首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Respiratory activity, RNA contents and protein synthesis capacity of isolated ribosomes of tubers of Solanum tuberosum, cv. Tonda di Berlino, at progressive stages of development have been determined. In the immature, still growing tubers, respiration steadily decreases with the increase of fresh weight. The entering into dormancy of the tubers collected when immature corresponds to a rapid drop of respiration to the values characteristic of mature tubers. The RNA contents per tuber increase progressively during maturation. A decrease of the RNA contents per tuber (ca. 50 %) is observed in the period between the moment of harvesting and the end of dormancy. The endogenous capacity of isolated ribosomes to carry on amino acid polymerization strongly decreases during tuber development, while the activity supported by polyuridilic acid remains almost unchanged when measured at optimum Mg2+ concentrations, and becomes larger for the more mature tubers at superoptimum Mg2+ concentrations. These changes of the protein synthesis system during tuber development are compared with those occurring during seed maturation.  相似文献   

2.
The in vitro movement of ribosomes over messenger RNA was studied in both the presence and the absence of protein synthesis. For this purpose, labeled polysomes were extracted from rel+ and rel? strains of Escherichia coli grown in the presence of radioactive uracil and incubated in a cell-free system containing tRNA, amino acids, soluble enzymes and a source of energy. The gradual conversion of the labeled polysomes into monosomes and ribosomal subunits was followed by subjecting the reaction mixture to sucrose gradient sedimentation after various incubation times and measuring the radioactivity present in the three relevant ribosomal fractions.It was found that when the conditions of incubation allow protein synthesis to occur, polysomes extracted from rel+ and rel? cells are converted mainly into free monosomes, which can be made to dissociate into subunits by high-sodium or low-magnesium ion concentrations. Under conditions in which protein synthesis cannot occur because a mutant aminoacyl-tRNA synthetase has been rendered inactive, polysome conversion still occurs, though to a reduced extent. When the products of such residual run-off are examined, however, a difference is manifest between polysomes extracted from rel+ and from rel? strains: whereas the polysomes from the rel? strain are still converted into free monosomes even in the absence of protein synthesis, the polysomes from the rel+ strain are now converted mainly into subunits. It can be inferred, therefore, that ribosomes from rel? bacteria, but not those from rel+ bacteria, continue movement over messenger RNA in the absence of protein synthesis.Studies of mixed extracts from rel? and rel+ bacteria have shown that the character of the run-off process does not depend on the source of tRNA and soluble enzymes; the proportions of monosomes and subunits among the run-off products formed in the absence of protein synthesis depend only on the source of the polysomes. It is suggested that the mutation of the rel gene alters the functional architecture of ribosomes.  相似文献   

3.
Total ribosomes (monosomes plus polysomes) isolated from woundedpea epicotyls are more efficient at supporting protein synthesisin a wheat germ S30 system (containing wheat ribosomes) thanare total ribosomes from aged (control) pea tissue. This increasedefficiency is seen when enriched large polysomes, almost devoidof monosomes, are used to program a wheat germ S300 system,from which the wheat germ ribosomes have been removed. Reactionsprimed by enriched polysomes from wounded tissue, but not agedtissue, continue for at least 30 min, suggesting that reinitiationis occurring during the reaction, albeit in the initial absenceof monosomes from wheat or pea. Wheat germ ribosomes, but notmonosomes from either aged or wounded pea tissue, are able totranslate pea poly(A) RNA and globin mRNA. Aurintricarboxylicacid reduces protein synthesis in a rather indiscriminate manner,whereas, pactamycin seems to have an inhibitory effect specificfor initiation, and it is much more effective on wounded thanon control tissue polysomes. We interpret these results to implythat polysomal ribosomes from wounded tissue are more efficientat initiation than are polysomal ribosomes from control tissueor than non-polysomal ribosomes (monosomes) from either tissue. (Received May 7, 1985; Accepted July 4, 1985)  相似文献   

4.
The aim of this research was to examine the inhibitory effect of aflatoxin B1, one of the most potent hepatocarcinogen, on the translational step in mouse liver. It has been shown that polysomes were released in vitro from microsomal membrane prepared from rat liver by incubation with aflatoxin B1 and that this release of ribosomes was prevented by addition of corticosterone in the incubation medium.

