首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, possible genotoxic effects of zinc oxide (ZnO) nanoparticles were investigated in cultured human peripheral lymphocytes by using chromosome aberrations and micronucleus assays (MN). For this purpose, the cells were treated with ZnO (1, 2, 5, 10, 15 and 20 μg/mL) for 24 and 48 h. In this research, four types of chromosome aberrations were observed as chromatid and chromosome breaks, fragment and dicentric chromosomes. ZnO induced significant increase of the ratio of chromosomal aberrations as well as percentage of abnormal cells at concentrations of 1, 5, 10 and 20 μg/mL in 24 h treatments. In 48 h treatments, while ZnO nanomaterials induced significant increase of the percentage of abnormal cells only at a concentration of 10 μg/mL, and of chromosome aberration per cell in comparison to the control at concentrations of 5 and 10 μg/mL. On the other hand, this material significantly increased the micronuclei frequency (MN) at concentrations of 10 and 15 μg/mL in comparison to the control. Cytokinesis-block proliferation index was not affected by ZnO treatments. It also decreased the mitotic index in all concentrations at 24 h but not at 48 h. The present results indicate that ZnO nanoparticles are clastogenic, mutagenic and cytotoxic to human lymphocytes in vitro at specific concentrations and time periods.  相似文献   

2.
Reactive oxygen species (ROS) are important mediators of the cytotoxicity induced by the direct reaction of ionising radiation (IR) with all critical cellular components, such as proteins, lipids, and nucleic acids. The derived oxidative damage may propagate in exposed tissues in a dose- and spatiotemporal dependent manner to other cell compartments, affecting intracellular signalling, and cell fate. To understand how cell damage is induced, we studied the oxidative events occurring immediately after cell irradiation by analysing the fate of IR-derived ROS, the intracellular oxidative damage, and the modification of redox environment accumulating in Chinese hamster ovary (CHO) within 1?h after cell irradiation (dose range 0–10?Gy). By using the immuno-spin trapping technique (IST), spectrophotometric methods, and electron paramagnetic resonance (EPR) spectroscopy, we showed that IR-derived ROS (i) induced an IST-detectable, antioxidant-inhibitable one-electron oxidation of specific intracellular proteins; (ii) altered the glutathione (GSH) content (which was found to increase below 2?Gy, and decrease at higher doses, leading to a redox imbalance); (iii) decreased glutathione peroxidase and glutaredoxin activity; (iv) modified neither glutathione reductase nor thioredoxin reductase activity; (v) were detected by spin trapping technique, but adduct intensity decreased due to cell competition for ROS; and (vi) induced no EPR-detectable radicals assignable to oxidised cellular components. In conclusion, our results showed that IR generated an early high oxidising potential (protein radical intermediates, redox imbalance, modified redox enzyme activity) in irradiated cells potentially able to propagate the damage and induce oxidative modification of secondary targets.  相似文献   

3.
Polymorphic variation in DNA repair genes was examined in a group of retired workers from the British Nuclear Fuels plc facility at Sellafield in relation to previously determined translocation frequencies in peripheral blood lymphocytes. Variation at seven polymorphisms in four genes involved in the base excision repair (XRCC1 R194W, R399Q and a [AC]n microsatellite in the 3' UTR) and double strand break repair (XRCC3 T241M and a [AC]n microsatellite in intron 3 of XRCC3, XRCC4 I134T, and a GACTAn microsatellite located 120 kb 5' of XRCC5) pathways was determined for 291 retired radiation workers who had received cumulative occupational external radiation doses of between 0 and 1873 mSv. When the interaction between radiation dose and each DNA repair gene polymorphism was examined in relation to translocation frequency there was no evidence for any of the polymorphisms studied influencing the response to occupational exposure. A positive interaction observed between genotype (individuals with at least one allele > or =20 repeat units) at a microsatellite locus in the XRCC3 gene and smoking status should be interpreted cautiously because interactions were investigated for seven polymorphisms and two exposures. Nonetheless, further research is warranted to examine whether this DNA repair gene variant might be associated with a sub-optimal repair response to smoking-induced DNA damage and hence an increased frequency of translocations.  相似文献   

