首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of [6-3H]pyridoxine - HCl was investigated in the liver of vitamin B-6-deficient rats. Rats were made vitamin B-6 deficient by feeding ad libitum for 42 days a diet lacking pyridoxine but otherwise optimal. Animals were each injected intraperitoneally with 33 muCi of [6-3H] pyridoxine - HCl and killed at different time intervals afterwards up to 7 days. Radioactively labeled hepatic B-6 compounds were extracted with acid and chromatographically separated on Dowex-X8 (H+) columns and the percent radioactivity for each vitamin compound was then calculated. Maximal uptake in control and deficient animals was observed 30 and 60 min, respectively, after administration of label. Radioactivity was not retained by the control animals but decreased steadily in a linear fashion after 30 min, reaching a low level after 3 h. On the other hand, vitamin deficient animals accumulated almost twice as much radioactivity in their liver as the controls and retained it through 7 days. In vitamin B-6 deficient animals 93% of the injected radioactivity was metabolized within 2 min at which time pyridoxine 5'-P and pyridoxal 5'-P reached 36 and 44% levels, respectively. Pyridoxine 5'-P dropped to minimal values (3%) within 15 min and remained unchanged for 7 days while pyridoxal 5'-P reached a peak (79%) level at 15 min and then began to drop linearly reaching a plateau (29%) at 5 days. Further, as the level of pyridoxal 5-P was falling, pyridoxamine 5'-P was linearly synthesized reaching a platuau low level (3%). The specific activity level of pyridoxal kinase decreased 3.2 times and that of pyridoxine 5'-phosphate oxidase increased 1.5 times in the state of deficiency. The results presented show that metabolism of [3H]pyridoxine in deficiency is characterized by (a) a delayed, two-fold increase in label uptake as well as an extended label retention period, (b) a rapid pyridoxal 5'-P synthesis, and (c) a continuous synthesis (and accumulation) of pyridoxamine 5'-P which is not utilized or further metabolized.  相似文献   

2.
The objectives of the current study included the characterization of the temporal changes in indices of sulphur amino acid metabolism in piglets in response to vitamin B6 deficiency and repletion with graded levels of pyridoxine hydrochloride. In Experiment 1, 12 piglets (average initial weight = 5.3 kg; n = 6 per group) were fed a semi-purified diet containing either 0 (deficiency group) or 3 mg (control group) pyridoxine·HCl/kg diet, using a pair-feeding design, for 6 weeks. Piglets consuming vitamin B6-deficient diets exhibited decreased average daily gains on the 4th week and feed conversion efficiency from the 4th week until the end of the trial (P < 0.05). Plasma pyridoxal-5'-phosphate (PLP), in pigs consuming vitamin B6-deficient diets, was significantly lower than controls throughout the experiment (P < 0.01), reaching a nadir of 14% of the control animals' value by the end of the trial. Indices of sulphur amino acid metabolism, including activities of hepatic cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CGL) and serine hydroxymethyltransferase, as well as hepatic-free cysteine concentrations were markedly decreased after 6 weeks of B6 deficiency (P < 0.05). Total hepatic mRNA expressions for CBS and CGL were not affected. Concurrently, hepatic-free homocysteine concentrations increased by more than eight-fold (P < 0.01) at the end of the trial. An examination of plasma total homocysteine and cysteine concentrations revealed significant (P < 0.05) differences between treatments, with evidence of an abrupt shift in concentrations at 3 weeks post-initiation of dietary treatments (>25-fold increase in homocysteine; halving of cysteine values). At the end of Experiment 1, vitamin B6 deficiency significantly increased plasma methionine and serine levels, but decreased plasma glycine concentrations (P < 0.05). In Experiment 2, 20 pigs of 14 days old (initial BW = 5.0 kg) were subjected to a 4-week vitamin B6 depletion protocol, based on results obtained in Experiment 1. After the depletion period and assessment of baseline status (four pigs), remaining pigs were allocated to one of four dietary vitamin B6 repletion treatments: 0.75, 1.5, 2.25 and 3 mg/kg diet as pyridoxine·HCl (n = 4 per level) for 14 days. Significant dose-dependent increases in plasma PLP and cysteine, and decreases in homocysteine were observed, and these were sensitive to the duration of repletion. In conclusion, data from the current studies support the use of both plasma PLP and homocysteine as sensitive indices of vitamin B6 status in the pig. Additionally, the observed patterns of responses in vitamin B6-sensitive metabolites are supportive of an inclusion level of 2.25 mg/kg diet, as pyridoxine·HCl, in diets for young pigs.  相似文献   

