首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the gene encoding the microtubule (MT)-severing protein spastin are the most common cause of hereditary spastic paraplegia, a genetic condition in which axons of the corticospinal tracts degenerate. We show that not only does endogenous spastin colocalize with MTs, but that it is also located on the early secretory pathway, can be recruited to endosomes and is present in the cytokinetic midbody. Spastin has two main isoforms, a 68 kD full-length isoform and a 60 kD short form. These two isoforms preferentially localize to different membrane traffic pathways with 68 kD spastin being principally located at the early secretory pathway, where it regulates endoplasmic reticulum-to-Golgi traffic. Sixty kiloDalton spastin is the major form recruited to endosomes and is also present in the midbody, where its localization requires the endosomal sorting complex required for transport-III-interacting MIT domain. Loss of midbody MTs accompanies the abscission stage of cytokinesis. In cells lacking spastin, a MT disruption event that normally accompanies abscission does not occur and abscission fails. We suggest that this event represents spastin-mediated MT severing. Our results support a model in which membrane traffic and MT regulation are coupled through spastin. This model is relevant in the axon, where there also is co-ordinated MT regulation and membrane traffic.  相似文献   

2.
Mutations in spastin are the most common cause of hereditary spastic paraplegia (HSP) but the mechanisms by which mutant spastin induces disease are not clear. Spastin functions to regulate microtubule organisation, and because of the essential role of microtubules in axonal transport, this has led to the suggestion that defects in axonal transport may underlie at least part of the disease process in HSP. However, as yet there is no direct evidence to support this notion. Here we analysed axonal transport in a novel mouse model of spastin-induced HSP that involves a pathogenic splice site mutation, which leads to a loss of spastin protein. A mutation located within the same splice site has been previously described in HSP. Spastin mice develop gait abnormalities that correlate with phenotypes seen in HSP patients and also axonal swellings containing cytoskeletal proteins, mitochondria and the amyloid precursor protein (APP). Pathological analyses of human HSP cases caused by spastin mutations revealed the presence of similar axonal swellings. To determine whether mutant spastin influenced axonal transport we quantified transport of two cargoes, mitochondria and APP-containing membrane bound organelles, in neurons from mutant spastin and control mice, using time-lapse microscopy. We found that mutant spastin perturbs anterograde transport of both cargoes. In neurons with axonal swellings we found that the mitochondrial axonal transport defects were exacerbated; distal to axonal swellings both anterograde and retrograde transport were severely reduced. These results strongly support a direct role for defective axonal transport in the pathogenesis of HSP because of spastin mutation.  相似文献   

3.
Mutations in the human spastin gene (SPG4) cause the most prevalent form of autosomal dominant hereditary spastic paraplegia (HSP), a neurodegenerative disorder characterised by progressive weakness and spasticity of the lower limbs. We address the question of intracellular localisation of spastin. Using polyclonal antibodies against N-terminal spastin sequences, we find that the native protein is localised in both the perinuclear cytoplasm and the nucleus. To identify structural motifs within the protein that can explain entry into the nucleus, we developed a reporter system to test nuclear localisation sequence (NLS)-functionality based on four in-frame fused copies of green fluorescent protein. Using this novel tool we demonstrate that spastin carries two NLSs located in exons 1 and 6. Both are independently functional in mediating nuclear entry.  相似文献   

