the dorsal horn, resulting in nociception. Antagonism of TRPV1, SP, and CGRP receptors may suppress pancreatitis pain.  相似文献   

17.
Somatostatin released from capsaicin-sensitive sensory nerves of the lung during endotoxin-induced murine pneumonitis inhibits inflammation and hyperresponsiveness, presumably via somatostatin receptor subtype 4 (sst4). The goal of the present study was to identify sst4 receptors in mouse and human lungs and to reveal its inflammation-induced alterations with real-time quantitative PCR, Western blot, and immunohistochemistry. In non-inflamed mouse and human lungs, mRNA expression and immunolocalization of sst4 are very similar. They are present on bronchial epithelial, vascular endothelial, and smooth-muscle cells. The sst4 receptor protein in the mouse lung significantly increases 24 hr after intranasal endotoxin administration as well as in response to 3 months of whole-body cigarette smoke exposure, owing to the infiltrating sst4-positivite mononuclear cells and neutrophils. In the chronically inflamed human lung, the large number of activated macrophages markedly elevate sst4 mRNA levels, although there is no change in acute purulent pneumonia, in which granulocytes accumulate. Despite mouse granulocytes, human neutrophils do not show sst4 immunopositivity. We provide the first evidence for the expression, localization, and inflammation-induced alterations of sst4 receptors in murine and human lungs. Inasmuch as tissue distribution of this receptor is highly similar, extrapolation of murine experimental results to human conditions might be possible. (J Histochem Cytochem 57:1127–1137, 2009)  相似文献   

18.
TRPV1 receptors have classically been defined as heat-sensitive, ligand-gated, nonselective cation channels that integrate nociceptive stimuli in sensory neurons. TRPV1 receptors have also been identified in the brain, but their physiological role is poorly understood. Here we report that TRPV1 channel activation is necessary and sufficient to trigger long-term synaptic depression (LTD). Excitatory synapses onto hippocampal interneurons were depressed by either capsaicin, a potent TRPV1 channel activator, or the endogenously released eicosanoid, 12-(S)-HPETE, whereas neighboring excitatory synapses onto CA1 pyramidal cells were unaffected. TRPV1 receptor antagonists also prevented interneuron LTD. In brain slices from TRPV1-/- mice, LTD was absent, and neither capsaicin nor 12-(S)-HPETE elicited synaptic depression. Our results suggest that, in the hippocampus, TRPV1 receptor activation selectively modifies synapses onto interneurons. Like other forms of hippocampal synaptic plasticity, TRPV1-mediated LTD may have a role in long-term changes in physiological and pathological circuit behavior during learning and epileptic activity.  相似文献   

19.
Transient receptor potential vanilliod 1 (TRPV1) channels have recently been postulated to play a role in the vascular complications/consequences associated with diabetes despite the fact that the mechanisms through which TRPV1 regulates vascular function are not fully known. Accordingly, our goal was to define the mechanisms by which TRPV1 channels modulate vascular function and contribute to vascular dysfunction in diabetes. We subjected mice lacking TRPV1 [TRPV1((-/-))], db/db, and control C57BLKS/J mice to in vivo infusion of the TRPV1 agonist capsaicin or the α-adrenergic agonist phenylephrine (PE) to examine the integrated circulatory actions of TRPV1. Capsaicin (1, 10, 20, and 100 μg/kg) dose dependently increased MAP in control mice (5.7 ± 1.6, 11.7 ± 2.1, 25.4 ± 3.4, and 51.6 ± 3.9%), which was attenuated in db/db mice (3.4 ± 2.1, 3.9 ± 2.1, 7.0 ± 3.3, and 17.9 ± 6.2%). TRPV1((-/-)) mice exhibited no changes in MAP in response to capsaicin, suggesting the actions of this agonist are specific to TRPV1 activation. Immunoblot analysis revealed decreased aortic TRPV1 protein expression in db/db compared with control mice. Capsaicin-induced responses were recorded following inhibition of endothelin A and B receptors (ET(A) /ET(B)). Inhibition of ET(A) receptors abolished the capsaicin-mediated increases in MAP. Combined antagonism of ET(A) and ET(B) receptors did not further inhibit the capsaicin response. Cultured endothelial cell exposure to capsaicin increased endothelin production as shown by an endothelin ELISA assay, which was attenuated by inhibition of TRPV1 or endothelin-converting enzyme. TRPV1 channels contribute to the regulation of vascular reactivity and MAP via production of endothelin and subsequent activation of vascular ET(A) receptors. Impairment of TRPV1 channel function may contribute to vascular dysfunction in diabetes.  相似文献   

20.
Intraperitoneal urocortin inhibits gastric emptying and food intake in mice. We investigated corticotropin-releasing factor receptor (CRF-R) subtypes involved in intraperitoneal urocortin actions using selective CRF-R antagonists. Gastric emptying was measured 2 h after a chow meal, and food intake was measured hourly after an 18-h fast in mice. Urocortin (3 microg/kg ip) inhibited gastric emptying by 88%. The CRF-R1/CRF-R2 antagonist astressin B (30 microg/kg ip) and the selective CRF-R2 antagonist antisauvagine-30 (100 microg/kg ip) completely antagonized urocortin action, whereas the selective CRF-R1 antagonist CP-154,526 (10 mg/kg ip) had no effect. Urocortin (1-10 microg/kg ip) dose dependently decreased the 2-h cumulative food intake by 30-62%. Urocortin (3 microg/kg)-induced hypophagia was completely antagonized by astressin B (30 microg/kg ip) and partially (35 and 31%) by antisauvagine-30 (100 or 200 microg/kg ip). The CRF-R1 antagonists CP-154,526 or DMP904 (10 mg/kg ip) had no effect. Capsaicin did not alter urocortin-inhibitory actions while blocking the satiety effect of intraperitoneal CCK. These data indicate that intraperitoneal urocortin-induced decrease in feeding is only partly mediated by CRF-R2, whereas urocortin action to delay gastric emptying of a meal involves primarily CRF-R2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号