首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major challenge in the application of structure-based drug design methods to proteins belonging to the superfamily of G protein-coupled receptors (GPCRs) is the paucity of structural information (1). The 19 chemokine receptors, belonging to the Class A family of GPCRs, are important drug targets not only for autoimmune diseases like multiple sclerosis but also for the blockade of human immunodeficiency virus type 1 entry (2). Using the MembStruk computational method (3), we predicted the three-dimensional structure of the human CCR1 receptor. In addition, we predicted the binding site of the small molecule CCR1 antagonist BX 471, which is currently in Phase II clinical trials (4). Based on the predicted antagonist binding site we designed 17 point mutants of CCR1 to validate the predictions. Subsequent competitive ligand binding and chemotaxis experiments with these mutants gave an excellent correlation to these predictions. In particular, we find that Tyr-113 and Tyr-114 on transmembrane domain 3 and Ile-259 on transmembrane 6 contribute significantly to the binding of BX 471. Finally, we used the predicted and validated structure of CCR1 in a virtual screening validation of the Maybridge data base, seeded with selective CCR1 antagonists. The screen identified 63% of CCR1 antagonists in the top 5% of the hits. Our results indicate that rational drug design for GPCR targets is a feasible approach.  相似文献   

2.
We describe a new therapeutic approach for the treatment of lethal sepsis using cell-penetrating lipopeptides-termed pepducins-that target either individual or multiple chemokine receptors. Interleukin-8 (IL-8), a ligand for the CXCR1 and CXCR2 receptors, is the most potent endogenous proinflammatory chemokine in sepsis. IL-8 levels rise in blood and lung fluids to activate neutrophils and other cells, and correlate with shock, lung injury and high mortality. We show that pepducins derived from either the i1 or i3 intracellular loops of CXCR1 and CXCR2 prevent the IL-8 response of both receptors and reverse the lethal sequelae of sepsis, including disseminated intravascular coagulation and multi-organ failure in mice. Conversely, pepducins selective for CXCR4 cause a massive leukocytosis that does not affect survival. CXCR1 and CXCR2 pepducins conferred nearly 100% survival even when treatment was postponed, suggesting that our approach might be beneficial in the setting of advanced disease.  相似文献   

3.
The chemokine receptor CCR1 and its principal ligand, CCL3/MIP-1alpha, have been implicated in the pathology of several inflammatory diseases including rheumatoid arthritis, multiple sclerosis, and asthma. As such, these molecules are the focus of much research with the ultimate aim of developing novel therapies. We have described previously a non-competitive small molecule antagonist of CCR1 (UCB 35625), which we hypothesized interacted with amino acids located within the receptor transmembrane (TM) helices (Sabroe, I., Peck, M. J., Jan Van Keulen, B., Jorritsma, A., Simmons, G., Clapham, P. R., Williams, T. J., and Pease, J. E. (2000) J. Biol. Chem. 275, 25985-25992). Here we describe an approach to identifying the mechanism by which the molecule antagonizes CCR1. Thirty-three point mutants of CCR1 were expressed transiently in L1.2 cells, and the cells were assessed for their capacity to migrate in response to CCL3 in the presence or absence of UCB 35625. Cells expressing the mutant constructs Y41A (TM helix 1, or TM1), Y113A (TM3), and E287A (TM7) were responsive to CCL3 but resistant to the antagonist, consistent with a role for the TM helices in CCR1 interactions with UCB 35625. Subsequent molecular modeling successfully docked the compound with CCR1 and suggests that the antagonist ligates TM1, 2, and 7 of CCR1 and severely impedes access to TM2 and TM3, a region thought to be perturbed by the chemokine amino terminus during the process of receptor activation. Insights into the mechanism of action of these compounds may facilitate the development of more potent antagonists that show promise as future therapeutic agents in the treatment of inflammatory disease.  相似文献   