3.
Vitamin B(6) is a generic term referring to pyridoxine, pyridoxamine, pyridoxal and their related phosphorylated forms. Pyridoxal 5'-phosphate is the catalytically active form of vitamin B(6), and acts as cofactor in more than 140 different enzyme reactions. In animals, pyridoxal 5'-phosphate is recycled from food and from degraded B(6)-enzymes in a "salvage pathway", which essentially involves two ubiquitous enzymes: an ATP-dependent pyridoxal kinase and an FMN-dependent pyridoxine 5'-phosphate oxidase. Once it is made, pyridoxal 5'-phosphate is targeted to the dozens of different apo-B(6) enzymes that are being synthesized in the cell. The mechanism and regulation of the salvage pathway and the mechanism of addition of pyridoxal 5'-phosphate to the apo-B(6)-enzymes are poorly understood and represent a very challenging research field. Pyridoxal kinase and pyridoxine 5'-phosphate oxidase play kinetic roles in regulating the level of pyridoxal 5'-phosphate formation. Deficiency of pyridoxal 5'-phosphate due to inborn defects of these enzymes seems to be involved in several neurological pathologies. In addition, inhibition of pyridoxal kinase activity by several pharmaceutical and natural compounds is known to lead to pyridoxal 5'-phosphate deficiency. Understanding the exact role of vitamin B(6) in these pathologies requires a better knowledge on the metabolism and homeostasis of the vitamin. This article summarizes the current knowledge on structural, kinetic and regulation features of the two enzymes involved in the PLP salvage pathway. We also discuss the proposal that newly formed PLP may be transferred from either enzyme to apo-B(6)-enzymes by direct channeling, an efficient, exclusive, and protected means of delivery of the highly reactive PLP. This new perspective may lead to novel and interesting findings, as well as serve as a model system for the study of macromolecular channeling. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.  相似文献   

4.
Antitumor effect of vitamin B6 and its mechanisms   总被引:3,自引:0,他引:3  
Epidemiological studies have reported an inverse association between vitamin B(6) intake and colon cancer risk. Our recent study has been conducted to examine the effect of dietary vitamin B(6) on colon tumorigenesis in mice. Mice were fed diets containing 1, 7, 14 or 36 mg/kg pyridoxine for 22 weeks, and given a weekly injection of azoxymethane (AOM) for the initial 10 weeks. Compared with the 1 mg/kg pyridoxine diet, 7, 14 and 35 mg/kg pyridoxine diets significantly suppressed the incidence and number of colon tumors, colon cell proliferation and expressions of c-myc and c-fos proteins. Supplemental vitamin B(6) lowered the levels of colonic 8-hydroxyguanosine (8-OHdG), 4-hydroxy-2-nonenal (4-HNE, oxidative stress markers) and inducible nitric oxide (NO) synthase protein. In an ex vivo serum-free matrix culture model using rat aortic ring, supplemental pyridoxine and pyridoxal 5'-phosphate (PLP) had antiangiogenic effect. The results suggest that dietary vitamin B(6) suppresses colon tumorigenesis by reducing cell proliferation, oxidative stress, NO production and angiogenesis.  相似文献   

