首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In response to an external source of adenine, yeast cells repress the expression of purine biosynthesis pathway genes. To identify necessary components of this signalling mechanism, we have isolated mutants that are constitutively active for expression. These mutants were named bra (for bypass of repression by adenine). BRA7 is allelic to FCY2, the gene encoding the purine cytosine permease and BRA9 is ADE12, the gene encoding adenylosuccinate synthetase. BRA6 and BRA1 are new genes encoding, respectively, hypoxanthine guanine phosphoribosyl transferase and adenylosuccinate lyase. These results indicate that uptake and salvage of adenine are important steps in regulating expression of purine biosynthetic genes. We have also shown that two other salvage enzymes, adenine phosphoribosyl transferase and adenine deaminase, are involved in activating the pathway. Finally, using mutant strains affected in AMP kinase or ribonucleotide reductase activities, we have shown that AMP needs to be phosphorylated to ADP to exert its regulatory role while reduction of ADP into dADP by ribonucleotide reductase is not required for adenine repression. Together these data suggest that ADP or a derivative of ADP is the effector molecule in the signal transduction pathway.  相似文献   

4.
Spontaneous and mutagen-induced 2,6-diaminopurine-resistant mutants of Chinese hamster ovary (CHO-K1) cells were isolated. Such mutants fell into two classes: spontaneous and ethylmethane-sulfonate-induced mutants had approximately 5% wild-type adenine phosphoribosyl transferase (APRT) activity, whereas ICR-170G-induced mutants had barely detectable APRT activity. Since it has been reported that human hypoxanthine-guanine phosphoribosyl transferase (HGPRT) (Lesch-Nyhan syndrome) and APRT mutants over-produce purines, we examined the control and rate of purine biosynthesis in the Chinese hamster mutants. End product inhibition by adenine could not be demonstrated in such mutants, indicating that the active feedback inhibitor is a nucleotide rather than the free purine base, HGPRT activity was normal in all mutants examined except in one isolate. Purine biosynthesis as measured by the accumulation of the purine biosynthetic intermediate phosphoribosyl formylglycineamide was not elevated in the mutants as might have been predicted from work with Lesch-Nyhan cells. The data also suggest that our strain of CHO-K1 is physically or functionally haploid for the APRT locus.  相似文献   

5.
In eucaryotes, 10-formyltetrahydrofolate (formyl-THF) synthetase, 5,10-methenyl-THF cyclohydrolase, and NADP(+)-dependent 5,10-methylene-THF dehydrogenase activities are present on a single polypeptide termed C1-THF synthase. This trifunctional enzyme, encoded by the ADE3 gene in the yeast Saccharomyces cerevisiae, is thought to be responsible for the synthesis of the one-carbon donor 10-formyl-THF for de novo purine synthesis. Deletion of the ADE3 gene causes adenine auxotrophy, presumably as a result of the lack of cytoplasmic 10-formyl-THF. In this report, defined point mutations that affected one or more of the catalytic activities of yeast C1-THF synthase were generated in vitro and transferred to the chromosomal ADE3 locus by gene replacement. In contrast to ADE3 deletions, point mutations that inactivated all three activities of C1-THF synthase did not result in an adenine requirement. Heterologous expression of the Clostridium acidiurici gene encoding a monofunctional 10-formyl-THF synthetase in an ade3 deletion strain did not restore growth in the absence of adenine, even though the monofunctional synthetase was catalytically competent in vivo. These results indicate that adequate cytoplasmic 10-formyl-THF can be produced by an enzyme(s) other than C1-THF synthase, but efficient utilization of that 10-formyl-THF for purine synthesis requires a nonenzymatic function of C1-THF synthase. A monofunctional 5,10-methylene-THF dehydrogenase, dependent on NAD+ for catalysis, has been identified and purified from yeast cells (C. K. Barlowe and D. R. Appling, Biochemistry 29:7089-7094, 1990). We propose that the characteristics of strains expressing full-length but catalytically inactive C1-THF synthase could result from the formation of a purine-synthesizing multienzyme complex involving the structurally unchanged C1-THF synthase and that production of the necessary one-carbon units in these strains is accomplished by an NAD+ -dependent 5,10-methylene-THF dehydrogenase.  相似文献   