4.
BackgroundThe induction, progression and resolution of liver fibrosis are influenced by multiple chemokines. The inhibition of CCR1 signalling by a specific non-peptide inhibitor (BX471) reduces kidney fibrosis after unilateral ureteral obstruction via suppression of leukocyte recruitment in mice. However, it remains unclear whether selective CCR1 inhibition also affects hepatic fibrogenesis. Therefore we aimed to study the effect of this intervention on liver fibrosis in prevention (CCl4 administration) and rescue (ABCB4-deficient mice) mouse models.MethodsIn the prevention model, hepatic fibrosis was induced by repeated injections of CCl4. Additionally, the verum group was treated with subcutaneous injections of BX471, while controls received vehicle only. ABCB4 deficient mice (on the BALB/c-background) with sclerosing cholangitis and biliary fibrosis received BX471 or vehicle, respectively (rescue model). Liver histopathology was assessed after Sirius red staining of collagen, and hepatic collagen contents were measured. In addition, we performed gene expression analyses of fibrosis-related genes.ResultsBX471 injections were tolerated moderately well by all mice, and all mice developed hepatic fibrosis. Significant differences were neither observed in serum aminotransferase activities after 6 weeks of treatment between the two groups in the prevention nor in the rescue model. Interestingly, hepatic collagen contents were significantly higher in mice treated with BX471 in the prevention model as compared to controls but histological stages of liver sections did not differ. Of note, we observed only moderate effects on liver fibrosis in the ABCB4 knock-out model.ConclusionsOur data indicate that BX471 treatment did neither affect serum and tissue markers of liver injury and fibrosis in the CCl4 model and only moderately in the Abcb4-/- model of biliary fibrosis. The animal models indicate that treatment with BX471 alone is unlikely to exert major beneficial effects in chronic liver disease.  相似文献   

5.
CCR1 has previously been shown to play important roles in leukocyte trafficking, pathogen clearance, and the type 1/type 2 cytokine balance, although very little is known about its role in the host response during sepsis. In a cecal ligation and puncture model of septic peritonitis, CCR1-deficient (CCR1(-/-)) mice were significantly protected from the lethal effects of sepsis when compared with wild-type (WT) controls. The peritoneal and systemic cytokine profile in CCR1(-/-) mice was characterized by a robust, but short-lived and regulated antibacterial response. CCR1 expression was not required for leukocyte recruitment, suggesting critical differences extant in the activation of WT and CCR1(-/-) resident or recruited peritoneal cells during sepsis. Peritoneal macrophages isolated from naive CCR1(-/-) mice clearly demonstrated enhanced cytokine/chemokine generation and antibacterial responses compared with similarly treated WT macrophages. CCR1 and CCL5 interactions markedly altered the inflammatory response in vivo and in vitro. Administration of CCL5 increased sepsis-induced lethality in WT mice, whereas neutralization of CCL5 improved survival. CCL5 acted in a CCR1-dependent manner to augment production of IFN-gamma and MIP-2 to damaging levels. These data illustrate that the interaction between CCR1 and CCL5 modulates the innate immune response during sepsis, and both represent potential targets for therapeutic intervention.  相似文献   

6.
CC chemokine receptor 1 (CCR1) is expressed on the surfaces of monocytes, lymphocytes, neutrophils and eosinophils. CC chemokine receptor 1 not only regulates leucocyte chemotaxis, but also plays a role in the regulation of Th1/Th2 cytokine responses. To determine the role of CCR1 in regulation of immune response during Leishmania major infection, we analysed the course of cutaneous L. major infection in CCR1-deficient C57BL/6 mice (CCR1-/-) and compared with similarly infected wild-type mice (CCR1+/+). Following L. major infection, CCR1-/- mice developed significantly smaller lesions containing fewer parasites than CCR1+/+ mice. Furthermore, the severity of the inflammation as assessed by the degree of leucocyte infiltration at the site of infection was similar in CCR1+/+ and CCR1-/- mice. Although both groups developed significant antibody responses following L. major infection, CCR1-/- mice produced significantly lower IgE. On day 20 postinfection, LmAg-stimulated lymph node cells from L. major-infected CCR1+/+ and CCR1-/- mice produced comparable levels of IL-12 and IFN-gamma, but those from CCR1-/- mice produced significantly less IL-4 and IL-10. By day 70, lymph node cells from both CCR1+/+ and CCR1-/- mice produced significant amounts of IL-12 and IFN-gamma but low IL-4. At both time points, the draining lymph nodes from CCR1+/+ and CCR1-/- mice contained similar number of leucocytes. These results demonstrate that CCR1 plays a role in pathogenesis of cutaneous L. major infection. Moreover, they also indicate that CCR1 exacerbates L. major infection in C57BL/6 mice by up-regulating Th2-like response rather than inhibiting Th1 development or/and influencing leucocyte chemotaxis.  相似文献   