5.
The enzymes involved in the metabolism of vitamin B6 were measured in Morris hepatomas and livers of female Buffalo rats fed pyridoxine-sufficient and deficient diets. Pyridoxal phosphate levels in plasmas hepatomas, and livers were also determined. Nontumor-bearing animals were maintained as controls. Regardless of the B6 nutritional status, the concentration of pyridoxal phosphate was lower in the hepatomas than in the livers of the host animals. The apoenzyme levels of ornithine decarboxylase, a pyridoxal phosphate-dependent enzyme, were higher in the hepatomas from animals fed the B6-deficient diet. Liver pyridoxine kinase activity was higher in B6-sufficient animals. In contrast, tumor pyridoxine kinase activity was influenced by B6 intake and was significantly lower than that in host liver. Liver pyridoxine phosphate oxidase activity was not significantly affected by B6 intake or by the presence of tumor. In contrast, hepatomas had little or no pyridoxine phosphate oxidase activity. Pyridoxine phosphate phosphatase activity was elevated in tumors relative to livers. These data indicate that the metabolism of vitamin B6 is markedly different in the hepatomas than in host or control livers and suggest that the tumor is apparently incapable of the complete synthesis of co-enzymatically active pyridoxal phosphate from inactive precursor forms such as pyridoxine.  相似文献   

6.
The metabolism of [6-3H]pyridoxine · HCl was investigated in the liver of vitamin B-6-deficient rats. Rats were made vitamin B-6 deficient by feeding adlititum for 42 days a diet lacking pyridoxine but otherwise optimal. Animals were each injected intraperitoneally with 33 μCi of [6-3H]pyridoxine · HCl and killed at different time intervals afterwards up to 7 days. Radioactively labeled hepatic B-6 compounds were extracted with acid and chromatographically separated on Dowex-X8 (H+) columns and the percent radioactivity for each vitamin compound was then calculated. Maximal uptake in control and deficient animals was observed 30 and 60 min, respectively, after administration of label. Radioactivity was not retained by the control animals but decreased steadily in a linear fashion after 30 min, reaching a low level after 3 h. On the other hand, vitamin deficient animals accumulated almost twice as much radioactivity in their liver as the controls and retained it through 7 days.In vitamin B-6-deficient animals 93% of the injected radioactivity was metabolized within 2 min at which time pyridoxine 5′-P and pyridoxal 5′-P reached 36 and 44% levels, respectively. Pyridoxine 5′-P dropped to minimal values (3%) within 15 min and remained unchanged for 7 days while pyridoxal 5′-P reached a peak (79%) level at 15 min and then began to drop linearly reaching a plateau (29%) at 5 days. Further, as the level of pyridoxal 5′-P was falling, pyridoxamine 5′-P was linearly synthesized reaching a plateau level (62%) in 5 days which also remained unchaged through 7 days. Some pyridoxal was also formed (7% at 1 h) which by 12 h had dropped to a plateau low level (3%). The specific activity level of pyridoxal kinase decreased 3.2 times and that of pyridoxine 5′-phosphate oxidase increased 1.5 times in the state of deficiency. The results presented show that metabolism of [3H]pyridoxine in deficiency is characterized by (a) a delayed, two-fold increase in label uptake as well as an extended label retention period, (b) a rapid pyridoxal 5′-P synthesis, and (c) a continuouus synthesis (and accumulation) of pyridoxamine 5′-P which is not utilized or further metabolized.  相似文献   