In this paper, the same phenomenon was proved to occur in vivo by an improved fractionation methods, in which ribosome-distributions can be analyzed quantitatively, not only between free and membrane-bound states but also between monosomes and polysomes. Administration of aflatoxin B2 to mice induced reductions of membrane-bound ribosomes and polysomes, with concomitant increases of free ribosomes and monosomes in liver. Simultaneous administration of corticosterone prevented this alteration of ribosome-distributions.

From these results, it was deduced that a release of polysomes from membrane occurred primarily by administrating aflatoxin, which then caused a shortening of half-life of mRNA on polysomes, resulting in an increase of the amount of monosomes.  相似文献   

5.
Regeneration of a newt limb requires a constant supply of adequate amounts of a neuronal contribution at the amputation site. Denervation during the early stages of regeneration precludes its growth and morphogenesis. It has been reported that denervation of a regenerating limb lowers the efficiency of incorporation of radioactive amino acids to 60% of contralateral control levels. To gain more insight into the mechanism responsible for this decrease, we examined the effects of denervation on the size distribution and quantity of regenerate polysomes. We characterized the [35S]methionine-labeled nascent peptidyl-tRNA from polysomes by hydroxyapatite chromatography. Moreover, we show that the labeled nascent peptides on polysomes can serve as a measure to quantitate the relative amounts of ribosomes on polysomes and the relative size of the translational machinery. Thus, we report that [35S]methionine-labeled nascent polypeptides on polysomes from denervated regenerates contain about 48% less radioactivity than those from controls. Despite decreased incorporation of [35S]methionine into nascent peptides, the relative distribution of radioactivity across linear sucrose gradients is not significantly altered by denervation. Studies of polysomes labeled with [3H]uridine prior to denervation indicate that ribosome content is depressed by denervation. Our results suggest that the nerve-dependent decrease in protein synthesis is mediated by decreasing the number of ribosomes active in protein synthesis. In addition, similarities in the ratios of free monosomes to polysomes and the relative size distribution of polypeptides between denervated and innervated regenerates indicate that in denervated regenerates the number of translatable mRNA molecules decreases in a coordinate manner with the number of ribosomes active in protein synthesis.  相似文献   

6.
Abstract Dormancy and break of dormancy of tubers of Helianthus tuberosus L. (Jerusalem artichoke) have been investigated in regard to the possibility that polyamines can control these processes. Polyamines were detected by the method of direct dansylation and abscisic acid was bioassayed using wheat coleoptile growth test. Arginine and glutamine, which are the main store nitrogenous organic compounds of Helianthus tuberosus tuber, decrease during the last phase of dormancy as well as abscisic acid; moreover the corresponding increase in polyamines (putrescine, spermidine and spermine) seems to be strictly related to the break of dormancy of tuber. The artificial break of dormancy induced by 2,4-dichlorophenoxyacetic acid stimulates a great increase in polyamines, just evident within 15 min after activation, and a corresponding decrease in arginine and glutamine. The levels of polyamines, at 1 h of activation are sufficient to stimulate protein synthesis in vitro.  相似文献   

7.
Summary Two temperature-sensitive mutants of Chlamydomonas reinhardii Dangeard which are defective in protein synthesis were examined. Both show breakdown of their polysomes at the restrictive temperature into monosomes which do not contain fragments of mRNA. Many of the ribosomes still contain nascent peptides able to react with puromycin. The polysome breakdown involves only cytoplasmic (80S) ribosomes and is prevented or reversed when ribosome translocation is inhibited with cyloheximide.  相似文献   