7.
The CC chemokine receptor-1 (CCR1) is a prime therapeutic target for treating autoimmune diseases. Through high capacity screening followed by chemical optimization, we identified a novel non-peptide CCR1 antagonist, R-N-[5-chloro-2-[2-[4-[(4-fluorophenyl)methyl]-2-methyl-1-piperazinyl ]-2-oxoethoxy]phenyl]urea hydrochloric acid salt (BX 471). Competition binding studies revealed that BX 471 was able to displace the CCR1 ligands macrophage inflammatory protein-1alpha (MIP-1alpha), RANTES, and monocyte chemotactic protein-3 (MCP-3) with high affinity (K(i) ranged from 1 nm to 5.5 nm). BX 471 was a potent functional antagonist based on its ability to inhibit a number of CCR1-mediated effects including Ca(2+) mobilization, increase in extracellular acidification rate, CD11b expression, and leukocyte migration. BX 471 demonstrated a greater than 10,000-fold selectivity for CCR1 compared with 28 G-protein-coupled receptors. Pharmacokinetic studies demonstrated that BX 471 was orally active with a bioavailability of 60% in dogs. Furthermore, BX 471 effectively reduces disease in a rat experimental allergic encephalomyelitis model of multiple sclerosis. This study is the first to demonstrate that a non-peptide chemokine receptor antagonist is efficacious in an animal model of an autoimmune disease. In summary, we have identified a potent, selective, and orally available CCR1 antagonist that may be useful in the treatment of chronic inflammatory diseases.  相似文献   

8.
Accumulating evidence suggests the neuropeptide substance P (SP) and its receptor neurokinin-1 receptor (NK-1R) play a pivotal role in the pathogenesis of acute pancreatitis (AP). However, the mechanisms remain unclear. The present study investigated whether chemokines as proinflammatory molecules are involved in SP-NK-1R-related pathogenesis of this condition. We observed temporally and spatially selective chemokine responses in secretagogue caerulein-induced AP in mice. CC chemokines monocyte chemotactic protein (MCP)-1 and macrophage inflammatory protein-1alpha (MIP-1alpha) and CXC chemokine MIP-2 were elevated after AP induction. Time-dependent, tissue-specific analysis of their mRNA and protein expression suggested that they are early mediators in the condition and mediate local as well as systemic inflammatory responses. In contrast, another CC chemokine regulated on activation, T cells expressed and secreted (RANTES) was only involved in local pancreatic inflammation at a later stage of the disease. Either prophylactic or therapeutic treatment with a potent selective NK-1R antagonist CP-96,345 significantly suppressed caerulein-induced increase in MCP-1, MIP-1alpha, and MIP-2 expression but had no apparent effect on RANTES expression. The suppression effect of CP-96,345 on MCP-1, MIP-1alpha, and MIP-2 expression was concordantly demonstrated by immunohistochemistry, which, additionally, suggested that chemokine immunoreactivity was localized to acinar cells and the infiltrating leukocytes in the pancreas and alveolar macrophages, epithelial cells, and endothelial cells in the lungs. Our data suggest that SP, probably by acting via NK-1R on various chemokine-secreting cells in the pancreas and lungs, stimulates the release of chemokines that aggravate local AP and the development of its systemic sequelae.  相似文献   