7.
Vitamin B6 (pyridoxal phosphate) is an essential cofactor in enzymatic reactions involved in numerous cellular processes and also plays a role in oxidative stress responses. In plants, the pathway for de novo synthesis of pyridoxal phosphate has been well characterized, however only two enzymes, pyridoxal (pyridoxine, pyridoxamine) kinase (SOS4) and pyridoxamine (pyridoxine) 5' phosphate oxidase (PDX3), have been identified in the salvage pathway that interconverts between the six vitamin B6 vitamers. A putative pyridoxal reductase (PLR1) was identified in Arabidopsis based on sequence homology with the protein in yeast. Cloning and expression of the AtPLR1 coding region in a yeast mutant deficient for pyridoxal reductase confirmed that the enzyme catalyzes the NADPH-mediated reduction of pyridoxal to pyridoxine. Two Arabidopsis T-DNA insertion mutant lines with insertions in the promoter sequences of AtPLR1 were established and characterized. Quantitative RT-PCR analysis of the plr1 mutants showed little change in expression of the vitamin B6 de novo pathway genes, but significant increases in expression of the known salvage pathway genes, PDX3 and SOS4. In addition, AtPLR1 was also upregulated in pdx3 and sos4 mutants. Analysis of vitamer levels by HPLC showed that both plr1 mutants had lower levels of total vitamin B6, with significantly decreased levels of pyridoxal, pyridoxal 5'-phosphate, pyridoxamine, and pyridoxamine 5'-phosphate. By contrast, there was no consistent significant change in pyridoxine and pyridoxine 5'-phosphate levels. The plr1 mutants had normal root growth, but were significantly smaller than wild type plants. When assayed for abiotic stress resistance, plr1 mutants did not differ from wild type in their response to chilling and high light, but showed greater inhibition when grown on NaCl or mannitol, suggesting a role in osmotic stress resistance. This is the first report of a pyridoxal reductase in the vitamin B6 salvage pathway in plants.  相似文献   

8.
Effects of Perinatal Vitamin B6 Deficiency on Dopaminergic Neurochemistry   总被引:2,自引:1,他引:1  
Long-Evans dams were fed either a vitamin B6-deficient or a control diet from day 13-14 of gestation and throughout lactation. A control pair-fed group was also included because of differences in food intake between vitamin B6-deficient and control ad libitum dams. The progeny of vitamin B6-deficient dams had all the classic symptoms of B6 deficiency. These included weight loss, ataxia, tremor, and epileptic seizures. Concentrations of the neurotransmitter dopamine (DA), and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), as well as D-2 dopamine receptor binding, 3,4-dihydroxyphenylalanine (DOPA) decarboxylase activity, and vitamin B6 levels were measured in the corpus striatum of progeny at 7, 14, and 18 days after birth. Striatal DA and HVA levels were significantly decreased in B6-deficient animals when compared to ad libitum or pair-fed controls. Daily injections of vitamin B6 to deprived animals from the 14th to 18th day after birth improved the abnormal movement and normalized the concentration of DA but not of HVA in corpus striatum. Striatal D-2 dopamine receptor binding using [3H]spiperone as ligand was significantly reduced in 18-day-old animals as compared to ad libitum and pair-fed controls. No significant differences were found at 14 days. The administration of vitamin B6 to deprived animals did not raise the level of D-2 receptor binding during the period of observation. Scatchard plots indicated that the differences in binding were due to changes in receptor number and not in KD. Corpus striatum DOPA decarboxylase activity with and without the addition of exogenous pyridoxal phosphate was significantly reduced in 14- and 18-day-old animals when compared to pair-fed controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Patients with rheumatoid arthritis have subnormal vitamin B6 status, both quantitatively and functionally. Abnormal vitamin B6 status in rheumatoid arthritis has been associated with spontaneous tumor necrosis factor (TNF)-α production and markers of inflammation, including C-reactive protein and erythrocyte sedimentation rate. Impaired vitamin B6 status could be a result of inflammation, and these patients may have higher demand for vitamin B6. The aim of this study was to determine if daily supplementation with 50 mg of pyridoxine for 30 days can correct the static and/or the functional abnormalities of vitamin B6 status seen in patients with rheumatoid arthritis, and further investigate if pyridoxine supplementation has any effects on the pro-inflammatory cytokine TNF-α or IL-6 production of arthritis. This was a double-blinded, placebo-controlled study involving patients with rheumatoid arthritis with plasma pyridoxal 5'-phosphate below the 25th percentile of the Framingham Heart Cohort Study. Vitamin B6 status was assessed via plasma and erythrocyte pyridoxal 5'-phosphate concentrations, the erythrocyte aspartate aminotransferase activity coefficient (αEAST), net homocysteine increase in response to a methionine load test (ΔtHcy), and 24 h urinary xanthurenic acid (XA) excretion in response to a tryptophan load test. Urinary 4-pyridoxic acid (4-PA) was measured to examine the impact of pyridoxine treatment on vitamin B6 excretion in these patients. Pro-inflammatory cytokine (TNF-α and IL-6) production, C-reactive protein levels and the erythrocyte sedimentation rate before and after supplementation were also examined. Pyridoxine supplementation significantly improved plasma and erythrocyte pyridoxal 5'-phosphate concentrations, erythrocyte αEAST, urinary 4-PA, and XA excretion. These improvements were apparent regardless of baseline B6 levels. Pyridoxine supplementation also showed a trend (p < 0.09) towards a reduction in post-methionine load ΔtHcy. Supplementation did not affect pro-inflammatory cytokine production. Although pyridoxine supplementation did not suppress pro-inflammatory cytokine production in patients with rheumatoid arthritis, the suboptimal vitamin B6 status seen in rheumatoid arthritis can be corrected by 50 mg pyridoxine supplementation for 30 days. Data from the present study suggest that patients with rheumatoid arthritis may have higher requirements for vitamin B6 than those in a normal healthy population.  相似文献   