8.
Buchwald  I.  Bialdiga  M.  Traub  U.  Traub  P. 《Molecular biology reports》1978,4(1):9-13
The distribution of poly(A)+ mRNA among polysomes, monosomes, and ribosome-free supernatant fractions after mengovirus infection of Ehrlich ascites tumor (EAT) cells was investigated employing sucrose gradient centrifugation of their corresponding postnuclear supernatants. Poly(A)+ mRNA was isolated from sucrose gradient fractions and quantitated in a cell-free protein synthesizing system from uninfected EAT cells. It was also localized by annealing [3H]-poly(U) to the poly(A)-tracts of mRNA present in the sucrose gradient fractions. Both experiments revealed a gradual shift of host poly(A)+ mRNA from large to small polysomes and monosomes, respectively, with the time postinfection. The greatest part of host template RNA appears to remain ribosome-bound and only a fraction seems to be detached from the ribosomes in the course of mengovirus infection. At the end of the infectious cycle, 8 h postinfection, approximately 70% of the poly(A)+ mRNA detected in uninfected cells is still biologically active, but not translated in vivo, in agreement with data from the [3H] poly(U) hybridization experiment.  相似文献   

9.
The level of ribosomes and their aggregation state (monosomes-polysomes) have been investigated in relation to dormancy in peach flower buds (Prunus persica). The ribosomes were analysed by a linear sucrose gradient. The ribosomal content hardly changes in the bud before dormancy and until dormancy breaks; on the other hand after this period there is a remarkable increase in the ribosomal level strictly related to the increase in bud weight. The ribosomal content reaches the highest value at flowering. During dormancy break the largest portion of ribosomes is localized in flower primordia, not in scales. Polysomes, which are always present in buds, remain constant during dormancy (35%), increase at dormancy breaking, reaching the highest level at flowering.  相似文献   

10.
The in vitro phenylalanine incorporation by polyribosomes of peach flower buds (Prunus persica Stokes) during dormancy, dormancy break and flowering was investigated. Protein synthesis was measured using as catalyst either calf liver soluble factors or the ribosomal supernatant from the peach flower buds in the presence or the absence of the synthetic mRNA, polyuridylic acid. In the presence of polyuridylic acid, the activity of protein synthesis of dormant ribosomes is the same as that of ribosomes during dormancy break and flowering. The absence of synthetic messenger did not cause a change in activity. The ribosomal supernatant of dormant buds, but not of flowering buds, reduces the phenylalanine incorporation by polyribosomes from buds harvested at dormancy break.  相似文献   

11.
Incorporation of [3H]phenylalanine into protein by a reconstituted lysate subcellular system (ribosomes plus high-speed supernatant) from rat spermatids was measured at 34°C after 5 minutes preincubation of one component at 0°C while the other component was incubated at temperatures from 30°C to 40°C. Preincubation at temperatures above 34°C inhibits the ribosomal activity but not the high-speed supernatant activity. The incubation of lysate above 34°C results from a dissociation of polysomes to monosomes. These results indicate that ribosomes are the most sensitive component to the increased temperature on protein synthesis in lysate cell free system by spermatids and that the inhibition of protein synthesis in spermatids above 34°C is at least partly explained by the breakdown of polysomes in these cells.  相似文献   

12.
Using dissociation in 0.8 M KCl, it was established that in freshly excised Jerusalem artichoke (Helianthus tuberosus L.) tuber slices less than 8% of the ribosomes were in polysomes. The first hour of aging in water was the period of most rapid polysome accumulation; over 32% of the ribosomes carried nascent polypeptide chains at the end of this time. Thereafter polysome accumulation continued to increase, but more gradually. While synthesis of high-molecular-weight RNA (presumed mRNA) was inhibited more than 95% by -amanitin during the first hour of aging, the inhibitor had no effect on polysome formation. As determined by [3H]polyuridylic acid hybridization, unaged cells contained polyadenylated RNA with a size range of 6–30S. The amount of polyadenylated RNA did not change during the first hour of aging. In control cells in water the in-vivo rate of protein synthesis increased exponentially during the first 4 h of aging without a comparable increase in polysomes. In -amanitintreated tissues a similar increase in protein synthesis was not observed despite the presence of near control levels of polysomes. It is suggested that early polysome formation depends on stored mRNA. Inhibition of mRNA synthesis by -amanitin prevents the normal development of an enhanced rate of protein synthesis which is not directly related to numbers of ribosomes in polysomes.Abbreviations Poly(A) polyadenylic acid - Poly(A)+RNA polyadenylated RNA - Poly(U) polyuridylic acid - TCA trichloroacetic acid  相似文献   