4.
Studies were carried out on two populations occupationally exposed to ethylene oxide (EtO) using different physical and biological parameters. Blood samples were collected from 9 hospital workers (EI) and 15 factory workers (EII) engaged in sterilization of medical equipment with EtO and from matched controls (CI and CII). Average exposure levels during 4 months (the lifespan of erythrocytes) prior to blood sampling were estimated from levels of N-(2-hydroxyethyl)valine adducts in hemoglobin. They were significantly enhanced in EI and EII and corresponded to a 40-h time-weighted average of 0.025 ppm in EI and 5 ppm in EII. Exposures were usually received in bursts with EtO concentrations in air ranging from 22 to 72 ppm in EI and 14 to 400 ppm in EII. All samples were analyzed for HPRT mutants (MFs), chromosomal aberrations (CAs), micronuclei (MN) and SCEs. MFs were significantly enhanced by 60% in EII but not in EI. These results are the first demonstration of mutation induction in man by ethylene oxide. CAs were significantly enhanced in EI and EII by 130% and 260% respectively. MN were not enhanced in EI but significantly in EII(217%). The mean frequency of SCEs was significantly elevated by 20% in EI and by almost 100% in EII. SCE was the only parameter that allowed distinction between daily and occasionally exposed workers in EII. An interesting finding in exposed workers was the large increase of the percentage of cells with high frequencies of SCE (3–4 times in EI and 17-fold in EII).

The relative sensitivity of endpoints for detection of EtO exposure in the present investigation was in the following order: HOEtVal adducts > SCEs > chromosomal aberrations > micronuclei > HPRT mutants.  相似文献   


5.
Summary Escherichia coli K803 cells were mutagenized and screened for the presence of clones sensitive to -rays but not to ultraviolet light. One new mutant of this type, named rorB, was isolated. This mutant is both cross-sensitive to mitomycin C and shows reduced conjugal recombination frequencies, but to a lesser extent than the phenotypically similar mutant recN. Unlike previously reported mutants of E. coli or yeast with an enhanced sensitivity to ionising radiations, rorB appears to be near wild type in ability to rejoin DNA double-strand breaks. The rorB gene maps close to ilvGEDAC at 84.5 min of the E. coli chromosome.  相似文献   

6.
Melanin’s influence on the chromosome aberration frequency induced by radiation in human lymphocytes and mouse bone marrow cells has been studied. We revealed earlier that melanin significantly decreases the frequencies of different radiation-induced mutations in animal germ cells. Melanin protection in somatic cells has been found to be less effective. The melanin effect in somatic cells depends on radiation dose: the lower the damage level, the better the melanin protection. In order to determine the influence of melanin at low radiation doses, the adaptive response was investigated in mouse bone marrow cells in vivo. The level of chromosome aberrations in these cells after fractionated irradiation of 0.2 Gy+1.5 Gy with a 4-h interval was about half that after a single dose of 1.7 Gy. If melanin was injected prior to irradiation, the aberration level decreased by a factor of about two in both cases. This observed result may be due to the potential radioprotective effect of melanin and to the absence of any adaptive response, whereas in the case of melanin application between the priming and challenge doses, the combined effect of the adaptive response as well as melanin protection resulted in a 4-fold decrease of chromosome aberrations. These results allow us to draw the following conclusions: adaptive response can be prevented by a radioprotector such as melanin, and melanin is capable of completely removing low-dose radiation effects. Received: 2 December 1998 / Accepted in revised form: 15 September 1999  相似文献   

7.
This paper summarises the view of the German Commission on Radiological Protection (“Strahlenschutzkommission”, SSK) on the rationale behind the currently valid dose limits and dose constraints for workers recommended by the International Commission on Radiological Protection (ICRP). The paper includes a discussion of the reasoning behind current dose limits followed by a discussion of the detriment used by ICRP as a measure for stochastic health effects. Studies on radiation-induced cancer are reviewed because this endpoint represents the most important contribution to detriment. Recent findings on radiation-induced circulatory disease that are currently not included in detriment calculation are also reviewed. It appeared that for detriment calculations the contribution of circulatory diseases plays only a secondary role, although the uncertainties involved in their risk estimates are considerable. These discussions are complemented by a review of the procedures currently in use in Germany, or in discussion elsewhere, to define limits for genotoxic carcinogens. To put these concepts in perspective, actual occupational radiation exposures are exemplified with data from Germany, for the year 2012, and regulations in Germany are compared to the recommendations issued by ICRP. Conclusions include, among others, considerations on radiation protection concepts currently in use and recommendations of the SSK on the limitation of annual effective dose and effective dose cumulated over a whole working life.  相似文献   