10.
1) A vitamin-B6-producing mutant, BA 1, was selected by treatment of Bacillus subtilis with N-methyl-N'-nitro-N-nitrosoguanidine. Using gradient plates supplemented with the vitamin B6 antagonist isonicotinohydrazide, three mutants of BA 1 were isolated, which excrete 2-5 mg of vitamin B6/l of growth medium. 2) Mutation of the three vitamin-B6-producing strains BA 1, BA 11 and L 71 led to the isolation of 49 vitamin-B6 deficient mutants. All mutants are able to grow with pyridoxine, pyridoxal, pyridoxamine, and even with 4'-deoxypyridoxine. Glycolaldehyde or nicotinic acid do not support growth of the mutants. Some of these vitamin-B6-deficient mutants can also grow in the absence of vitamin B6, providing isoleucine is present. Others show a growth stimulation, when isoleucine is added to a medium containing a vitamin B6 compound. Isoleucine can be replaced by 3-methyl-2-oxovalerate. Cross-feeding experiments indicated a division of the mutants into two groups. Using chromatographic methods, substances which support growth of the mutants were purified, but have not yet been identified. Following the addition of 4'-deoxypyridoxine, 4'-deoxypyridoxine 5'-phosphate was isolated from the growth medium of a vitamin B6-deficient mutant. 3) Threonine dehydratase, transaminase B and transaminase C from wild-type Bacillus subtilis were compared with the enzymes from vitamin-B6-producing strains and with the enzymes from vitamin-B6-deficient mutants. Both the vitamin-B6-producing and the vitamin B6-deficient mutants show higher specific activities than wild type. In the mutant strains no multivalent repression of the threonine dehydratase and transminase B by isoleucine, leucine and valine could be demonstrated. Leucine dehydrogenase, the first enzyme of the isoleucine catabolic pathway, is constitutively produced in the vitamin-B6-producing and in the vitamin-B6-deficient mutants. In the vitamin-B6-deficient mutants, there is a correlation between growth yield in the presence of isoleucine and the specific activity of leucine dehydrogenase. In the crude extract of Bacillus subtilis no pyridoxamine-phosphate oxidase activity could be demonstrated, whereas pyridoxal kinase was readily detectable.  相似文献   

