首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The marine dinoflagellate genus Alexandrium includes a number of species which produce neurotoxins responsible for paralytic shellfish poisoning (PSP), which in humans may cause muscular paralysis, neurological symptoms, and, in extreme cases, death. A. minutum is the most widespread toxic PSP species in the western Mediterranean basin. The monitoring of coastal waters for the presence of harmful algae also normally involves microscopic examinations of phytoplankton populations. These procedures are time consuming and require a great deal of taxonomic experience, thus limiting the number of specimens that can be analyzed. Because of the genetic diversity of different genera and species, molecular tools may also help to detect the presence of target microorganisms in marine field samples. In this study, we developed a real-time PCR-based assay for rapid detection of all toxic species of the Alexandrium genus in both fixative-preserved environmental samples and cultures. Moreover, we developed a real-time quantitative PCR assay for the quantification of A. minutum cells in seawater samples. Alexandrium genus-specific primers were designed on the 5.8S rDNA region. Primer specificity was confirmed by using BLAST and by amplification of a representative sample of the DNA of other dinoflagellates and diatoms. Using a standard curve constructed with a plasmid containing the ITS1-5.8S-ITS2 A. minutum sequence and cultured A. minutum cells, we determined the absolute number of 5.8S rDNA copies per cell. Consequently, after quantification of 5.8S rDNA copies in samples containing A. minutum cells, we were also able to estimate the number of cells. Several fixed A. minutum bloom sea samples from Arenys Harbor (Catalan Coast, Spain) were analyzed using this method, and quantification results were compared with standard microscopy counting methods. The two methods gave comparable results, confirming that real-time PCR could be a valid, fast alternative procedure for the detection and quantification of target phytoplankton species during coastal water monitoring.  相似文献   

2.
PCR primers targeting the internal transcribed spacer (ITS)-5.8S rDNA regions specific for the genus Alexandrium were used to develop an ELISA assay method to detect and enumerate this genus in cultured isolates. The solid-phase ELISA involves the application of a biotinylated labeled primer to target the specific ITS-5.8S rDNA region; the PCR-amplified products, generated in the presence of digoxigenin-11-deoxiuracil triphosphate nucleotide, are captured on the streptavidin-coated microplate. The captured molecules were hybridized to an anti-digoxigenin antibody conjugated with alkaline phosphatase. The presence and number of the Alexandrium cells in the samples resulted in a proportional appearance of color generated by the phosphatase activity in the presence of a chromogenic substrate and measured in a plate reader. This PCR and immunoassay solid-phase assay proved to be a useful technique to detect the presence of Alexandrium sp. in cultured isolates and seawater samples.  相似文献   

3.
The 5.8S ribosomal RNA (rDNA) gene and flanking internal transcribed spacers (ITS1 and ITS2)from 9 isolates of Alexandrium catenella (Whedon and Kofoid) Taylor, 11 isolates of A. tamarense (Lebour) Taylor, and single isolates of A. affine (Inoue et Fukuyo) Balech, A. insuetum Balech, and A. pseudogonyaulax (Biecheler) Horiguchi ex Yuki et Fukuyo comb. nov. from various locations in Japan were amplified using the polymerase chain reaction (PCR) and subjected to restriction fragment-length polymorphism (RFLP) analysis. PCR products from all strains were approximately 610 bp, inclusive of a limited region of the 18S and 28S rRNA coding regions. RFLP analysis using four restriction enzymes revealed six distinct classes of rDNA (“ITS types”). Restriction patterns of A. catenella were uniform at the intra-specific level and clearly distinguishable from those of A. tamarense. The patterns associated with A. tamarense (“tamarense group”) were also uniform except for one strain, WKS-1. Some restriction fragments from WKS-1 were in common with those of A. catenella or A. tamarense, whereas some were distinct from all Alexandrium species tested. Alexandrium affine, A. insuetum, and A. pseudogonyaulax carry unique ITS types. The ITSs of the “tamarense group” exhibit sequence heterogeneity. In contrast, the ITSs of all other isolates (including WKS-1) appear homogeneous. RFLP analysis of the 5.8S rDNA and flanking ITSs regions from Alexandrium species reveals useful taxonomic and genetic markers at the species and/or population levels.  相似文献   

