首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The control circuitry that directs and paces Caulobacter cell cycle progression involves the entire cell operating as an integrated system. This control circuitry monitors the environment and the internal state of the cell, including the cell topology, as it orchestrates orderly activation of cell cycle subsystems and Caulobacter's asymmetric cell division. The proteins of the Caulobacter cell cycle control system and its internal organization are co-conserved across many alphaproteobacteria species, but there are great differences in the regulatory apparatus' functionality and peripheral connectivity to other cellular subsystems from species to species. This pattern is similar to that observed for the “kernels” of the regulatory networks that regulate development of metazoan body plans. The Caulobacter cell cycle control system has been exquisitely optimized as a total system for robust operation in the face of internal stochastic noise and environmental uncertainty. When sufficient details accumulate, as for Caulobacter cell cycle regulation, the system design has been found to be eminently rational and indeed consistent with good design practices for human-designed asynchronous control systems.  相似文献   

3.
Cooper S 《IUBMB life》2012,64(1):10-17
The current model of the eukaryotic cell cycle proposes that numerous genes are expressed at different times during the cell cycle. The existence of myriad control points for gene expression leads to theoretical and logical problems for cell cycle control. Each expressed gene requires a control element to appear in a cell-cycle specific manner; this control element requires another control element and so on, ad infinitum. There are also experimental problems with the current model based on ineffective synchronization methods and problems with microarray measurements of mRNA. Equally important, the efficacy of mRNA variation in affecting changes in protein content is negligible. An alternative view of the cell cycle proposes cycle-independent, invariant accumulation of mRNA during the cell cycle with decreases of specific proteins occurring only during the mitotic period of the cell cycle.  相似文献   

4.
Growth is confined within a size that is normal for each species, revealing that somehow an organism 'knows' when this size has been reached. Within a species, growth is also variable, but despite this, proportion and structure are maintained. Perhaps, the key element in the control of size is the control of cell number. Here we review current knowledge on the mechanisms controlling cell number in the nervous system of vertebrates and flies. During growth, clonal expansion is confined, the number of progeny cells is balanced through the control of cell survival and cell proliferation and excess cells are eliminated by apoptosis. Simultaneously, organ architecture emerges and as neurons become active they also influence growth. The interactive control of cell number provides developmental plasticity to nervous system development. Many findings are common between flies and mice, other aspects have been studied more in one organism than the other and there are also aspects that are unique to either organism. Although cell number control has long been studied in the nervous system, analogous mechanisms are likely to operate during the growth of other organs and organisms.  相似文献   

5.
双荧光素酶报告基因系统能够提供灵敏的读数,但该系统需要依赖组成型表达的内参对读数进行归一化。然而,大多数内参并不是在所有条件下都组成型表达。为此,文中建立了一个有效的方法制备适于家蚕细胞双荧光素酶报告基因系统的内参质粒。首先,突变BmV gP78启动子上的激素应答相关元件,获得了在家蚕细胞中稳定表达的组成型启动子BmV gP78M;然后,用BmV gP78M替换pRL-SV40质粒上的SV40启动子和嵌合内含子序列,成功构建了pRL-V gP78M内参质粒;最后,通过细胞转染实验证实pRL-V gP78M内参在家蚕细胞系中稳定表达,并且pRL-V gP78M内参的表达活性不受蜕皮激素、保幼激素及激素相关转录因子的影响。最终,获得了在家蚕细胞中稳定表达且表达量适中的内参质粒pRL-V gP78M。该内参可以有效地作为双荧光素酶报告基因系统的内参质粒用于家蚕细胞系中激素的研究。同时,该内参质粒的构建方法也为构建适于其他物种细胞系的双荧光素酶报告基因系统的内参质粒提供了参考。  相似文献   