11.
1. Metabolism of folate was studied in six ewes in an advanced state of vitamin B(12) deficiency as judged by voluntary food intake and in their pair-fed controls receiving vitamin B(12). A group of four animals that were maintained throughout the experiment at pasture was also studied. 2. After 34-40 weeks on the cobalt-deficient diet urinary excretion of formiminoglutamate by four deficient animals was about 3.2mmol/day and this was not significantly decreased by injection of three of them with about 4.5mug of [2-(14)C]folate/kg body weight per day for 5 days. Three days after the last injection retention of [2-(14)C]folate by the livers of the deficient animals (5.5% of the dose) was lower than that of their pair-fed controls (26% of the dose) but there was no evidence of net retention of injected folate in the livers of either group. Urinary excretion of (14)C indicated that renal clearance of folate may have been impaired in very severe vitamin B(12) deficiency. 3. As estimated by microbiological assays total folates in the livers of animals at pasture (12.9mug/g) included about 24% of 5-methyltetrahydrofolate as compared with about 72% of a total of 12.5mug/g in three further ewes fed on a stock diet of wheaten hay-chaff and lucerne-chaff. Liver folates of vitamin B(12)-deficient animals (0.5mug/g) included about 88% of 5-methyltetrahydrofolate as compared with about 51% of a total of 5.2mug/g in pair-fed animals treated with vitamin B(12). 4. Chromatography of liver folates of the pair-fed animals permitted quantitative estimates of the pteroylglutamates present. The results showed that the vitamin B(12)-deficient livers were more severely depleted of tetrahydrofolates and formyltetrahydrofolates than of methyltetrahydrofolates and that as the deficiency developed they were more severely depleted of the higher polyglutamates than of the monoglutamate within each of these classes. Results from animals injected with [2-(14)C]folate indicated an impairment of the exchange between pteroylmonoglutamates and pteroylpolyglutamates in the livers of deficient animals. 5. In vitamin B(12)-deficient animals with food intakes below 200g/day some of the liver folates were not completely reduced and some degradation of pteroylpolyglutamates was detected. The latter condition may have been associated with fatty liver. 6. The results are discussed in relation to current theories of vitamin B(12)-folate interactions.  相似文献   

12.
Dempsey, Walter B. (University of Florida, Gainesville). Synthesis of pyridoxine by a pyridoxal auxotroph of Escherichia coli. J. Bacteriol. 92:333-337. 1966.-A pyridoxal auxotroph of Escherichia coli B produced pyridoxol and pyridoxol 5'-phosphate during starvation for pyridoxal. The identification of these compounds was made both by bioassay and by ion-exchange chromatography. Pyridoxol 5'-phosphate oxidase activity was absent in extracts of the auxotroph. The rate of synthesis of total pyridoxine by a pyridoxal-starved culture of this auxotroph was 6.0 x 10(-6) moles per mg per hr. Cellular content of pyridoxine was constant at 4.0 x 10(-10) moles/mg.  相似文献   

13.
PurposeWe investigated the effect of a vitamin B6 deficiency and pair-feeding on tissue trace element status.MethodTissue zinc, copper and iron concentrations were measured in 3 groups of young, male Wistar rats receiving a diet of 3.5 mg/kg (control group), 0 mg/kg (deficient group) and a pair-fed group over 8 weeks. The pair-fed group received the same diet consumed by the control. Tissue trace element analysis was performed using atomic absorption spectrophotometry and plasma vitamin B6 status was determined using HPLC.ResultsDeficiency resulted in elevation in liver iron concentration and reduction in muscle iron concentration. Muscle copper concentrations were reduced in the pair-fed and deficient groups vs. the control group. Tissue zinc concentrations remained unaffected by the deficiency. Kidney iron and heart copper levels were elevated in the pair-fed group.ConclusionsThe liver and muscle iron changes were due to the deficiency and not to reduced calorie intake and the latter may be due to impaired heme synthesis. The differences in copper between the groups were due to reduced food intake. Zinc seems to form a fixed pool in these animals. A dietary deficiency of vitamin B6 impacts on the trace element status of certain tissues in key metabolic tissues and hence needs to be factored into the amelioration of the condition.  相似文献   