13.
Juvenile hormone inhibits protein and RNA synthesis in cell cultures from Trichoplusia ni and in the testicular germinal cysts of Hyalophora cecropia pupae in vitro. Sucrose gradient analyses revealed that the polysomes of both the T. ni cells and the germinal cysts were disaggregated almost immediately after the addition of juvenile hormone in vitro with a corresponding dose-dependent increase in monosomes. It is suggested that previous reports revealing juvenile hormone inhibition of ecdysone stimulated RNA and protein synthesis may be due to polysome disaggregation. Further studies demonstrated that the effect is not restricted to insect cells and can be elicited by several other lipids devoid of juvenile hormone morphogenetic activity. Experiments with broken cell preparations and isolated polysomes suggest the necessity of cell membrane integrity for the effect on the polysomes. Several probing studies utilizing cycloheximide, ribonuclease, and high K+ concentrations were conducted on the means by which juvenile hormone and other lipids may elicit polysome disaggregation.  相似文献   

14.
Methods of measuring the prevalence of Phoma exigua on potatoes and in soil   总被引:5,自引:0,他引:5  
Methods are described for assessing inoculum of Phoma exigua by directly wounding potato test tubers and by inoculating soil into Arran Banner test tubers or slices. Large samples of tubers were wounded by dropping onto perforated metal sheet or grading on farm riddles, but standardization was achieved by inflicting four uniform wounds with shaped brass teeth. Tubers were then incubated for 12 wk at 5 oC. Soil samples to be tested were inoculated into crush wounds on surface-sterilized test tubers or tuber slices which were incubated for 8 wk at 5 oC. Assessments were speeded by immersing wounded slices in a mixture of Agrimycin and isopropylphenyl carbamate (IPC) solutions before inoculating, and then incubating for 2–3 wk at 10 oC. Although the sensitivity of test tubers is limited by their latent infection, comparisons of the tests in 3–5 years showed that the test tuber methods were frequently more sensitive than direct wounding, especially when amounts of inoculum were small.  相似文献   

15.
RNA synthesis was studied in Jerusalem artichoke (Helianthus tuberosus L.) tuber slices immediately following excision and during the early period of aging in water. Incorporation of [3H]adenosine into RNA was detected as early as 20 min after excision. Measurement of the specific activities of RNA (cpm/g) and of ATP showed that RNA synthesis proceeded at a constant rate for the first several hours of aging and then increased moderately. [3H]adenosine was incorporated into polysomes throughout the aging period examined. Sucrose gradient fractionation of EDTA-dissociated polysomes showed that during the first 2 h of aging most of this incorporation was not into ribosome subunits but into presumed mRNA. Autoradiographic analysis of [3H]adenosine labelled nuclei showed that this was caused, at least in part, by a delay in the onset of rRNA synthesis synthesized during this time chromatographed as poly(A)-RNA on oligo(dT)-cellulose, indicating that a large part of the mRNA was not polyadenylated.  相似文献   