8.
Peripheral human blood from 23 healthy donors aged between 23 and 95 years was exposed to continuous wave (CW) or 50 Hz amplitude modulated (AM) microwave radiation and was cultured for 72 h. Other exposure parameters were: frequency 9 GHz, specific absorption rate (SAR) 90 mW/g, exposure duration 10 min. The possible genotoxic effect was evaluated by means of cytokinesis-block micronucleus method. A significant (p < 0.05) increase in micronuclei was found following AM microwave exposure.  相似文献   

9.
Terpinolene (TPO) is a monocyclic monoterpene found in the essential oils of various fir and pine species. Recent reports indicated that several monoterpenes could exhibit antioxidant effects in both human and animal experimental models. However, so far, the nature and/or biological roles of TPO have not been elucidated in human models yet. The aim of this study was to investigate the genetic, oxidative and cytotoxic effects of TPO in cultured human blood cells (n = 5) for the first time. Human blood cells were treated with TPO (0–200 mg/L) for 24 and 48 h, and then cytotoxicity was detected by lactate dehydrogenase (LDH) release and [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay, while DNA damage was also analyzed by micronucleus assay, sister chromatid exchanges assay and 8-oxo-2-deoxyguanosine (8-OH-dG) level. In addition, biochemical parameters [total antioxidant capacity (TAC) and total oxidative stress (TOS)] were examined to determine oxidative effects. The results of LDH and MTT assays showed that TPO (at concentrations greater than 100 mg/L) decreased cell viability. In our in vitro test systems, it was observed that TPO had no genotoxicity on human lymphocytes. Again, TPO (at 10, 25, 50 and 75 mg/L) treatment caused statistically important (p < 0.05) increases of TAC levels in human lymphocytes without changing TOS levels. In conclusion, TPO can be a new resource of therapeutics as recognized in this study with its non-genotoxic and antioxidant features.  相似文献   

10.
The aim of this study was to investigate the ability of sodium metabisulfite (SMB) which is used as an antimicrobial substance in food, to induce chromosome aberrations (CA) and sister chromatid exchanges (SCE) in human lymphocytes. SMB-induced CAs and SCEs at all concentrations (75, 150 and 300 μg/ml) and treatment periods (24 and 48 h) dose-dependently. However, SMB decreased the replication index (RI) and the mitotic index (MI) at the concentrations of 150 and 300 μg/ml for 24 and 48 h treatment periods. This decrease was dose-dependent as well.  相似文献   

11.
The analysis of the effects of ionising radiation on germline mutations is limited by the number of offspring that need to be analysed following exposure to a dose, which is relevant to risk assessment in humans. We have developed a new experimental approach using hypervariable mouse expanded simple tandem repeat (ESTR) loci (minisatellites) which are both highly sensitive to ionising radiation and which permit changes in mutation rates to be detected in relatively small samples. Here, we review the progress made in validating the model, and the unexpected features it has revealed, including a novel form of radiation-induced genetic instability that can be transmitted from one generation to the next.  相似文献   

12.
Spontaneous baseline frequencies of micronuclei in mono-, bi- and poly-nucleated lymphocytes were analyzed, using the cytokinesis-block technique, in 103 subjects living in a residential suburb (Genova-Nervi), and in 203 subjects living in an urban industrialized area near a metallurgical plant and a coke factory (Genova-Cornigliano). Statistical analysis showed that the average frequency of micronucleated binucleated lymphocytes (MnBNL) was significantly higher (1.42-fold) in donors of Nervi than in donors of Cornigliano living in a contaminated environment. In contrast, the average frequency of micronucleated polynucleated lymphocytes (MnPNL) was significantly higher (1.66-fold) in donors of Cornigliano than in donors of Nervi. The existence in the whole population examined of a positive correlation between frequency of MnBNL and frequency of MnPNL and the absence of a positive correlation between frequency of bi- and poly-nucleated lymphocytes and frequency of MnPNL suggest that the formation of MnPNL is a consequence of genetic damage and not of mitotic errors arising during the division of bi- and poly-nucleated cells. In agreement with previous findings the frequency of MnBNL increased with age and was significantly higher in females than in males; unexpectedly it was higher in non-smokers/non-drinkers than in smokers/drinkers.  相似文献   