4.
Harmful Algal Blooms (HABs), mainly caused by dinoflagellates and diatoms, have great economic and sanitary implications. An important contribution for the comprehension of HAB phenomena and for the identification of risks related to toxic algal species is given by the monitoring programs. In the microscopy-based monitoring methods, harmful species are distinguished through their morphological characteristics. This can be time consuming and requires great taxonomic expertise due to the existence of morphologically close-related species. The high throughput, automation possibility and specificity of microarray-based detection assay, makes this technology very promising for qualitative detection of HAB species. In this study, an oligonucleotide microarray targeted to the ITS1-5.8S-ITS2 rDNA region of nine toxic dinoflagellate species/clades was designed and evaluated. Two probes (45-47 nucleotides in length) were designed for each species/clade to reduce the potential for false positives. The specificity and sensitivity of the probes were evaluated with ITS1-5.8S-ITS2 PCR amplicons obtained from 20 dinoflagellates cultured strains. Cross hybridization experiments confirmed the probe specificity; moreover, the assay showed a good sensitivity, allowing the detection of up to 2 ng of labeled PCR product. The applicability of the assay with field samples was demonstrated using net concentrated seawater samples, un-spiked or spiked with known amounts of cultured cells. Despite the general application of microarray technology for harmful algae detection is not new, a peculiar group of target species/clades has been included in this new-format assay. Moreover, novelties regarding mainly the probes and the target rDNA region have allowed sensitivity improvements in comparison to previously published studies.  相似文献   

5.
A PCR system in the fluorescent amplification-based specific hybridization (FLASH) format was developed for the detection and identification of two important wheat pathogenic fungi Septoria tritici (teleomorph of Mycosphaerella graminicola and Stagonospora nodorum (teleomorph of Phaeosphaeria nodorum), which cause spots on leaves and glumes, respectively. The pathogen detection system is based on the amplification of a genome fragment in the internal transcribed spacer 1 (ITS 1) region and a site encoding the 5.8S ribosomal RNA. The forward primers to ITS1 and a universal reverse primer and a Beacon type probe to the 5.8S ribosomal RNA region were chosen to provide the detection of the products in the FLASH format. This system was tested on different isolates of the pathogens, and on infected soil, leaf, and seed samples.  相似文献   

6.
Alexandrium ostenfeldii (Paulsen) Balech and Tangen and A. peruvianum (Balech and B.R. Mendiola) Balech and Tangen are morphologically closely related dinoflagellates known to produce potent neurotoxins. Together with Gonyaulax dimorpha Biecheler, they constitute the A. ostenfeldii species complex. Due to the subtle differences in the morphological characters used to differentiate these species, unambiguous species identification has proven problematic. To better understand the species boundaries within the A. ostenfeldii complex we compared rDNA data, morphometric characters and toxin profiles of multiple cultured isolates from different geographic regions. Phylogenetic analysis of rDNA sequences from cultures characterized as A. ostenfeldii or A. peruvianum formed a monophyletic clade consisting of six distinct groups. Each group examined contained strains morphologically identified as either A. ostenfeldii or A. peruvianum. Though key morphological characters were generally found to be highly variable and not consistently distributed, selected plate features and toxin profiles differed significantly among phylogenetic clusters. Additional sequence analyses revealed a lack of compensatory base changes in ITS2 rRNA structure, low to intermediate ITS/5.8S uncorrected genetic distances, and evidence of reticulation. Together these data (criteria currently used for species delineation in dinoflagellates) imply that the A. ostenfeldii complex should be regarded a single genetically structured species until more material and alternative criteria for species delimitation are available. Consequently, we propose that A. peruvianum is a heterotypic synonym of A. ostenfeldii and this taxon name should be discontinued.  相似文献   

7.
AIMS: To develop a rapid, cost-effective and selective Alexandrium DNA extraction procedure from environmental samples in order to provide good-quality template for the downstream PCR-based detection assay. METHODS AND RESULTS: In this study, we tested a DNA extraction method based on silica-coated, superparamagnetic nanoparticles conjugated to a DNA-capture sequence (probe) complementary to a specific region of 5.8S rDNA of the genus Alexandrium. Cultured Alexandrium catenella cells were used as the harmful algal bloom species for the DNA extraction. Then, a PCR assay was performed with primers specific for the genus Alexandrium to assess the specificity and sensitivity of the nucleic acid extraction method. This method was applied to both cultured and field samples, reaching in both cases a detection limit of one A. catenella cell. CONCLUSIONS: The results suggest that the use of probe-conjugated paramagnetic nanoparticles could be effective for the specific purification of microalgal DNA in cultured or environmental samples, ensuring sensitivity and specificity of the subsequent PCR assays. SIGNIFICANCE AND IMPACT OF THE STUDY: The DNA extraction method optimized in this study represents a progress towards the rapid and efficient direct detection of Alexandrium cells in seawater monitoring. In fact, this method requires no other equipment than a magnet and a hybridization oven and, in principle, can be adapted to different toxic microalgal species and can be automated, allowing the processing of a high number of samples.  相似文献   