6.
Adenine phosphoribosyltransferase mutants in Saccharomyces cerevisiae   总被引:4,自引:0,他引:4  
Mutants of Saccharomyces cerevisiae deficient in adenine phosphoribosyltransferase (A-PRT, EC 2,4,2,7) have been isolated following selection for resistance to 8-azaadenine in a prototrophic strain carrying the ade4-su allele of the gene coding for amidophosphoribosyltransferase (EC 2,4,2,14). The mutants were recessive and defined a single gene, apt1. They did not excrete purine when combined with ade4+. The mutants appeared to retain some A-PRT activity in crude extracts, and strains of the genotype ade2 apt1 responded to both adenine and hypoxanthine. Mutants deficient in adenine aminohydrolase (EC 3,5,4,2) activity, aah1, and hypoxanthine:guanine phosphoribosyltransferase (EC 2,4,2,8) activity, hpt1, were used to synthesize the genotypes apt1 hpt1 aah+ and apt1 hpt+ aah1. The absence of A-PRT activity in strains with these genotypes confirmed the hypothesis that the residual A-PRT activity of apt1 mutants was due to adenine aminohydrolase and hypoxanthine:guanine phosphoribosyltransferase acting in concert.  相似文献   

7.
8.
R Schricker  V Magdolen  A Kaniak  K Wolf  W Bandlow 《Gene》1992,122(1):111-118
The gene URA6 encoding uridylate kinase (UK) from Saccharomyces cerevisiae was isolated as a multicopy suppressor of the respiratory-deficient phenotype of an S. cerevisiae mutant defective in the gene AKY2 encoding AMP kinase (AK). The URA6 gene also restored temperature resistance to two different temperature-sensitive mutations in the gene encoding Escherichia coli AK. By contrast, the gene encoding UK of Dictyostelium discoideum on a multicopy yeast shuttle plasmid, expressed under control of the constitutive yeast AKY2 promoter, failed to complement the deficiency in yeast, although such transformants expressed high UK activity. We show that yeast UK exerts significant AK activity which is responsible for the complementation and is absent in the analogous enzyme from D. discoideum. Since UK also significantly phosphorylates CMP (but not GMP), it must be considered an unspecific short-form nucleoside monophosphate kinase. Wild-type mitochondria lack UK activity, but import AKY2. Since multicopy transformation with URA6 heals the Pet- phenotype of AKY2 disruption mutants, the presence of AKY2 in the mitochondrial intermembrane space is not required to maintain respiratory competence. However, furnishing UK with the bipartite intermembrane space-targeting presequence of cytochrome c1 improves the growth rates of AKY2 mutants with nonfermentable substrates, suggesting that AK activity in mitochondria is helpful, though not essential for oxidative growth.  相似文献   

9.
J L Becker 《Biochimie》1978,60(6-7):619-625
In cultured cells established from Drosophila melanogaster embryos, and grown in usual medium, no hypoxanthine-guanine-phosphoribosyl transferase (HG-PRT) could be measured, and only traces of 5'-nucleotidase activity were detectable. On the contrary, it was observed that if the same medium is supplemented with purine bases, nucleosides, orotate, glutamine, azaserine or antifolates, de novo purine biosynthesis is inhibited, and HGPRT is detectable, along with an important 5'-nucleotidase activity. Moreover, dialysis or treatment of extracts from cells untreated by purines, with activated charcoal restored HGPRT and 5'-nucleotidase activities. These activities were abolished completely by inosinic acid (IMP) and guanosine 5'-monophosphoric acid (GMP). Similar results were obtained with fly extracts. These results suggest that de novo purine biosynthesis masks HGPRT activity, the endogenous synthesis leading to the accumulation of purine nucleotides which are inhibitors of the HGPRT activity.  相似文献   