9.
Eotaxin-3 (CCL26), like eotaxin (CCL11) and eotaxin-2 (CCL24), has long been considered a specific agonist for CC chemokine receptor 3 (CCR3), attracting and activating eosinophils, basophils, and Th2 type T lymphocytes. Although not characterized extensively yet, its expression profile coincides with a potential role in allergic inflammation. We recently reported that eotaxin-3 is an antagonist for CCR2 (Ogilvie, P., Paoletti, S., Clark-Lewis, I., and Uguccioni, M. (2003) Blood 102, 789-784). In the present report, we provide evidence that eotaxin-3 acts as a natural antagonist on CCR1 and -5 as well. Eotaxin-3 bound to cells transfected with either CCR1 or -5 as well as to monocytes expressing both receptors. Further, it inhibited chemotaxis, the release of free intracellular calcium, and actin polymerization when cells were stimulated with known agonists of CCR1 and -5. An analysis of its three-dimensional structure indicated the presence of two distinct epitopes that may be involved in specific binding to CCR1, -2, -3, and -5. Taken together, our data thus indicate eotaxin-3 to be the first human chemokine that features broadband antagonistic activities, suggesting that it may have a modulatory rather than an inflammatory function. Further, eotaxin-3 may play an unrecognized role in the polarization of cellular recruitment by attracting Th2 lymphocytes as well as eosinophils and basophils via CCR3, while concomitantly blocking the recruitment of Th1 lymphocytes and monocytes via CCR1, -2, and -5.  相似文献   

10.
Although androstenediol (adiol or 5-androstene-3beta,17beta-diol), a metabolite of dehydroepiandrosterone (DHEA), has protective effects following trauma-hemorrhage (T-H), it remains unknown whether administration of adiol has any salutary effects on the inflammatory response and outcome following a combined insult of T-H and sepsis. Male rats underwent T-H shock [mean arterial pressure (MAP) 40 mmHg for 90 min] followed by resuscitation. Adiol (1 mg/kg body wt) or vehicle was administered at the end of resuscitation. Sepsis was induced by cecal ligation and puncture (CLP) at 20 h after T-H or sham operation. Five hours after CLP, plasma and tissue samples were analyzed for cytokines (IL-6 and IL-10), MPO, neutrophil chemotactic factor (CINC-3), and liver injury (alanine aminotransferase and lactate dehydrogenase). In another group of rats, the gangrenous cecum was removed at 10 h after CLP, the cavity was irrigated with warm saline and closed in layers, and mortality was recorded over 10 days. T-H followed by CLP produced a significant elevation in plasma IL-6 and IL-10 levels, enhanced neutrophil cell activation, and resulted in liver injury. Adiol administration prevented the increase in cytokine production, neutrophil cell activation, and attenuated liver injury. Moreover, rats subjected to the combined insult, receiving vehicle or adiol, had a 50% and 6% mortality, respectively. Since adiol administration suppresses proinflammatory cytokines, reduces liver damage, and decreases mortality after the combined insult of T-H and sepsis, this agent appears to be a novel adjunct to fluid resuscitation for decreasing T-H-induced septic complications and mortality.  相似文献   

11.
12.

Introduction  

Chemokines and their receptors control immune cell migration during infections as well as in autoimmune responses. A 32 bp deletion in the gene of the chemokine receptor CCR5 confers protection against HIV infection, but has also been reported to decrease susceptibility to rheumatoid arthritis (RA). The influence of this deletion variant on the clinical course of this autoimmune disease was investigated.  相似文献   

13.
Wang Y  Zhang Y  Yang X  Han W  Liu Y  Xu Q  Zhao R  Di C  Song Q  Ma D 《Life sciences》2006,78(6):614-621
Chemokine-like factor 1 (CKLF1) exhibits chemotactic effects on leukocytes. Its amino acid sequence shares similarity with those of TARC/CCL17 and MDC/CCL22, the cognate ligands for CCR4. The chemotactic effects of CKLF1 for CCR4-transfected cells could be desensitized by TARC/CCL17 and markedly inhibited by PTX. CKLF1 induced a calcium flux in CCR4-transfected cells and fully desensitized a subsequent response to TARC/CCL17, and TARC/CCL17 could partly desensitize the response to CKLF1. CKLF1 caused significant receptor internalization in pCCR4-EGFP transfected cells. Taken together, CKLF1 is a novel functional ligand for CCR4.  相似文献   