13.
14.
Increased micronucleated cell rates, dicentric chromosomes, and other chromosomal damages have been reported in lymphocytes of cancer patients prior to the initiation of chemotherapy, and/or radiotherapy. The cause of these chromosomal damages in these lymphocytes remains unclear. In the present work, we investigated whether these micronuclei mainly reflect structural or numerical chromosomal aberrations by applying the cytokinesis-blocked micronucleus (CBMN) assay in combination with fluorescent in situ hybridization (FISH) of a DNA centromeric probe on blood samples of 10 untreated cancer patients (UCPs), and 10 healthy subjects (HSs). Micronucleated binucleated lymphocyte rate was significantly increased in patients (mean±S.D.: 19.0‰±14.1 versus 9.2‰±4.6 in controls). Trinucleated cytokinesis-blocked cells were not significantly higher in patients than in controls. Acentromeric, centromeric, and multicentromeric micronucleus levels were two-fold higher in patients than in controls, but the difference was significant only with acentromeric micronuclei. The percentage of micronuclei containing one or more centromeres averaged 69.2, and 71.5% in patients, and controls, respectively. The percentage of micronuclei containing several centromeres was 44.7% in patients, and 54.6% in controls. Among centromere-positive micronuclei, the percentage of micronuclei containing several centromeres averaged 59.7% in patients, and 75.4% in controls. These results indicate that genetic instability in peripheral blood lymphocytes of UCPs occurs because of enhanced chromosome breakage. However, a substantial proportion of this genetic instability occurs because of defects in chromosome segregation.  相似文献   

15.
Dental laboratory technicians may be exposed to metal alloys that are used in the production of crowns, bridges and removable partial dentures. These alloys consist of 35–65% cobalt, 20–30% chromium, 0–30% nickel, and small amounts of molybdenum, silica, beryllium, boron and carbon. The aim of this study was to assess whether dental technicians are occupationally exposed to chromium, cobalt and nickel, by analyzing urinary excretion levels of these metals and to investigate the genotoxic effects of occupational exposure associated with dental prostheses production operations by analyzing cytokinesis-blocked micronucleus (CB-MN) frequencies in peripheral lymphocytes and micronucleus (MN) frequencies in exfoliated nasal cells from 27 dental laboratory technicians and 15 control subjects. The differences in the urinary excretion of metals between technicians and controls were statistically significant. The mean (±S.D.) CB-MN frequencies (‰) in peripheral lymphocytes were 4.00 (±2.98) among the dental technicians and 1.40 (±1.30) among the controls, a statistically significant difference (P<0.005). The mean (±S.D.) MN frequencies (‰) in nasal cells were 3.50 (±1.80) among the dental technicians and 1.19 (±0.53) among the controls, which was also a statistically significant difference (P<0.005). There was a significant correlation between duration of exposure and MN frequencies in lymphocytes (r=0.642, P<0.01), but not in nasal cells of technicians. Our data reveal that in vivo exposure to chromium, nickel and cobalt metals is evident and that this occupational exposure may contribute to the observed genotoxic damage in two types of cells, e.g. lymphocytes and exfoliated nasal cells. However, it cannot be determined which compound(s) are responsible for the genotoxic damage observed in this study.  相似文献   

16.
To test the genetic similarity of independently-isolated hamster cell mutants sensitive to ionising radiation, these were fused in pairs and the hybrids exposed to X-rays. Some mutants (irs1, irs3, xrs-1, XR-1, BLM2) were found to complement all others tested for radiosensitivity in hybrids, and are therefore in separate genetic groups. The mutants irs2 and V-E5, both isolated from V79 cells, did not complement and therefore belong to the same group. Another pair, EM7 and irs1SF, formed hybrids with intermediate levels of survival between mutant and wild-type. However, the parental cells fused to irs1SF also showed intermediate sensitivity, suggesting a semi-dominant mutant phenotype rather than a lack of complementation. Crosses of some of these hamster mutants to the radiosensitive mouse mutant M10 showed clear complementation (irs1 x M10, irs2 x M10) but for others the complementation did not greatly exceed the sensitivity of one (irs3 x M10) or both mutants (XR-1 x M10). Taken with our previously-published data, these results show that there are at least 8 genetic groups determining resistance to ionising radiation damage in rodent cells.  相似文献   