8.
The 5.8S ribosomal RNA gene (rDNA) and flanking internal transcribed spacers 1 and 2 (ITS1 and ITS2) from 7 isolates of Alexandrium catenella (Wedon et Kofoid) Taylor, 13 isolates of A. tamarense (Lebour) Balech, 2 isolates of A. affine (Fukuyo et Inoue) Balech, and single isolates of A. fundyense Balech, A. insuetum Balech, and A. pseudogonyaulax (Biecheler) Horiguchi ex Yuki et Fukuyo comb. nov. from Japan, Thailand, and the United States were amplified using the polymerase chain reaction (PCR), sequenced, and subjected to phylogenetic analysis. The sequences ranged from 518 to 535 base pairs (bp) exclusive of the 18S and 28S rDNA coding regions. Sequence comparisons revealed seven divergent “ITS types” designated as follows: 1) catenella type, 2) tamarense type, 3) WKS-1 type, 4) Thai type, 5) affine type, 6) insuetum type, and 7) pseudogonyaulax type. Isolates of the tamarense type from various locations in Japan and the United States and of A. fundyense from the United States were closely related to each other and were clearly divergent from isolates of A. tamarense WKS-1 (WKS-I type) or A. tamarense CU-15 (Thai type). These latter two strains carried unique ITS types, although they were not distinguishable from isolates of the tamarense type by morphological criteria. Distance values between isolates of the tamarense type and the WKS-1 or Thai type were quite high (about 0.21 and 0.39, respectively). Seven isolates of A. catenella from Japan (catenella type) clearly diverged from the other ITS types already mentioned. Distance values between isolates of the catenella type were extremely low (<0.01), whereas distance values of ITS between the catenella type and the tamarense, WKS-1, or Thai type were 0.17, 0.18, and 0.40, respectively. Isolates of A. affine, A. insuetum, and A. pseudogonyaulax all carried unique ITS types. The ITSs of the tamarense type exhibited two distinct ITS sets, the “A gene” and the “B gene.” The two sequences occurred in a 1:1 ratio in PCR products. In contrast, the ITSs of all other isolates appeared homogeneous. Sequence comparisons also showed that the variations in the 3′ end of ITS1 (150-177 bp) were low within each ITS type but extremely high between ITS types. The number of different nucleotides among the seven Alexandrium types in this 28-bp region is more than 10. High diversity of this region may facilitate the design of DNA probes specific for each ITS type/species of Alexandrium.  相似文献   

9.
The marine dinoflagellate genus Alexandrium includes a number of species which produce neurotoxins responsible for paralytic shellfish poisoning (PSP), which in humans may cause muscular paralysis, neurological symptoms, and, in extreme cases, death. A. minutum is the most widespread toxic PSP species in the western Mediterranean basin. The monitoring of coastal waters for the presence of harmful algae also normally involves microscopic examinations of phytoplankton populations. These procedures are time consuming and require a great deal of taxonomic experience, thus limiting the number of specimens that can be analyzed. Because of the genetic diversity of different genera and species, molecular tools may also help to detect the presence of target microorganisms in marine field samples. In this study, we developed a real-time PCR-based assay for rapid detection of all toxic species of the Alexandrium genus in both fixative-preserved environmental samples and cultures. Moreover, we developed a real-time quantitative PCR assay for the quantification of A. minutum cells in seawater samples. Alexandrium genus-specific primers were designed on the 5.8S rDNA region. Primer specificity was confirmed by using BLAST and by amplification of a representative sample of the DNA of other dinoflagellates and diatoms. Using a standard curve constructed with a plasmid containing the ITS1-5.8S-ITS2 A. minutum sequence and cultured A. minutum cells, we determined the absolute number of 5.8S rDNA copies per cell. Consequently, after quantification of 5.8S rDNA copies in samples containing A. minutum cells, we were also able to estimate the number of cells. Several fixed A. minutum bloom sea samples from Arenys Harbor (Catalan Coast, Spain) were analyzed using this method, and quantification results were compared with standard microscopy counting methods. The two methods gave comparable results, confirming that real-time PCR could be a valid, fast alternative procedure for the detection and quantification of target phytoplankton species during coastal water monitoring.  相似文献   