4.
5.
Ames JB  Hamasaki N  Molchanova T 《Biochemistry》2002,41(18):5776-5787
Recoverin, a member of the EF-hand superfamily, serves as a calcium sensor in retinal rod cells. A myristoyl or related fatty acyl group covalently attached to the N-terminus of recoverin facilitates the binding of recoverin to retinal disk membranes by a mechanism known as the Ca2+-myristoyl switch. Previous structural studies revealed that the myristoyl group of recoverin is sequestered inside the protein core in the absence of calcium. The cooperative binding of two calcium ions to the second and third EF-hands (EF-2 and EF-3) of recoverin leads to the extrusion of the fatty acid. Here we present nuclear magnetic resonance (NMR), fluorescence, and calcium-binding studies of a myristoylated recoverin mutant (myr-E85Q) designed to abolish high-affinity calcium binding to EF-2 and thereby trap the myristoylated protein with calcium bound solely to EF-3. Equilibrium calcium-binding studies confirm that only one Ca2+ binds to myr-E85Q under the conditions of this study with a dissociation constant of 100 microM. Fluorescence and NMR spectra of the Ca2+-free myr-E85Q are identical to those of Ca2+-free wild type, indicating that the E85Q mutation does not alter the stability and structure of the Ca2+-free protein. In contrast, the fluorescence and NMR spectra of half-saturated myr-E85Q (one bound Ca2+) look different from those of Ca2+-saturated wild type (two bound Ca2+), suggesting that half-saturated myr-E85Q may represent a structural intermediate. We report here the three-dimensional structure of Ca2+-bound myr-E85Q as determined by NMR spectroscopy. The N-terminal myristoyl group of Ca2+-bound myr-E85Q is sequestered within a hydrophobic cavity lined by many aromatic residues (F23, W31, Y53, F56, F83, and Y86) resembling that of Ca2+-free recoverin. The structure of Ca2+-bound myr-E85Q in the N-terminal region (residues 2-90) is similar to that of Ca2+-free recoverin, whereas the C-terminal region (residues 100-202) is more similar to that of Ca2+-bound wild type. Hence, the structure of Ca2+-bound myr-E85Q represents a hybrid between the structures of recoverin with zero and two Ca2+ bound. The binding of Ca2+ to EF-3 leads to local structural changes within the EF-hand that alter the domain interface and cause a 45 degrees swiveling of the N- and C-terminal domains, resulting in a partial unclamping of the myristoyl group. We propose that Ca2+-bound myr-E85Q may represent a stable intermediate state in the kinetic mechanism of the calcium-myristoyl switch.  相似文献   

6.
A triple mutant of sperm whale myoglobin (Mb) [Leu(B10) --> Tyr, His(E7) --> Gln, and Thr(E10) --> Arg, called Mb-YQR], investigated by stopped-flow, laser photolysis, crystallography, and molecular dynamics (MD) simulations, proved to be quite unusual. Rebinding of photodissociated NO, O2, and CO from within the protein (in a "geminate" mode) allows us to reach general conclusions about dynamics and cavities in proteins. The 3D structure of oxy Mb-YQR shows that bound O2 makes two H-bonds with Tyr(B10)29 and Gln(E7)64; on deoxygenation, these two residues move toward the space occupied by O2. The bimolecular rate constant for NO binding is the same as for wild-type, but those for CO and O2 binding are reduced 10-fold. While there is no geminate recombination with O2 and CO, geminate rebinding of NO displays an unusually large and very slow component, which is pretty much abolished in the presence of xenon. These results and MD simulations suggest that the ligand migrates in the protein matrix to a major "secondary site," located beneath Tyr(B10)29 and accessible via the motion of Ile(G8)107; this site is different from the "primary site" identified by others who investigated the photolyzed state of wild-type Mb by crystallography. Our hypothesis may rationalize the O2 binding properties of Mb-YQR, and more generally to propose a mechanism of control of ligand binding and dissociation in hemeproteins based on the dynamics of side chains that may (or may not) allow access to and direct temporary sequestration of the dissociated ligand in a docking site within the protein. This interpretation suggests that very fast (picosecond) fluctuations of amino acid side chains may play a crucial role in controlling O2 delivery to tissue at a rate compatible with physiology.  相似文献   

7.
The growth of a supernodulating, nitrate-tolerant soybean [ Glycine max (L.) Merr.] mutant nts 382 (nitrate-tolerant symbiosis) was compared to that of its wild-type parent, cv. Bragg, over the first 50 days after sowing. Plants were grown either inoculated in the absence of an external nitrogen source or uninoculated in the presence of 5 m M KNO3. For both treatments, nts 382 growth up to 13 days after planting was faster than that of cv. Bragg. Thereafter, supernodulation of inoculated nts 382 occurred and growth of cv. Bragg was faster; shoot and root dry weight increments and leaf area were greater in cv. Bragg, but the N content of nts 382 was higher. Relative growth and net assimilation rates were lower in nts 382, which had faster shoot and root respiration rates. Shoot growth of uninoculated plants was similar for both mutant and wild-type but roots of nts 382 were slightly smaller than those of cv. Bragg. Total plant N content was similar in uninoculated cv. Bragg and nts 382 but the latter had a higher leaf N content. Early lateral root formation (prior to nodule emergence) was greater in nts 382 regardless of whether rhizobia or KJNO3 were present. We conclude that nts 382 has some inherent differences from its parent but that supernodulation significantly retards plant growth.  相似文献   