17.
Ionizing radiation damage to the genome of a non-cycling mammalian cell is analyzed using continuous time Markov chains. Immediate damage induced by the radiation is modeled as a batch Poisson arrival process of DNA double strand breaks (DSBs). Different kinds of radiation, for example gamma rays or alpha particles, have different batch probabilities. Enzymatic modulation of the immediate damage is modeled as a Markov process similar to the processes described by the master equation of stochastic chemical kinetics. An illustrative example is the restitution/complete exchange model, which postulates that radiation induced DSBs can subsequently either undergo enzymatically mediated repair (restitution) or can participate pairwise in chromosome exchanges, some of which make irremediable lesions such as dicentric chromosome aberrations. One may have rapid irradiation followed by enzymatic DSB processing or have prolonged irradiation with both DSB arrival and enzymatic DSB processing continuing throughout the irradiation period. A complete solution of the Markov chain is known for the case that the exchange rate constant is negligible so that no irremediable chromosome lesions are produced and DSBs are the only damage to the genome. Using PDEs for generating functions, a perturbation calculation is made assuming the exchange rate constant is small compared to the repair rate constant. Some non-perturbative results applicable to very prolonged irradiation are also obtained using matrix methods: Perron-Frobenius theory, variational methods and numerical approximations of eigenvalues. Applications to experimental results on expected values, variances and statistical distributions of DNA lesions are briefly outlined.Continuous time Markov chain models are the most systematic of those current radiation damage models which treat DSB-DSB interactions within the cell nucleus as homogeneous (e.g. ignore diffusion limitations). They contain most other homogeneous models as special cases, limiting cases or approximations. However, applying the continuous time Markov chain models to studying spatial dependence of DSB interactions, which is generally believed to be very important in some situations, presents difficulties.  相似文献   

18.
The adaptive response (AR) in human lymphocytes in different experimental protocols was investigated. The AR was found to be present in cells pre-exposed to 3 cGy of X-rays in G0, G1 and S phase as well as with tritiated water (4 muCi/ml) when the 'challenge' dose was given in G2. There was no AR after prior exposure of the cells in S phase to secondary irradiation from 70 GeV protons. The AR was not observed after preliminary X-irradiation of the lymphocytes in G0 and G1 and 'challenge' irradiation in G1. Cells from 6 patients with Down's syndrome were tested. At least 5 of them did not show the AR. The AR is considered to be a phenomenon of the antimutagenic aftereffect.  相似文献   

19.
The mechanisms of biological effects of 50/60 Hz (power frequency) magnetic fields (MF) are still poorly understood. There are a number of studies indicating that MF affect biochemical processes in which free radicals are involved, such as the biological objects' response to ultraviolet radiation (UVA). Therefore, the present study was aimed to assess the effect of 50 Hz MFs on the oxidative deterioration of DNA in rat lymphocytes irradiated in vitro by UVA. UVA radiation (150 J/m2) was applied for 5 min for all groups and 50 Hz MF (40 microT rms) exposure was applied for some of the groups for 5 or 60 min. The level of DNA damage was assessed using the alkaline comet assay, the fluorescence microscope, and image analysis. It has been found that the 1 h exposure to MF caused an evident increase in all parameters consistent with damaged DNA. This suggest that MF affects the radical pairs generated during the oxidative or enzymatic processes of DNA repair.  相似文献   

20.
Ionizing radiation (IR) can cause various lesions in DNA, which induce the increase of p53 expression levels in order to repair radiation induced damage. Thus, the correlation between the increase of p53 expression and an irradiation may constitute a fast and powerful method of individual monitoring in cases of accidental or suspected exposures to IR. In this context, the aim of this research was to evaluate changes in lymphocyte p53 expression levels, based on flow cytometry, after in vitro irradiation of peripheral blood samples. For the measurement of such expression levels of p53 protein, an investigation was carried out in order to establish a methodology of analysis based on flow cytometry. Hence, relationships among levels of expression of p53 protein with the absorbed dose have been verified. The results presented in this report emphasized flow cytometry as an important tool for the fast evaluation of p53 protein expression levels as bioindicator of individual exposure to acute ionizing radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号