10.
A PCR system in the fluorescent amplification-based specific hybridization (FLASH) format was developed for the detection and identification of two important wheat pathogenic fungi Septoria tritici (teleomorph of Mycosphaerella graminicola) and Stagonospora nodorum (teleomorph of Phaeosphaeria nodorum), which cause spots on leaves and glumes, respectively. The pathogen detection system is based on the amplification of a genome fragment in the internal transcribed spacer 1 (ITS1) region and a site encoding the 5.8S ribosomal RNA. The forward primers to ITS1 and a universal reverse primer and a beacon type probe to the 5.8S ribosomal RNA region were chosen to provide the detection of the products in the FLASH format. This system was tested on different isolates of the pathogens, and on infected soil, leaf, and seed samples.  相似文献   

11.
We previously reported the occurrence of genetically‐diverse symbiotic dinoflagellates (zooxanthellae) within and between 7 giant clam species (Tridacnidae) from the Philippines based on the algal isolates' allozyme and random amplified polymorphic DNA (RAPD) patterns. We also reported that these isolates all belong to clade A of the Symbiodinium phylogeny with identical 18S rDNA sequences. Here we extend the genetic characterization of Symbiodinium isolates from giant clams and propose that they are conspecific. We used the combined DNA sequences of the internal transcribed spacer (ITS)1, 5.8S rDNA, and ITS2 regions (rDNA‐ITS region) because the ITS1 and ITS2 regions evolve faster than 18S rDNA and have been shown to be useful in distinguishing strains of other dinoflagellates. DGGE of the most variable segment of the rDNA‐ITS region, ITS1, from clonal representatives of clades A, B, and C showed minimal intragenomic variation. The rDNA‐ITS region shows similar phylogenetic relationships between Symbiodinium isolates from symbiotic bivalves and some cnidarians as does 18S rDNA, and that there are not many different clade A species or strains among cultured zooxanthellae (CZ) from giant clams. The CZ from giant clams had virtually identical sequences, with only a single nucleotide difference in the ITS2 region separating two groups of isolates. These data suggest that there is one CZ species and perhaps two CZ strains, each CZ strain containing individuals that have diverse allozyme and RAPD genotypes. The CZ isolated from giant clams from different areas in the Philippines (21 isolates, 7 clam species), the Australian Great Barrier Reef (1 isolate, 1 clam species), Palau (8 isolates, 7 clam species), and Okinawa, Japan (1 isolate, 1 clam species) shared the same rDNA‐ITS sequences. Furthermore, analysis of fresh isolates from giant clams collected from these geographical areas shows that these bivalves also host indistinguishable clade C symbionts. These data demonstrate that conspecific Symbiodinium genotypes, particularly clade A symbionts, are distributed in giant clams throughout the Indo‐Pacific.  相似文献   

12.
A set of primers was developed for the detection, identification and quantification of common Trichoderma species in soil samples. Based on a broad range master alignment primers were derived to amplify an approximate 540 bp fragment comprising the internal transcribed spacer region 1 (ITS 1), 5.8S rDNA and internal transcribed spacer region 2 (ITS 2) from all taxonomic Clades of the genus Trichoderma. The primer set was applied to test strains as well as community DNA isolated from arable and forest soil. For all tested isolates the corresponding internal transcribed spacer regions of Trichoderma spp. strains were amplified, but none of non-Trichoderma origin. PCR with community DNA from soil yielded products of the expected size. Analysis of a clone library established for an arable site showed that all amplified sequences originated exclusively from Trichoderma species mainly being representatives of the Clades Hamatum, Harzianum and Pachybasioides and comprising most of the species known for biocontrol ability. In a realtime PCR approach the primer set uTf/uTr also proved to be a suitable system to quantify DNA of Trichoderma spp. in soils.  相似文献   