8.
The spastin protein (SPAST) contains an ATPase with diverse cellular activities (AAA) domain and regulates microtubule dynamics. Missense mutations of the SPAST gene are frequently detected in patients with hereditary spastic paraplegias (HSPs) and represent the main reason of loss of SPAST function; however, the pathogenicity of mutant SPAST is heterogeneous. Here, SPAST variant with an I344K mutation (I344K-SPAST) was identified in a Korean family with autosomal dominant-type HSP. We investigated the role of the I344K-SPAST in HSP to provide a therapeutic mechanism. The I344K-SPAST mutation prolonged the half-life of the protein compared to wild-type SPAST (WT-SPAST) in cells by modulating post-translational modifications for proteasomal degradation. I344K-SPAST was localized in microtubule but defective in microtubule severing and ATPase activity compared to WT-SPAST in vitro and in cells. Mutant M87 isoform harboring the same mutation with I344K-M1 SPAST also increased protein stability and loss of MT severing activity, but the pathogenicity was not stronger than I344K-M1 SPAST in neurite outgrowth. Overexpression of I344K-SPAST resulted in microtubule accumulation following inhibited neurite growth in neuroblastoma, neural progenitor cells and mouse primary cortical neurons. Conversely, these pathogenic effects of I344K-SPAST were reduced by overexpression of WT-M1 SPAST in a dose dependent manner since WT-SPAST could interact with I344K-SPAST. Our data therefore provide proof-of-concept that gene transfer of WT-M1 SPAST may serve as a valid therapeutic option for HSPs.  相似文献   

9.
Troponin C (TnC) is the Ca(2+)-binding regulatory protein of the troponin complex in muscle tissue. Vertebrate fast skeletal muscle TnCs bind four Ca(2+), while Akazara scallop (Chlamys nipponensis akazara) striated adductor muscle TnC binds only one Ca(2+) at site IV, because all the other EF-hand motifs are short of critical residues for the coordination of Ca(2+). Fourier transform infrared (FTIR) spectroscopy was applied to study coordination structure of Mg(2+) bound in a mutant Akazara scallop TnC (E142Q) in D(2)O solution. The result showed that the side-chain COO(-) groups of Asp 131 and Asp 133 in the Ca(2+)-binding site of E142Q bind to Mg(2+) in the pseudo-bridging mode. Mg(2+) titration experiments for E142Q and the wild-type of Akazara scallop TnC were performed by monitoring the band at about 1600 cm(-1), which is due to the pseudo-bridging Asp COO(-) groups. As a result, the binding constants of them for Mg(2+) were the same value (about 6 mM). Therefore, it was concluded that the side-chain COO(-) group of Glu 142 of the wild type has no relation to the Mg(2+) ligation. The effect of Mg(2+) binding in E142Q was also investigated by CD and fluorescence spectroscopy. The on-off mechanism of the activation of Akazara scallop TnC is discussed on the basis of the coordination structures of Mg(2+) as well as Ca(2+).  相似文献   