14.
The nuclear fraction of rat hepatoma-derived HTC cells contained approximately 8% of the total cellular pyridoxal 5'-phosphate. HTC cells were able to metabolize [3H]pyridoxine to coenzymatically active pyridoxal 5'-phosphate and pyridoxamine 5'-phosphate. As HTC cells did not have any demonstrable pyridoxine-5'-phosphate oxidase activity, the conversion of pyridoxine to pyridoxal 5'-phosphate must have taken place by a nonconventional route. The ratio of pyridoxal 5'-phosphate to pyridoxamine 5'-phosphate in the nonnuclear fraction of HTC cells was approximately 1:1, whereas in the nuclear fraction it was approximately 17:1, indicating that there was selective acquisition of pyridoxal 5'-phosphate by the nucleus. With the aid of a monoclonal antibody specific for the 5'-phosphopyridoxyl group, it was shown that there was one major pyridoxal 5'-phosphate-binding protein in a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)-resolved nucleoplasmic extract of HTC cells. This finding was confirmed by radioautography of an SDS-PAGE-resolved nucleoplasmic extract obtained from cells grown in a medium containing [3H]pyridoxine. Isoelectric focusing followed by SDS-PAGE also indicated the presence of one major pyridoxal 5'-phosphate-binding protein in the nucleoplasmic extract of HTC cells having a relatively high isoelectric point (approximately 7). Data were obtained indicating that the protein might exist in a higher molecular weight form, probably a dimer. Currently, these findings constitute virtually all of the available information on vitamin B6 and the cell nucleus.  相似文献   

15.
Peroxidized phospholipid-mediated cytotoxity is involved in the pathophysiology of a number of diseases [i.e., the abnormal increase of phosphatidylcholine hydroperoxide (PCOOH) found in the plasma of type 2 diabetic patients]. The PCOOH accumulation may relate to Amadori-glycated phosphatidylethanolamine (deoxy-D-fructosyl PE, or Amadori-PE), because Amadori-PE causes oxidative stress. However, lipid glycation inhibitor has not been discovered yet because of the lack of a lipid glycation model useful for inhibitor screening. We optimized and developed a lipid glycation model considering various reaction conditions (glucose concentration, temperature, buffer type, and pH) between PE and glucose. Using the developed model, various protein glycation inhibitors (aminoguanidine, pyridoxamine, and carnosine), antioxidants (ascorbic acid, alpha-tocopherol, quercetin, and rutin), and other food compounds (L-lysine, L-cysteine, pyridoxine, pyridoxal, and pyridoxal 5'-phosphate) were evaluated for their antiglycative properties. Pyridoxal 5'-phosphate and pyridoxal (vitamin B(6) derivatives) were the most effective antiglycative compounds. These pyridoxals could easily be condensed with PE before the glucose/PE reaction occurred. Because PE-pyridoxal 5'-phosphate adduct was detectable in human red blood cells and the increased plasma Amadori-PE concentration in streptozotocin-induced diabetic rats was decreased by dietary supplementation of pyridoxal 5'-phosphate, it is likely that pyridoxal 5'-phosphate acts as a lipid glycation inhibitor in vivo, which possibly contributes to diabetes prevention.  相似文献   

16.
家蚕体内维生素B6的存在形态和转换代谢   总被引:9,自引:6,他引:3  
张剑韵  黄龙全 《昆虫学报》2003,46(3):277-281
采用不含桑叶粉末、以去维生素牛乳酪蛋白为蛋白源的准合成饲料饲育家蚕Bombyx mori幼虫,探讨了家蚕体内维生素B(VB6)化合物的存在形态和转换代谢途经。随饲料中盐酸吡哆醇(PN-HCl)添加量的增加,幼虫体内吡哆醇(PN)含量相应变化,其次是吡哆醛(PL);而辅酶型磷酸吡哆醛(PLP)和磷酸吡哆胺(PMP)含量存在稳定性。饲料中的吡哆醇以单纯扩散的形式进入体液;体液中的吡哆醇被各种组织吸收后,在各自的吡哆醛激酶和PNP/磷酸吡哆胺氧化酶的作用下,转变成辅酶型磷酸吡哆醛。家蚕不同于哺乳动物,没有特定的辅酶型磷酸吡哆醛形成组织和辅酶型磷酸吡哆醛的转送机制。同时家蚕体内缺乏具储存VB6功能的辅酶型磷酸吡哆醛结合蛋白,推测这是用缺乏VB6的饲料饲育各龄起蚕,幼虫当龄死亡的主要原因。  相似文献   