13.
Green SJ  Freeman S  Hadar Y  Minz D 《Mycologia》2004,96(3):439-451
The Pyrenomycetes, defined physiologically by the formation of a flask-shaped fruiting body present in the sexual form, are a monophyletic group of fungi that consist of a wide diversity of populations including human and plant pathogens. Based on sequence analysis of 18S ribosomal DNA (rDNA), rDNA regions conserved among the Pyrenomycetes but divergent among other organisms were identified and used to develop selective PCR primers and a highly specific primer set. The primers presented here were used to amplify large portions of the 18S rDNA as well as the entire internal transcribed spacer (ITS) region (ITS 1, 5.8S rDNA, and ITS 2). In addition to database searches, the specificity of the primers was verified by PCR amplification of DNA extracted from pure culture isolates and by sequence analysis of fungal rDNA PCR-amplified from environmental samples. In addition, denaturing gradient gel electrophoresis (DGGE) analyses were performed on closely related Colletotrichum isolates serving as a model pathogenic genus of the Pyrenomycetes. Although both ITS and 18S rDNA DGGE analyses of Colletotrichum were consistent with a phylogeny established from sequence analysis of the ITS region, DGGE analysis of the ITS region was found to be more sensitive than DGGE analysis of the 18S rDNA. This study introduces molecular tools for the study of Pyrenomycete fungi by the development of two specific primers, demonstration of the enhanced sensitivity of ITS-DGGE for typing of closely related isolates and application of these tools to environmental samples.  相似文献   

14.
The marine dinoflagellate genus Alexandrium includes a number of species that produce potent neurotoxins responsible for paralytic shellfish poisoning, which in humans may cause muscular paralysis, neurological symptoms and, in extreme cases, death. Because of the genetic diversity of different genera and species, molecular tools may help to detect the presence of target microorganisms in marine field samples. Here we employed a loop-mediated isothermal amplification (LAMP) method for the rapid and simple detection of toxic Alexandrium species. A set of four primers were designed based upon the conserved region of the 5.8S rRNA gene of members of the genus Alexandrium . Using this detection system, toxic Alexandrium genes were amplified and visualized as a ladder-like pattern of bands on agarose gels under isothermal condition within 60 min. The LAMP amplicons were also directly visualized by eye in the reaction tube by the addition of SYBR Green I. This LAMP assay was 10-fold more sensitive than a conventional PCR method with a detection limit of 5 cells per tube when targeting DNA from Alexandrium minutum . The LAMP assay reported here indicates the potential usefulness of the technique as a valuable simple, rapid alternative procedure for the detection of target toxic Alexandrium species during coastal water monitoring.  相似文献   

15.
Restriction fragment length polymorphism analysis of the 5.8S rRNA gene and the internal transcribed spacers (ITS1 and ITS2) was used for examination of 66 isolates belonging to 19 species. Intraspecies variability was found in the examined region of 11 species (Candida albicans, C. catenulata, C. colliculosa, C. glabrata, C. kefyr, C. melinii, C. parapsilosis, C. guillermondii, C. solanii, C. tropicalis, Saccharomyces cerevisiae). Region of ITS-5.8S rDNA was amplified using the primers ITS1 and ITS4. The amplicons were digested by HaeIII, HinfI and CfoI. The recognized intraspecies variability was confirmed in the second step, in which the shorter fragments of this region were amplified using primers ITS1 and ITS2 and analyzed by capillary electrophoresis. Considerable intraspecific variability renders this method unsuitable for species identification, whereas it can be useful for epidemiological tracing of isolates.  相似文献   

16.
Marín I  Aguilera A  Reguera B  Abad JP 《BioTechniques》2001,30(1):88-90, 92-3
A method is described to prepare total DNA from single cells of dinoflagellates, which can be used for PCR amplification. As model organisms, we used a stock strain of Alexandrium catenella and cells of Dinophysis acuminata harvested from the Atlantic Ocean. Fresh grown cells or cells maintained in different preservatives were tested as sources for DNA preparation. The method used to prepare DNA combines physicochemical and enzymatic procedures on cells embedded in agarose plugs or beads. The agarose pieces containing the DNA were used to perform PCR amplification of a fragment of DNA containing a 5.8S rRNA gene and the flanking internal transcribed spacers (ITS1 and ITS2).  相似文献   