10.
An essential difference between eukaryotic ferritins and bacterioferritins is that the latter contain naturally, in vivo haem as Fe-protoporphyrin IX. This haem is located in a hydrophobic pocket along the 2-fold symmetry axes and is liganded by two Met 52. However, in in vivo studies, a cofactor has been isolated in horse spleen apoferritin similar to protoporphyrin IX; in in vitro experiments, it has been shown that horse spleen apoferritin is able to interact with haem. Studies of haemin (Fe(III)-PPIX) incorporation into horse spleen apoferritin have been carried out, which show that the metal free porphyrin is found in a corresponding pocket to haem in bacterioferritins [Précigoux, G., Yariv, J., Gallois, B., Dautant, A., Courseille, C. and Langlois, d'Estaintot B. (1994) A crystallographic study of haem binding to ferritin. Acta Cryst. D 50, 739-743]. A mechanism of demetallation of haemin by L-chain apoferritin was proposed [Crichton, R.R., Soruco, J.A., Roland, F., Michaux, M.A., Gallois, B., Précigoux, G., Mahy, J.P. and Mansuy. (1997) Remarkable ability of horse spleen apoferritin to demetallate hemin and to metallate protoporphyrin IX as a function of pH. J. P. Biochem. 36, 49, 15049-15054]: this involved four Glu residues (53,56,57,60) situated at the entrance of the hydrophobic pocket and appeared to be favoured by acidic conditions. To verify this mechanism, we have mutated these four Glu to Gln and examined demetallation in both acidic and basic conditions. In this paper, we report the mass spectrometry studies of L-chain apoferritin and its mutant incubated with haemin and analysed after different times of incubation: 15 days, 2 months, 6 months, 9 months and 12 months. These studies show that the recombinant L-chain apoferritin and its mutant are able to demetallate haemin to give a hydroxyethyl protoporphyrin IX derivative in a dimeric form [Macieira, S., Martins, B. M. and Huber, R. (2003) Oxygen-dependent coproporphyrinogen IX oxidase from Escherichia coli: one-step purification and biochemical characterization. FEMS. Microbiology Letters 226, 31-37].  相似文献   

11.
Selective (15)N isotope labeling of the cytochrome bo(3) ubiquinol oxidase from Escherichia coli with auxotrophs was used to characterize the hyperfine couplings with the side-chain nitrogens from residues R71, H98, and Q101 and peptide nitrogens from residues R71 and H98 around the semiquinone (SQ) at the high-affinity Q(H) site. The two-dimensional ESEEM (HYSCORE) data have directly identified N(ε) of R71 as an H-bond donor carrying the largest amount of unpaired spin density. In addition, weaker hyperfine couplings with the side-chain nitrogens from all residues around the SQ were determined. These hyperfine couplings reflect a distribution of the unpaired spin density over the protein in the SQ state of the Q(H) site and the strength of interaction with different residues. The approach was extended to the virtually inactive D75H mutant, where the intermediate SQ is also stabilized. We found that N(ε) of a histidine residue, presumably H75, carries most of the unpaired spin density instead of N(ε) of R71, as in wild-type bo(3). However, the detailed characterization of the weakly coupled (15)N atoms from selective labeling of R71 and Q101 in D75H was precluded by overlap of the (15)N lines with the much stronger ~1.6 MHz line from the quadrupole triplet of the strongly coupled (14)N(ε) atom of H75. Therefore, a reverse labeling approach, in which the enzyme was uniformly labeled except for selected amino acid types, was applied to probe the contribution of R71 and Q101 to the (15)N signals. Such labeling has shown only weak coupling with all nitrogens of R71 and Q101. We utilize density functional theory-based calculations to model the available information about (1)H, (15)N, and (13)C hyperfine couplings for the Q(H) site and to describe the protein-substrate interactions in both enzymes. In particular, we identify the factors responsible for the asymmetric distribution of the unpaired spin density and ponder the significance of this asymmetry to the quinone's electron transfer function.  相似文献   