10.
Summary Yeast mutants lacking activity of the enzyme hypoxanthine: guanine phosphoribosyltransferase (H:GPRT) have been isolated by selecting for resistance to 8-azaguanine in a strain carrying the wild type allele, ade4 + of the gene coding for amidophosphoribosyltransferase (PRPPAT), the first enzyme of de novo purine synthesis. The mutants excrete purines and are cross-resistant to 8-azaadenine. They are recessive and represent a single complementation group, designated hpt1. Ade4-su, a prototrophic allele of ade4 with reduced activity of PRPPAT, is epistatic to hpt1, suppressing purine excretion and resistance to azaadenine but not resistance to azaguanine. The genotype ade2 hpt1 does not respond to hypoxanthine. Hpt1 complements and is not closely linked to the purine excreting mutants pur1 to pur5. Hpt1 and pur6, a regulatory mutant of PRPPAT, are also unlinked but do not complement, suggesting a protein-protein interaction between H:G-PRT and PRPPAT. Mycophenolic acid (MPA), an inhibitor of de novo guanine nucleotide synthesis, inhibits the growth of hpt1 and hpt1 +. Xanthine allows both genotypes to grow in the presence of MPA whereas guanine only allows growth of hpt1 +. Activity of A-PRT, X-PRT and H:G-PRT is present in hpt +. Hpt1 lacks activity of H:G-PRT but has normal A-PRT and X-PRT.  相似文献   

11.
12.
The gene encoding hygromycin B phosphotransferase (hpt) is a widely used selectable marker in the production of genetically engineered crops. To facilitate the safety assessment of this protein, the non-fusion hpt expression plasmid was constructed and introduced into Escherichia coli to produce enough quantity of the HPT protein. High level expressed HPT was achieved but most of the expressed protein aggregated as inclusion bodies. The inclusion bodies were washed, separated from the cells, and solubilized by 0.3% Sarkosyl. The protein was renatured by dilution and dialysis, and then purified by anion-exchange chromatography. The activity is 8 U/mg protein and the purity is about 95%. Further studies showed that the microbially produced HPT protein had comparable molecular weight, immuno-reactivities, N-terminal amino acid sequences, and biological activities with those of the HPT produced by transgenic rice harboring hpt gene. All these results demonstrated the validity of utilizing the microbially produced HPT to assess the safety of the HPT protein produced in genetically engineered rice.  相似文献   

13.
We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.  相似文献   

14.
A new genetic technique for constructing mutants of Methanosarcina acetivorans C2A by using hpt as a counterselectable marker was developed. Mutants with lesions in the hpt gene, encoding hypoxanthine phosphoribosyltransferase, were shown to be >35-fold more resistant to the toxic base analog 8-aza-2,6-diaminopurine (8ADP) than was the wild type. Reintroduction of the hpt gene into a Delta hpt host restored 8ADP sensitivity and provided the basis for a two-step strategy involving plasmid integration and excision for recombination of mutant alleles onto the M. acetivorans chromosome. We have designated this method markerless exchange because, although selectable markers are used during the process, they are removed in the final mutants. Thus, the method can be repeated many times in the same cell line. The method was validated by construction of Delta proC Delta hpt mutants, which were recovered at a frequency of 22%. Additionally, a Methanosarcina-Escherichia shuttle vector, encoding the Escherichia coli proC gene as a new selectable marker, was constructed for use in proC hosts. Finally, the markerless exchange method was used to recombine a series of uidA reporter gene fusions into the M. acetivorans proC locus. In vitro assay of beta-glucuronidase activity in extracts of these recombinants demonstrated, for the first time, the utility of uidA as a reporter gene in Methanosarcina: A >5,000-fold range of promoter activities could be measured by using uidA: the methyl-coenzyme M reductase operon fusion displayed approximately 300-fold-higher activity than did the serC gene fusion, which in turn had 16-fold-higher activity than did a fusion to the unknown orf2 gene.  相似文献   

15.
The red adenine-dependent mutants ade1 of the yeast Pichia pinus blocked in the VI step of adenine biosynthesis (lack of AIR-carboxylase) and ade2 mutants blocked in the VII step of adenine biosynthesis (lack of SAIKAR-synthase) were transformed with the plasmid pYE(ADE2)2 containing ADE2 gene of Saccharomyces cerevisiae encoding AIR-carboxylase. The appearance of white Ade+ clones with the frequency 2-7.10(-8) (which is ten-fold higher than reversion frequency) was only observed in the case of ade2 transformation. Genetic analysis points to connection of the "illegitimate" transformants' appearance with the change in the mutant ade2 locus or in a locus closely linked to the former. Ade+ phenotype was stable during 20 generations of mitotic budding. Southern blotting assay of transformant chromosomal DNA indicates that reconstitution of ade2 defective gene is related with its "correction", owing to integration of pYE(ADE2)2 sequence in the vicinity of the mutant locus.  相似文献   