14.
Ileal pouch-anal anastomosis (IPAA) is an excellent surgical option for patients with chronic ulcerative colitis (CUC) requiring colectomy; however, persistent episodes of ileal pouch inflammation, or pouchitis, may result in debilitating postoperative complications. Because considerable evidence implicates substance P (SP) as an inflammatory mediator of CUC, we investigated whether SP participates in the pathophysiology of pouchitis. With the use of a rat model of IPAA that we developed, we showed that ileal pouch MPO levels and neurokinin 1 receptor (NK-1R) protein expression by Western blot analysis were significantly elevated 28 days after IPAA surgery. In situ hybridization and immunohistochemistry showed that the increase in NK-1R protein expression was localized to the lamina propria and epithelia of pouch ileum. The intraperitoneal administration of the NK-1R antagonist (NK-1RA) CJ-12,255 for 4 days, starting on day 28, was effective in reducing MPO levels. Starting on day 28, animals with IPAA were given 5% dextran sulfate sodium (DSS) in their drinking water for 4 days, which caused histological and physical signs of clinical pouchitis concomitant with significant increases in ileal pouch MPO concentrations as well as NK-1R protein expression by Western blot analysis. In situ hybridization and immunohistochemistry showed that the increase in NK-1R protein expression was especially evident in crypt epithelia of pouch ileum. When the NK-1RA was administered 1 day before starting DSS and continued for the duration of DSS administration, the physical signs of clinical pouchitis and the rise in MPO were prevented. These data implicate SP in the pathophysiology of pouchitis and suggest that NK-1RA may be of therapeutic value in the management of clinical pouchitis.  相似文献   

15.
Molluscum contagiosum virus (MCV) encodes a CC chemokine MC148R which is likely to have been acquired from the host. By a homology search employing MC148R as a probe, we have identified a novel CC chemokine whose gene exists next to the IL-11 receptor α (IL-11Rα) gene in both humans and mice. Thus, this chemokine maps to chromosome 9p13 in humans where IL-11Rα has been assigned. We term this novel chemokine IL-11Rα-locus chemokine (ILC). ILC has the highest homology to MC148R among the known human CC chemokines. Furthermore, ILC is strongly and selectively expressed in the skin where infection of MCV also takes place. Thus, ILC is likely to be the original chemokine of MC148R.  相似文献   

16.
The reported structures of many CC chemokines show a conserved dimer interface along their N-terminal region, raising the possibility that the quaternary arrangement of these small immune proteins might influence their function. We have produced and analyzed several mutants of MIP-1 beta having a range of dimer K(d) values in order to determine the significance of dimerization in receptor binding and cellular activation. NMR and analytical ultracentrifugation were used to analyze the oligomeric state of the mutants. Functional relevance was determined by receptor binding affinity and the ability to invoke intracellular calcium release from CHO cells transfected with the MIP-1 beta receptor CCR5. The monomeric N-terminally truncated mutant MIP(9) was able to bind the CCR5 receptor with a K(i) of 600 pM but displayed weak agonistic properties, while the monomeric mutant P8A still retained the ability to tightly bind (K(i) = 480 pM) and to activate (EC(50) = 12 nM) the receptor. These data suggest that the MIP-1 beta dimer is not required for CCR5 binding or activation. In addition, we identified Phe13, the residue immediately following the conserved CC motif in MIP-1 beta, as a key determinant for binding to CCR5. Replacement of Phe13 by Tyr, Leu, Lys, and Ala showed the aromatic side chain to be important for both binding to CCR5 and chemokine dimerization.  相似文献   

17.
Molluscum contagiosum virus (MCV) encodes a CC chemokine MC148R which is likely to have been acquired from the host. By a homology search employing MC148R as a probe, we have identified a novel CC chemokine whose gene exists next to the IL-11 receptor alpha (IL-11Ralpha) gene in both humans and mice. Thus, this chemokine maps to chromosome 9p13 in humans where IL-11Ralpha has been assigned. We term this novel chemokine IL-11Ralpha-locus chemokine (ILC). ILC has the highest homology to MC148R among the known human CC chemokines. Furthermore, ILC is strongly and selectively expressed in the skin where infection of MCV also takes place. Thus, ILC is likely to be the original chemokine of MC148R.  相似文献   