12.
To obtain insight into the link between proline (Pro) accumulation and the increase in osmotolerance in higher plants, we investigated the biochemical basis for the NaCl tolerance of a Nicotiana plumbaginifolia mutant (RNa) that accumulates Pro. Pro biosynthesis and catabolism were investigated in both wild-type and mutant lines. (13)C-Nuclear magnetic resonance with [5-(13)C]glutamate (Glu) as the Pro precursor was used to provide insight into the mechanism of Pro accumulation via the Glu pathway. After 24 h under 200 mM NaCl stress in the presence of [5-(13)C]Glu, a significant enrichment in [5-(13)C]Pro was observed compared with non-stress conditions in both the wild type (P2) and the mutant (RNa). Moreover, under the same conditions, [5-(13)C]Pro was clearly synthesized in higher amounts in RNa than in P2. On the other hand, measurements of enzyme activities indicate that neither the biosynthesis via the ornithine pathway, nor the catabolism via the Pro oxidation pathway were affected in the RNa mutant. Finally, the regulatory effect exerted by Pro on its biosynthesis was evaluated. In P2 plantlets, exogenous Pro markedly reduced the conversion of [5-(13)C]Glu into [5-(13)C]Pro, whereas Pro feedback inhibition was not detected in the RNa plantlets. It is proposed that the origin of tolerance in the RNa mutant is due to a mutation leading to a substantial reduction of the feedback inhibition normally exerted in a wild-type (P2) plant by Pro at the level of the Delta-pyrroline-5-carboxylate synthetase enzyme.  相似文献   

13.
Apart from the common floral architecture in Brassicaceae, variation in flower morphology occurs in several genera within the family and is considered to affect speciation processes. We analysed genetic differentiation and flowering time variation of two floral variants of Capsella bursa-pastoris , the Spe variant and the wild-type, which occur sympatrically in a vineyard in southwest Germany. The Spe variant is characterized by an additional whorl of stamens instead of petals and was formerly classified as an independent taxon ' Capsella apetala ' Opiz. Amplified fragment length polymorphism and allozyme analysis revealed a substantial genetic differentiation of the two floral variants and a higher genetic variation within the wild-type subpopulation compared with the Spe subpopulation. The low genetic variation in the mutant provided evidence of a recent local origin or recent introduction. Flowering time analysis indicated that, within the analysed population, the Spe variant flowers significantly later than the wild-type ( P  < 0.001). We conclude that the evolution and persistence of Spe within a wild-type population is facilitated by high selfing rates and been enhanced by a shift in flowering phenology. Hence, our data provide substantial evidence that the Spe phenotype has established itself as an isolated entity within a wild-type population and may thus serve as a model for the analysis of the evolutionary significance of homeotic mutants in wild populations.  相似文献   

14.
Xu W  Lees NS  Hall D  Welideniya D  Hoffman BM  Duin EC 《Biochemistry》2012,51(24):4835-4849
(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (IspH or LytB) catalyzes the terminal step of the MEP/DOXP pathway where it converts (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) into the two products, isopentenyl diphosphate and dimethylallyl diphosphate. The reaction involves the reductive elimination of the C4 hydroxyl group, using a total of two electrons. Here we show that the active form of IspH contains a [4Fe-4S] cluster and not the [3Fe-4S] form. Our studies show that the cluster is the direct electron source for the reaction and that a reaction intermediate is bound directly to the cluster. This active form has been trapped in a state, dubbed FeS(A), that was detected by electron paramagnetic resonance (EPR) spectroscopy when one-electron-reduced IspH was incubated with HMBPP. In addition, three mutants of IspH have been prepared and studied, His42, His124, and Glu126 (Aquifex aeolicus numbering), with particular attention paid to the effects on the cluster properties and possible reaction intermediates. None of the mutants significantly affected the properties of the [4Fe-4S](+) cluster, but different effects were observed when one-electron-reduced forms were incubated with HMBPP. Replacing His42 led to an increased K(M) value and a much lower catalytic efficiency, confirming the role of this residue in substrate binding. Replacing the His124 also resulted in a lower catalytic efficiency. In this case, however, the enzyme showed the loss of the [4Fe-4S](+) EPR signal upon addition of HMBPP without the subsequent formation of the FeS(A) signal. Instead, a radical-type signal was observed in some of the samples, indicating that this residue plays a role in the correct positioning of the substrate. The incorrect orientation in the mutant leads to the formation of substrate-based radicals instead of the cluster-bound intermediate complex FeS(A). Replacing the Glu126 also resulted in a lower catalytic efficiency, with yet a third type of EPR signal being detected upon incubation with HMBPP. (31)P and (2)H ENDOR measurements of the FeS(A) species incubated with regular and (2)H-C4-labeled HMBPP reveal that the substrate binds to the enzyme in the proximity of the active-site cluster with C4 adjacent to the site of linkage between the FeS cluster and HMBPP. Comparison of the spectroscopic properties of this intermediate to those of intermediates detected in (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase and ferredoxin:thioredoxin reductase suggests that HMBPP binds to the FeS cluster via its hydroxyl group instead of a side-on binding as previously proposed for the species detected in the inactive Glu126 variant. Consequences for the IspH reaction mechanism are discussed.  相似文献   