16.
17.
Mutants of yeast which are auxotrophic for guanine have been isolated from two prototrophic haploid strains, one of which carried the suppressor of purine excretion, su-pur, and the other carried the alternative allele, su-pur+. The mutants were allocated to three genes, gual, gua2, and gua3, between which no close linkage was demonstrable. Mutants of all three genes were recessive and showed normal Mendelian segregation in crosses. The gene gual was shown by an in vivo enzyme assay procedure to specify guanosine 5'-phosphate (GMP) synthetase, the second enzyme involved in the biosynthesis of GMP from inosine 5'-phosphate (IMP). Mutants of this gene excrete large amounts of purine derivatives, predominantly xanthosine, into guanine-free, but not into guanine-supplemented, medium. The gene gau2 is probably involved in the biosynthesis of riboflavin from guanine nucleotides; the phenotype of these mutants suggests a possible interaction between aromatic amino acid metabolism and riboflavin biosynthesis. No role for gua3 can be assigned on the evidence so far available, but it is not involved in the specification of IMP dehydrogenase, the first enzyme involved in the synthesis of GMP and IMP.  相似文献   

18.
Mutational changes in ADE2 result in the accumulation of red pigment in cells, which serves as an indicator for the selection of mutants. This easily detectable phenotype of red-coloured colonies can account for the wide use of ade2 mutants in yeast genetics. ADE2 gene was cloned in a shuttle vector by complementing the ade2 mutation in the yeast. It was shown that the 2.2 kbp HindIII fragment of yeast DNA contains structural sequences of the ADE2 gene as well as the ARS sequence. Deletion analysis of the 5' end of the ADE2 gene showed the ARS sequence to be situated at the distal end of the 1 kbp HindIII fragment. Removal of the ARS sequence does not influence ADE2 gene complementation ability. Transformants containing the ADE2 gene comprised in their plasmids form white colonies. Loss of the plasmids results in colour change of colonies.  相似文献   

19.
S. C. Falco  K. S. Dumas 《Genetics》1985,109(1):21-35
Sulfometuron methyl (SM), a potent new sulfonylurea herbicide, inhibits growth of the yeast Saccharomyces cerevisiae on minimal media. Sixty-six spontaneous mutants resistant to SM were isolated. All of the resistance mutations segregate 2:2 in tetrads; 51 of the mutations are dominant, five are semidominant and ten are recessive. The mutations occur in three linkage groups, designated SMR1, smr2 and smr3. Several lines of evidence demonstrate that the SMR1 mutations (47 dominant and four semidominant) are alleles of ILV2 which encodes acetolactate synthase (ALS), the target of SM. First, SMR1 mutations result in the production of ALS enzyme activity with increased resistance to SM. Second, molecular cloning of the ILV2 gene permitted the isolation of mutations in the cloned gene which result in the production of SM-resistant ALS. Finally, SMR1 mutations map at the ILV2 locus. The smr2 mutations (four recessive, two dominant and one semidominant) map at the pdr 1 (pleiotropic drug resistance) locus and show cross-resistance to other inhibitors, typical of mutations at this locus. The smr3 mutations (six recessive and two dominant) define a new gene which maps approximately midway between ADE2 and HIS3 on the right arm of chromosome XV.  相似文献   

20.
Mutant clones of human diploid fibroblasts deficient in the enzyme, hypoxanthine-guanine phosphoribosyl transferase (HGPRT) were selected by their ability to grow in medium containing the cytotoxic purine analogue, 6-thioguaninine (6TG). The optimal conditions for mutant selectiom were 6TG concentrations between 1 and 5 μg ml?1 and cell plating densities ~ 103 cells cm?2.Nine spontaneous and four radiation-induced 6TG-resistant mutants had <2% of the parental strain HGPRT activity and were unable to grow in medium containing azaserine. These mutants were phenotypically stable during > 25 population doublings in non-selective medium and five mutants that were examined showed no gross change from the normal human karyotype.Evidence is presented to show that 6TG is a better selective agent than 8-azaguanine (8AG) for HGPRT-deficient mutants of human diploid fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号