17.
In Japan, the bloom seasons of two toxic species, namely, Alexandrium catenella (Whedon et Kof.) Balech and Alexandrium tamiyavanichii Balech, sometimes overlap with those of three nontoxic Alexandrium species, namely, Alexandrium affine (H. Inouye et Fukuyo) Balech, Alexandrium fraterculus (Balech) Balech, and Alexandrium pseudogoniaulax (Biecheler) T. Horig. ex Y. Kita et Fukuyo. In this study, a multiplex PCR assay has been developed that enables simultaneous detection of six Alexandrium species on the basis of differences in the lengths of the PCR products. The accuracy of the multiplex PCR system was assessed using 101 DNA templates of the six target Alexandrium species and 27 DNA templates of 11 nontarget species (128 DNA templates in total). All amplicons obtained from the 101 DNA templates of the target species were appropriately identified, whereas all 27 DNA templates of the nontarget species were not amplified. Species‐specific identification by the multiplex PCR assay was certainly possible from single cells of the target species.  相似文献   

18.
The occurrence of harmful algal blooms (HABs) throughout the world has increased and poses a large threat to human health, fishery resources and tourism industries. The genus Alexandrium includes a number of toxic species associated with HABs. Therefore, it is very important to rapidly detect and monitor the harmful algae, such as Alexandrium genus. In this study, a standard curve of plasmid containing 18S rDNA-28S rDNA region from Alexandrium catenella was constructed and 5.8S rDNA sequence served as the primer of the real-time PCR. Cultured A. catenella, Alexandrium affine, Alexandrium lusitanicum and Alexandrium minutum samples were analyzed by real-time PCR using the same set of primers simultaneously. Using microscopy cells counts, 5.8S rDNA copies per cell and total DNA per cell were estimated. This assay method is promising for rapid detection of large number of Alexandrium samples.  相似文献   

19.
Phytoplankton monitoring in Wickford Cove, Rhode Island, US (41°34′10.13″N, 71°26′45.76″W), located in Narragansett Bay, detected an unusual species of Alexandrium in the spring of 2009. Thecal plate analysis using brightfield and SEM microscopy revealed a plate morphology consistent with that of Alexandrium peruvianum (Balech and de Mendiola) Balech and Tangen. Molecular analyses indicated that the sequences of the SSU, ITS1, 5.8S, ITS2 and LSU through the D region of the 18S gene were similar to those of A. peruvianum from North Carolina. Toxin analyses of cells brought into culture revealed saxitoxins, gymnodimine and fast-acting spiroimines were present in the cultured clone. Saxitoxins detected included GTX 2, GTX3, B1, STX, C1 and C2. Also present in the Wickford cove isolates of A. peruvianum were 12-methyl gymnodimine and 13-desmethyl spirolide C. A. peruvianum was detected at four sites in lower Narragansett Bay: at two sites in Wickford and two sites in Jamestown, RI. A. peruvianum was observed in the spring of 2009, 2010, 2011 and 2012 at maximum abundance levels ranging from tens of cells per liter to 14,000 cells L−1. The discovery of A. peruvianum in Rhode Island coastal waters, with its potential threat to public health, is notable as it appears to be an emergent bloom species globally. The presence of A. peruvianum in Narragansett Bay is the third confirmed observation of this species on the Atlantic coast of North America. Monitoring efforts in the southern New England region should incorporate measures to detect the presence of A. peruvianum toxins.  相似文献   

20.
DNA条形码技术是利用标准DNA片段进行准确快速鉴定物种的一种方法,理想的DNA条形码片段应具有高通用性。虽然核糖体DNA内部转录间隔区II(ITS2)被建议作为种子植物有效的DNA条形码,但目前裸子植物还没有通用性高的引物可用。为获得高通用性的ITS2引物,本研究基于裸子植物55个属的5.8S基因的保守序列区设计了3个正向引物,与已有的ITS反向引物组合,组成了7对ITS2引物进行通用性的评价。选取了裸子植物8目、12科和40属的56个种用于本文的研究。引物组合5.8SR/ITS4、5.8SRa/ITS4和5.8SF2/S3R因为在科水平评价中通用性低或者产生的PCR产物有双带,因而排除在全部物种水平上进一步评价。其余4对引物(GYM-5.8SF1/ITS4、GYM-5.8SFl/S3R、GYM-5.8SF2/ITS4和S2F/S3R)在56个物种的PCR检测中,均有100%的扩增率。基于PCR产物的亮度、序列质量和正反向引物覆盖率的综合评价,建议引物GYM_5.8SF2/ITS4作为裸子植物条形码片段ITS2最好的通用引物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号