18.
The P2Y12 receptor plays a crucial role in the regulation of platelet activation by several agonists, which is irreversibly antagonized by the active metabolite of clopidogrel, a widely used anti-thrombotic drug. In this study, we investigated whether reduction of platelet reactivity leads to reduced inflammatory responses using a rat model of erosive arthritis. We evaluated the effect of clopidogrel on inflammation in Lewis rats in a peptidoglycan polysaccharide (PG-PS)-induced arthritis model with four groups of rats: 1) untreated, 2) clopidogrel-treated, 3) PG-PS-induced, and 4) PG-PS-induced and clopidogrel-treated. There were significant differences between the PG-PS+clopidogrel group when compared to the PG-PS group including: increased joint diameter and clinical manifestations of inflammation, elevated plasma levels of pro-inflammatory cytokines (IL-1 beta, interferon (IFN) gamma, and IL-6), an elevated neutrophil blood count and an increased circulating platelet count. Plasma levels of IL-10 were significantly lower in the PG-PS+clopidogrel group compared to the PG-PS group. Plasma levels of platelet factor 4 (PF4) were elevated in both the PG-PS and the PG-PS+clopidogrel groups, however PF4 levels showed no difference upon clopidogrel treatment, suggesting that the pro- inflammatory effect of clopidogrel may be due to its action on cells other than platelets. Histology indicated an increase in leukocyte infiltration at the inflammatory area of the joint, increased pannus formation, blood vessel proliferation, subsynovial fibrosis and cartilage erosion upon treatment with clopidogrel in PG-PS-induced arthritis animals. In summary, animals treated with clopidogrel showed a pro-inflammatory effect in the PG-PS-induced arthritis animal model, which might not be mediated by platelets. Elucidation of the mechanism of clopidogrel-induced cell responses is important to understand the role of the P2Y12 receptor in inflammation.  相似文献   

19.
This study was undertaken to investigate whether sequential measurement of blood interleukin (IL)-6 levels using chemiluminescent enzyme immunoassay (CLEIA) would be useful for the management of patients with systemic inflammatory response syndrome (SIRS)/sepsis. Forty consecutive patients with SIRS/sepsis admitted to ICU were involved in the study. Blood IL-6 level was measured everyday throughout their ICU stay at the clinical laboratory by CLEIA method. The platelet count and the sequential organ failure assessment (SOFA) score were measured consecutively. The blood IL-6 levels were elevated in SIRS/sepsis patients and were extremely high in patients with septic shock. There was no significant difference in the blood IL-6 level on admission between survivors (n=27) and non-survivors (n=13). However, the mean blood IL-6 level during ICU stay was significantly higher in the non-survivors (p<0.05). There were significant correlation between the peak IL-6 blood level and the lowest platelet count, and between the peak IL-6 blood level and the maximum SOFA score, respectively. The platelet count became lowest 2.0+/-2.0 days later on average, and the SOFA score became maximal 2.5+/-1.4 days later on average following the day when IL-6 reached its peak value. Sequential measurement of blood IL-6 levels by CLEIA is useful in evaluating the severity and in predicting the outcome of the patients with SIRS/sepsis.  相似文献   

20.
The antagonistic properties of YM471, a potent nonpeptide vasopressin (AVP) V(1A) and V(2) receptor antagonist, were characterized using human coronary artery smooth muscle cells (CASMC). YM471 potently inhibited specific binding of 3H-AVP to V(1A) receptors on human CASMC, exhibiting a K(i) value of 0.49 nM. Furthermore, YM471 inhibited the AVP-induced increase in intracellular free Ca(2+) concentration with an IC(50) value of 1.42 nM, but exerted no agonistic activity on CASMC. Additionally, while AVP concentration-dependently induced hyperplasia and hypertrophy in CASMC, YM471 prevented these AVP-induced growth effects, exhibiting IC(50) values of 0.93 and 2.64 nM, respectively. These results indicate that YM471 has high affinity for V(1A) receptors on, and high potency in inhibiting AVP-induced physiologic responses of, human CASMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号