16.
The restricted flowering of colored cultivars ofZantedeschia is a consequence of developmental constraints imposed by apical dominance of the primary bud on secondary buds in the tuber, and by the sympodial growth of individual shoots. GA3 enhances flowering inZantedeschia by increasing the number of flowering shoots per tuber and inflorescences per shoot. The effects of gibberellin on the pattern of flowering and on the developmental fate of differentiated inflorescences along the tuber axis and individual shoot axes were studied in GA3 and Uniconazole-treated tubers. Inflorescence primordia and fully developed (emerged) floral stems produced during tuber storage and the plant growth period were recorded. Days to flowering, percent of flowering shoots and floral stem length decreased basipetally along the shoot and tuber axes. GA3 prolonged the flowering period and increased both the number of flowering shoots per tuber and the differentiated inflorescences per shoot. Activated buds were GA3 responsive regardless of meristem size or age. Uniconazole did not inhibit inflorescence differentiation but inhibited floral stem elongation. The results suggest that GA3 has a dual action in the flowering process: induction of inflorescence differentiation and promotion of floral stem elongation. The flowering pattern could be a result of a gradient in the distribution of endogenous factors involved in inflorescence differentialtion (possibly GAs) and in floral stem growth. This gradient along the tuber and shoot axes is probably controlled by apical dominance of the primary bud. Online publication: 7 April 2005  相似文献   

17.
This study was conducted on barley cv. Ars. caryopses collected at full ripeness and divided into two batches. From one batch (dormant caryopses) polysomes were isolated from embryos immediately after harvesting and after two days of germination. From the other batch (non-dormant caryopses) the same was done after eight months storage in a dry state. A low ionic strength cytoskeleton-stabilizing buffer was used for the isolation of polysomes. Four different fractions of polysomes were examined: free polysomes (FP), membrane-bound polysomes (MBP), cytoskeleton-bound polysomes (CBP) and cytoskeleton-membrane-bound polysomes (CMBP). In germs grown from non-dormant caryopses, the first two fractions (FP + MBP) made up about 78 % of the total ribosomal material, whereas in embryos of dormant, imbibed caryopses, two last fractions (CBP + CMBP) made up about 71 %. The percentage of polysomes after 48 hours of imbibition of dormant caryopses in the FP, MBP and CBP was only about 13 % (i.e., 87 % monosomes), whereas a greater proportion (19.4 %) was found in the CMBP. The highest incorporation of 3H-uridine and 14C-amino acids (after 48 hours of germination and 0.5, 3 and 6 hrs incubation with precursors) took place in trhc CMBP both in dormant and non-dormant caryopses The major amount of the two polysome fractions associated with the cytoskeleton (CBP and CMBP) and the higher activity of CMBP in protein synthesis in embryos of dormant, imbibed triticale caryopses may indicate a significant role for polysomes associated with the cytoskeleton in the control of protein synthesis in dormant and germinating caryopses.  相似文献   

18.
Cytoplasmic distribution of heat shock proteins in soybean   总被引:2,自引:2,他引:0       下载免费PDF全文
Mansfield MA  Key JL 《Plant physiology》1988,86(4):1240-1246
Previous analyses of the distribution of heat shock (hs) proteins in soybean (Glycine max L. Merr., var Wayne) have demonstrated that a fraction of the low molecular weight hs protein associates with ribosomes during hs. To more specifically characterize the nature of this association, isokinetic centrifugation of ribosomes through sucrose gradients was used to separate monosomes from polysomes. The present analysis demonstrated that hs proteins were bound to polysomes but not monosomes. Treatment of polysomes with puromycin, K+, and Mg2+, which caused dissociation of ribosomes into 40S and 60S subunits, also caused dissociation of the hs proteins. Using the procedure of Nover et al. (1983, Mol. Cell Biol, 3: 1628-1655), a hs granule fraction was also isolated. As in tomato cells, hs granules from soybean seedlings contained the low molecular weight hs proteins as a primary component and a number of other non-hs proteins of relative molecular mass 30 to 40 kilodaltons and 70 to 90 kilodaltons. On metrizamide gradients they exhibited a buoyant density of 1.20 to 1.21 grams per cubic centimeter, typical of ribonucleoprotein particles. Heat shock granules were characterized as unique cytoplasmic particles based on protein composition and buoyant density. Isopycnic centrifugation of ribosome preparations demonstrated that they contained hs granules, but the hs proteins bound to polysomes were not released by KCI/EDTA treatment. Thus, the polysome-bound hs proteins and the granule-bound hs proteins appear to represent two distinct populations of hs proteins in the cytoplasm. Heat shock granules were not distinguishable from ribosomes at the level of resolution used in transmission electron microscopy.  相似文献   