6.
7.
The control of cell proliferation, in physiological terms, depends not so much on our understanding of the sequence of biochemical events unfolding as a cell progresses through its proliferation cycle, as upon the recognition by a tissue of the demands for functional cells of a particular type. After considering the modes of control possible, i.e. by recruitment of resting G0-state cells into cycle or by modifying the proliferative behaviour of already proliferating cells, haemopoietic tissue is used as a model to illustrate how the principles of proliferation control in specific cell lineages can be effected. Although the mode of stem cell control is different from that in the maturing populations, all depend on a co-ordination of negative feedback loops for inhibitor and stimulator which are specific to that cell population. The concept of a 'quantal' cell cycle is considered but its application to control in an adult steady-state tissue must be modified to take account of microenvironmental influences which are shown, by their cellular organization, to be an important feature in haemopoietic and probably all other tissues.  相似文献   

8.
Accurate neural crest cell (NCC) migration requires tight control of cell adhesions, cytoskeletal dynamics and cell motility. Cadherins and RhoGTPases are critical molecular players that regulate adhesions and motility during initial delamination of NCCs from the neuroepithelium. Recent studies have revealed multiple functions for these molecules and suggest that a precise balance of their activity is crucial. RhoGTPase appears to regulate both cell adhesions and protrusive forces during NCC delamination. Increasing evidence shows that cadherins are multi-functional proteins with novel, adhesion-independent signaling functions that control NCC motility during both delamination and migration. These functions are often regulated by specific proteolytic cleavage of cadherins. After NCC delamination, planar cell polarity signaling acts via RhoGTPases to control NCC protrusions and migration direction.  相似文献   

9.
The role of reactive oxygen species in cell growth: lessons from root hairs   总被引:3,自引:0,他引:3  
Reactive oxygen species (ROS) play a diversity of roles in plants. In recent years, a role for NADPH oxidase-derived ROS during cell growth and development has been discovered in a number of plant model systems. These studies indicate that ROS are required for cell expansion during the morphogenesis of organs such as roots and leaves. Furthermore, there is evidence that ROS are required for root hair growth where they control the activity of calcium channels required for polar growth. The role of ROS in the control of root hair growth is reviewed here and results are highlighted that may provide insight into the mechanism of plant cell growth in general.  相似文献   

10.
11.
A key difference between yeast and metazoans is the need of the latter to regulate cell proliferation and growth to create organs (and organisms) of reproducible size and shape. Great progress has been made in understanding how growth, cell size and the cell cycle are controlled in metazoans. Recent work has shown that disruption of conserved components of the insulin and Tor kinase pathways can alter organ size, indicating that the normal functioning of these pathways is essential for organ size control. However, disruption of genes that regulate patterning and of genes that control cell adhesion and cell polarity has a much more dramatic effect on final organ size than does manipulation of the cell cycle or of basal growth control mechanisms. These data point to an 'organ-size checkpoint' that regulates cell division, cell growth and apoptosis. Recent data suggests that cell competition may play an important role in implementing the organ-size checkpoint.  相似文献   

12.
13.
Although fed-batch suspension culture of animal cells continues to be of industrial importance for the large scale production of pharmaceutical products, existing control concepts are still insufficient. Changes in cell metabolism during cultivation and between similar cultivations, the complexity of the cell metabolism, and the lack of on-line state variables restrict the transfer of available control strategies established in bioprocess engineering. A process control strategy designed to achieve optimized process control must account for all these difficulties and fit sophisticated requirements toward adaptability and flexibility. The combination of a fed-batch process and an Open-Loop-Feedback-Optimal (OLFO) control provides a new approach for cell culture process control that couples an efficient cultivation concept to a capable process control strategy. The application of an adaptive, model-based OLFO controller to a hybridoma cultivation and experimental results are presented.  相似文献   

14.
Experimental investigations of cell size control in fission yeast Schizosaccharomyces pombe have illustrated that the cell cycle features ‘sizer’ and ‘timer’ phases which are distinguished by a growth rate changing point. Based on current biological knowledge of fission yeast size control, we propose here a model of ordinary differential equations (ODEs) for a possible explanation of the facts and control mechanism which is coupled with the cell cycle. Simulation results of the ODE model are demonstrated to agree with experimental data for the wild type and the cdc2-33 mutant. We show that the coupling of cell growth to cell division by translational control may account for observed properties of size control in fission yeast. As the translational control in the expression of cycle proteins Cdc13 and Cdc25 constructs positive feedback loops, the dynamical activities of the key components undergoes a rapid rising after a preliminary stage of slow increase. The coupling of this dynamical behavior to the elongation of the cell naturally gives rise to a rate change point and to ‘sizer’ and ‘timer’ phases, which characterize the cell cycle of fission yeast.  相似文献   