15.
Serine acetyltransferase (SAT) from Escherichia coli is subject to feedback inhibition by L-cysteine. A mutant was isolated which excretes L-cysteine because of a lesion in cysE, the structural gene for SAT, rendering the enzyme less feedback sensitive. To analyse the structural basis for this mutation the cysE genes both from wild-type E. coli and the mutant strain were cloned and their nucleotide sequences determined. The cysE gene contained an open reading frame consisting of 819 bp, equivalent to a protein of 273 amino acids. The mutant gene showed a single base change in position 767 resulting in a methionine to isoleucine substitution. A causal connection between this SAT sequence alteration, feedback insensitivity and L-cysteine excretion was demonstrated. The SAT from the wild-type strain was purified. It was composed of a single polypeptide chain migrating in SDS gels according to an Mr of 34,000. As in Salmonella typhimurium, the enzyme was associated in a bifunctional complex with O-acetylserine (thiol)-lyase.  相似文献   

16.
Previous studies showed that coenzyme Q(1) (CoQ(1)) reduction on passage through the rat pulmonary circulation was catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex I, but that NQO1 genotype was not a factor in CoQ(1) reduction on passage through the mouse lung. The aim of the present study was to evaluate the complex I contribution to CoQ(1) reduction in the isolated perfused wild-type (NQO1(+/+)) and Nqo1-null (NQO1(-)/(-)) mouse lung. CoQ(1) reduction was measured as the steady-state pulmonary venous CoQ(1) hydroquinone (CoQ(1)H(2)) efflux rate during infusion of CoQ(1) into the pulmonary arterial inflow. CoQ(1)H(2) efflux rates during infusion of 50 μM CoQ(1) were not significantly different for NQO1(+/+) and NQO1(-/-) lungs (0.80 ± 0.03 and 0.68 ± 0.07 μmol·min(-1)·g lung dry wt(-1), respectively, P > 0.05). The mitochondrial complex I inhibitor rotenone depressed CoQ(1)H(2) efflux rates for both genotypes (0.19 ± 0.08 and 0.08 ± 0.04 μmol·min(-1)·g lung dry wt(-1) for NQO1(+/+) and NQO1(-/-), respectively, P < 0.05). Exposure of mice to 100% O(2) for 48 h also depressed CoQ(1)H(2) efflux rates in NQO1(+/+) and NQO1(-/-) lungs (0.43 ± 0.03 and 0.11 ± 0.04 μmol·min(-1)·g lung dry wt(-1), respectively, P < 0.05 by ANOVA). The impact of rotenone or hyperoxia on CoQ(1) redox metabolism could not be attributed to effects on lung wet-to-dry weight ratios, perfusion pressures, perfused surface areas, or total venous effluent CoQ(1) recoveries, the latter measured by spectrophotometry or mass spectrometry. Complex I activity in mitochondria-enriched lung fractions was depressed in hyperoxia-exposed lungs for both genotypes. This study provides new evidence for the potential utility of CoQ(1) as a nondestructive indicator of the impact of pharmacological or pathological exposures on complex I activity in the intact perfused mouse lung.  相似文献   