19.
At harvest, and for an indeterminate period thereafter, potato tubers will not sprout and are physiologically dormant. Abscisic acid (ABA) has been shown to play a critical role in tuber dormancy control but the mechanisms controlling ABA content during dormancy as well as the sites of ABA synthesis and catabolism are unknown. As a first step in defining the sites of synthesis and cognate processes regulating ABA turnover during storage and dormancy progression, gene sequences encoding the ABA biosynthetic enzymes zeaxanthin epoxidase (ZEP) and 9-cis-epoxycarotenoid dioxygenase (NCED) and three catabolism-related genes were used to quantify changes in their relative mRNA abundances in three specific tuber tissues (meristems, their surrounding periderm and underlying cortex) by qRT-PCR. During storage, StZEP expression was relatively constant in meristems, exhibited a biphasic pattern in periderm with transient increases during early and mid-to-late-storage, and peaked during mid-storage in cortex. Expression of two members of the potato NCED gene family was found to correlate with changes in ABA content in meristems (StNCED2) and cortex (StNCED1). Conversely, expression patterns of three putative ABA-8′-hydroxylase (CYP707A) genes during storage varied in a tissue-specific manner with expression of two of these genes rising in meristems and periderm and declining in cortex during storage. These results suggest that ABA synthesis and metabolism occur in all tuber tissues examined and that tuber ABA content during dormancy is the result of a balance of synthesis and metabolism that increasingly favors catabolism as dormancy ends and may be controlled at the level of StNCED and StCYP707A gene activities Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

20.
Water stress stimulates sucrose synthesis and inhibits starch and cell-wall synthesis in tissue slices of growing potato (Solanum tuberosum L. cv. Desirée) tubers. Based on the analysis of fluxes and metabolites, Geigenberger et al. (1997, Planta 201: 502–518) proposed that water deficits up to −0.72 MPa stimulate sucrose synthesis, leading to decreased starch synthesis as a result of the resulting decline of phosphorylated metabolite levels, whereas more-severe water deficits directly inhibit the use of ADP-glucose. Potato plants with decreased expression of adenosine 5′-diphosphoglucose pyrophosphorylase (AGPase) have been used to test the prediction that the contribution of AGPase to the control of starch synthesis should decrease in severely water-stressed tuber material. Freshly cut slices from wild-type and antisense tubers were incubated at a range of mannitol concentrations (20, 300 and 500 mM) and the metabolism of [14C]glucose was analysed. A 86–97% reduction of AGPase activity led to a major but non-stoichiometric inhibition of starch accumulation in intact growing tubers attached to the plant (40–85%), and an inhibition of starch synthesis in non-stressed tuber slices incubated in 20 mM mannitol (60–80%). The inhibition of starch synthesis was accompanied by a 2- to 8-fold increase in the levels of sugars in intact tubers and a 2- to 3-fold stimulation of sucrose synthesis in tuber slices, whereas respiration and cell-wall synthesis were not significantly affected. The strong impact of AGPase on carbon partitioning in non-stressed tubers and tuber slices was retained in slices subjected to moderate water deficit (300 mM mannitol, corresponding to −0.72 MPa). In discs incubated in 500 mM mannitol (corresponding to −1.2 MPa) this response was modified. A 80–97% reduction of AGPase resulted in only a 0–40% inhibition of starch synthesis. Further, the water stress-induced stimulation of sucrose synthesis was abolished in the transformants. The results provide direct evidence that the contribution of AGPase to the control of starch synthesis can be modified by environmental factors, leading to a lower degree of control during severe water deficits. There was also a dramatic decrease in the labelling of cell-wall components in wild-type tuber slices incubated with 300 or 500 mM mannitol. The water stress-induced inhibition of cell-wall synthesis occurred independently of AGPase expression and the accompanying changes in starch and sucrose metabolism, indicating a direct inhibition of cell-wall synthesis in response to water stress. Received: 24 February 1999 / Accepted: 28 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号