17.
The concentrations of CoA in the livers of severely vitamin B(12)-deficient ewes were about 2.6 times those in pair-fed animals treated with vitamin B(12). When the feeding rates of the pair-fed animals were closely similar, the concentrations of methylmalonic acid in deficient livers were about twice those in vitamin B(12)-sufficient livers. The molar concentrations of CoA present were more than three times those of methylmalonic acid in both deficient and treated animals, and it is concluded that the elevated concentrations of CoA in the deficient livers were not primarily due to accumulation of methylmalonyl-CoA.  相似文献   

18.
The antioxidant effects of natural vitamin B(6) compounds on Schizosaccharomyces pombe cells treated with menadione sodium bisulfite (water-soluble menadione and a generator of superoxide, MSB) and the mechanism underlying the function were examined with the yeast cells treated with pyridoxal 5'-phosphate. Vitamin B(6) compounds showed no ex vivo reactivity toward MBS at pH 5.5 or 7.0. The yeast cells showed no growth in the medium containing 1.0 mM MSB. The coexistence of 1.0 mM of each vitamin B(6) compound supported the growth of the yeast cells. The efficacy order was pyridoxal 5'-phosphate>/=pyridoxamine 5'-phosphate>pyridoxamine>pyridoxal>/=pyridoxine. The first three compounds showed higher antioxidant activity than vitamin C did. Pyridoxal 5'-phosphate prevented the reduction of the glutathione content in the MSB-treated cells and, in turn, suppressed the increases in peroxide and thiobarbituric acid reactive substances in the yeast cells and increased the viability of the yeast cells under oxidative stress. The antioxidant function of pyridoxal 5'-phosphate was not dependent on the phosphorelay pathway, which finally triggers the expression of the catalase gene.  相似文献   

19.
1. The effects of injected l-methionine (2g every second day for 28 days) on liver folates and other constituents of liver associated with folate metabolism were studied in vitamin B(12)-deficient ewes and their pair-fed controls receiving vitamin B(12). The dose rate of methionine used was sufficient to restore almost to normal the elevated excretion in the urine of formiminoglutamate in the deficient animals. 2. Liver folates active for Lactobacillus casei, Streptococcus faecalis R and Pediococcus cerevisiae were severely depressed in deficient livers and were partly restored by methionine. Analysis of the folates after ion-exchange chromatography showed that the major effect of methionine was to increase the concentrations of tetrahydrofolates and formyltetrahydrofolates. Methyltetrahydrofolates were also increased, but there was no effect of methionine on the small amounts of incompletely reduced folates present in deficient livers. The folates present were predominantly penta-, hexa- and hepta-glutamates whether or not animals received vitamin B(12) or methionine. 3. Concentrations of ATP, NAD(+), NADH and NADPH were lower in freeze-clamped liver from vitamin B(12)-deficient sheep than in liver from pair-fed, vitamin B(12)-treated sheep. These changes were not affected by methionine which was also without effect on the elevated K(+)/Na(+) ratios found in deficient livers. 4. The livers of vitamin B(12)-deficient animals contained lower concentrations of choline and higher concentrations of lipid than their pair-fed controls. These effects were reversed by methionine.  相似文献   

20.
Dietary deficiency of thiamine or pyridoxine has been shown to produce hyperoxaluria and renal stone formation in man and experimental animals. To determine the possible contribution of exogenous glyoxylate and oxalate, the intestinal transport of [14C] - oxalate and [14C] - glyoxylate was measured in vitamin B1 and B6 deficient rats and their respective pair-fed controls. Results indicate that glyoxylate and oxalate are passively diffused from lumen to lamina propria in thiamine deficient and their pair-fed controls with no significant change in the rate of uptake of both the substrates. However B6 deficient rats showed a significant enhancement in the rate of oxalate uptake due to development of a new biphasic transport system. The rate of glyoxylate uptake by simple passive diffusion remained unaltered in pyridoxine deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号