17.
Granule-bound starch synthase (GBSS) catalyses the synthesis of amylose in starch granules. Transformation of a diploid amylose-free (amf) potato mutant with the gene encoding GBSS leads to the restoration of amylose synthesis. Transformants were obtained which had wild-type levels of both GBSS activity and amylose content. It proved to be difficult to increase the amylose content above that of the wild-type potato by the introduction of additional copies of the wild-type GBSS gene. Staining of starch with iodine was suitable for investigating the degree of expression of the inserted GBSS gene in transgenic amf plants. Of the 19 investigated transformants, four had only red-staining starch in tubers indicating that no complementation of the amf mutation had occured. Fifteen complemented transformants had only blue-staining starch in tubers or tubers of different staining categories (blue, mixed and red), caused either by full or partial expression of the inserted gene. Complementation was also found in the microspores. The segregation of blue- and red-staining microspores was used to analyse the inheritance of the introduced GBSS genes. A comparison of the results from microspore staining and Southern hybridisation indicated that, in three tetraploid transgenics, the gene was probably inserted before (duplex), and in all others after, chromosome doubling (simplex). The partial complementation was not due to methylation of the HPAII/MSPI site in the promoter region. Partially complemented plants had low levels of mRNA as was found when the GBSS expression levels were inhibited by anti-sense technology.  相似文献   

18.
O. Canaani  Z. Motzan  S. Malkin 《Planta》1985,164(4):480-486
Oxygen evolution and energy storage yields in tobacco (Nicotiana tabacum L.) wild-type (cv. John Williams Broadleaf) and a mutant (Su/su) deficient in chlorophyll were compared using the photoacoustic technique. Oxygen-evolution and energy-storage quantum yields in the mutant were higher when measured in red light (640–690 nm) than green or blue light (540 nm and 440 nm, respectively), indicating that carotenoids in this mutant do not transfer energy efficiently to the photochemical reaction centers. It is suggested that carotenoids may play a role in protecting the photosynthetic apparatus against damage by high energy fluxes. In the wild-type, the oxygenevolution yield did not change drastically throughout the visible spectrum. The mutant had a higher quantum yield of oxygen evolution than the wildtype. Similarly maximum rates obtained from saturation curves for the mutant were more than twice higher per leaf area and about five times higher per chlorophyll, as compared to the wild-type.Abbreviation PS photosystem  相似文献   

19.
Activation of receptor tyrosine kinases needs tight control by tyrosine phosphatases to keep their normal function. In this study, we investigated the regulation of activation of the type III receptor tyrosine kinase KIT by protein tyrosine phosphatase receptor type E (PTPRE). We found that PTPRE can associate with wild-type KIT and inhibit KIT activation in a dose-dependent manner, although the activation of wild-type KIT is dramatically inhibited even when PTPRE is expressed at low level. The D816V mutation of KIT is the most frequently found oncogenic mutation in mastocytosis, and we found that PTPRE can associate and inhibit the activation of KIT/D816V in a dose dependent manner, but the inhibition is much weaker compared with wild-type KIT. Similar to mastocytosis, KIT mutations are the main oncogenic mutations in gastrointestinal stromal tumors (GISTs) although GISTs carry different types of KIT mutations. We further studied the regulation of the activation of GISTs-type KIT mutants and other mastocytosis-type KIT mutants by PTPRE. Indeed, PTPRE can almost block the activation of GISTs-type KIT mutants, while the activation of mastocytosis-type KIT mutants is more resistant to the inhibition of PTPRE. Taken together, our results suggest that PTPRE can associate with KIT, and inhibit the activation of both wild-type KIT and GISTs-type KIT mutants, while the activation of mastocytosis-type KIT mutants is more resistant to PTPRE.  相似文献   

20.
The log phase cells of autolytic Microccus lysodeikticus (luteus) IFO 3333 did not autolyze when grown in the presence of trypsin although the growth curve and morphology of the cells were not influenced. A non-autolytic mutant was obtained by subculture of the wild-type strain IFO 3333 on an agar slant containing 1% glucose. The mutant (strain MT) was wild-type IFO 3333 which occurred singly or in irregular masses. The mutant MT grown in a culture medium containing trypsin caused remarkable alteration in cell morphology: large cell packets consisting of a number of "unit tetrads" arranged regularly in three dimensions were formed by the addition of trypsin to the medium. The findings suggest that inhibition of the separation of divided cells is brought about by inactivation or suppression of a cell wall autolytic enzyme which plays an important role in the separation step and is accessible to externally added trypsin in the mutant cells but not in the wild-type cells. The possibility that there are two kinds or phases of autolytic enzymes "a physiological autolytic enzyme" and "a useless autolytic enzyme", is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号