15.
Summary An examination of some of the different methods available for pH control in mammalian cell cultures and the effect of pH on cell productivity has been carried out. We show that pH has a significant effect on the production of monoclonal antibodies by hybridoma cells and hence the importance of pH control. We discovered that the use of alkali to control pH led to increases in osmolarity which significantly reduced cell yields. Strategies designed to decrease the requirement for alkali addition have been tested and are discussed.  相似文献   

16.
Cell therapy is a promising method for treatment of hematopoietic disorders, neurodegenerative diseases, diabetes, and tissue loss due to trauma. Some of the major barriers to cell therapy have been partially addressed, including identification of cell populations, in vitro cell proliferation, and strategies for immunosuppression. An unsolved problem is recapitulation of the unique combinations of matrix, growth factor, and cell adhesion cues that distinguish each stem cell microenvironment, and that are critically important for control of progenitor cell differentiation and histogenesis. Here we describe an approach in which cells, synthetic matrix elements, and controlled-release technology are assembled and programmed, before transplantation, to mimic the chemical and physical microenvironment of developing tissue. We demonstrate this approach in animals using a transplantation system that allows control of fetal brain cell survival and differentiation by pre-assembly of neo-tissues containing cells and nerve growth factor (NGF)-releasing synthetic particles.  相似文献   

17.
Specific major histocompatibility complex (MHC) class I alleles are associated with an increased frequency of spontaneous control of human and simian immunodeficiency viruses (HIV and SIV). The mechanism of control is thought to involve MHC class I-restricted CD8(+) T cells, but it is not clear whether particular CD8(+) T cell responses or a broad repertoire of epitope-specific CD8(+) T cell populations (termed T cell breadth) are principally responsible for mediating immunologic control. To test the hypothesis that heterozygous macaques control SIV replication as a function of superior T cell breadth, we infected MHC-homozygous and MHC-heterozygous cynomolgus macaques with the pathogenic virus SIVmac239. As measured by a gamma interferon enzyme-linked immunosorbent spot assay (IFN-γ ELISPOT) using blood, T cell breadth did not differ significantly between homozygotes and heterozygotes. Surprisingly, macaques that controlled SIV replication, regardless of their MHC zygosity, shared durable T cell responses against similar regions of Nef. While the limited genetic variability in these animals prevents us from making generalizations about the importance of Nef-specific T cell responses in controlling HIV, these results suggest that the T cell-mediated control of virus replication that we observed is more likely the consequence of targeting specificity rather than T cell breadth.  相似文献   

18.
Maintenance of cell morphology is essential for normal cell function. For eukaryotic cells, a growing body of recent evidence highlights a close interdependence between mitochondrial function, the cytoskeleton, and cell cycle control mechanisms; however, the molecular details of this interconnection are still not completely understood. We have identified a novel protein, Bot1p, in the fission yeast Schizosaccharomyces pombe. The bot1 gene is essential for cell viability. bot1Delta mutant cells expressing lower levels of Bot1p display altered cell size and cell morphology and a disrupted actin cytoskeleton. Bot1p localizes to the mitochondria in live cells and cofractionates with purified mitochondrial ribosomes. Reduced levels of Bot1p lead to mitochondrial fragmentation, decreased mitochondrial protein translation, and a corresponding decrease in cell respiration. Overexpression of Bot1p results in cell cycle delay, with increased cell size and cell length and enhanced cell respiration rate. Our results show that Bot1p has a novel function in the control of cell respiration by acting on the mitochondrial protein synthesis machinery. Our observations also indicate that in fission yeast, alterations of mitochondrial function are linked to changes in cell cycle and cell morphology control mechanisms.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号