首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For selection of immunogens capable of inducing high levels of antibodies reactive with the Plasmodium falciparum antigen Pf155/RESA, rabbits were immunized with synthetic peptides corresponding to sequences based on the repeat subunits EENVEHDA and (EENV)2 from the C-terminus of this antigen. The antibodies obtained were analyzed with regard to binding to synthetic peptides in ELISA and to reactivity with parasite antigens by immunofluorescence or immunoblotting. All antisera reacted with both the peptides EENVEHDA and (EENV)2 as well as with Pf155/RESA. Antibody fractions specific for each of the two peptides were prepared by affinity chromatography on insolubilized peptides. Strong reactivity with antigens in the membrane of erythrocytes infected with early stages of the parasite as well as reactivity with Pf155/RESA in immunoblotting correlated with reactivity of antibody with (EENV)2. Antibody preparations reactive with EENVEHDA and depleted of (EENV)2 reactivity showed only a weak reactivity with Pf155/RESA but reacted also with P. falciparum polypeptides of 250, 210, and 88 kDa. In immunofluorescence, these antibodies stained mainly the intraerythrocytic parasite. Both EENVEHDA- and (EENV)2-specific antibodies inhibited merozoite reinvasion in P. falciparum in vitro cultures, the latter antibodies being the most efficient. This study defines the specificity and cross-reactivity with other P. falciparum antigens of antibodies to the C-terminal repeats of Pf155/RESA.  相似文献   

2.
The localization in the erythrocyte membrane of Pch105/RESA, the ring stage-infected erythrocyte surface antigen of Plasmodium chabaudi, the proposed analog to the vaccine candidate Pf155/RESA in P. falciparum, is here confirmed by the use of the immunogold technique in electron microscopy. Furthermore, a number of monoclonal antibodies to other P. chabaudi erythrocyte membrane antigens in the same molecular weight range as Pch105 were compared in different test systems. Data from immunoblotting of native and recombinant antigen as well as an inhibition ELISA indicate that Pch105 is identical to Pc96 and two other described antigens of 105 and 110 kDa. Pch105 could also be shown to have polymorphic epitopes, varying between different strains of P. chabaudi, without impact on the molecular weight.  相似文献   

3.
The human mAb 33G2 has high capacity to inhibit in vitro invasion of erythrocytes by Plasmodium falciparum merozoites and, thus, is of special interest with regard to protective immunity against the parasite. In order to obtain more information about asexual blood stage Ag of P. falciparum that are seen by this antibody, material from synchronized P. falciparum cultures was studied by immunofluorescence, immunoelectron microscopy, and immunoblotting. Reactivity was mainly confined to the membrane of infected erythrocytes. Soon after merozoite invasion the antibody stained the erythrocyte membrane. This membrane-associated staining faded during intracellular development of the parasites. Beginning about 18 h after invasion, a dotted pattern appeared which increased in strength with time and persisted to schizont rupture. Pf155/RESA was the major Ag recognized in immunoblots of parasites collected throughout the entire erythrocytic cycle, although other polypeptides also bound the antibody. Among these was a 260-kDa polypeptide found in late trophozoites and schizonts. The specificity of the antibody was analyzed with synthetic peptides corresponding to repeated sequences in the P. falciparum Ag Pf155/RESA, Pf11.1, and Ag332. Synthetic peptides related to Ag332 were the most efficient inhibitors of antibody binding in immunofluorescence studies and cell ELISA. A beta-galactosidase-Ag332 fusion protein was also efficient in reversing reinvasion inhibition caused by 33G2. These results define a family of cross-reactive P. falciparum Ag recognized by mAb 33G2 and suggest that Ag332 was its original target.  相似文献   

4.
Based primarily on studies of human erythrocytes, current theories of the structure and organization of erythrocyte membrane localize spectrin to the membrane cytoplasmic surface. Affinity purified anti-sheep spectrin antibodies were used in indirect immunofluorescence studies of intact erythrocytes from various vertebrate species and inside-out and right-side-out impermeable sheep erythrocyte vesicles. This investigation detected immunologically reactive external and potentially transmembranal determinant(s) of the sheep erythrocyte spectrin "assembly." Parallel studies using anti-sheep and anti-human spectrin antibodies, as well as 125I surface-labelling studies of intact sheep and human erythrocytes, indicated that this particular membrane orientation of spectrin was evident in sheep but not in human erythrocytes. Antisera containing antibodies to the external portion of this spectrin "assembly" demonstrated external fluorescence to a variable degree on some, but not all, vertebrate erythrocytes surveyed, confirming that the sheep erythrocyte was not the only exception. It is suggested that there may be subtle species variability in the intermolecular associations of the spectrin "assembly" with(in) the erythrocyte membrane not requiring alterations of the spectrin molecule itself.  相似文献   

5.
In Plasmodium falciparum, the rhoptries involved in the invasion process are a pair of flask-shaped organelles located at the apical tip of invading stages. They, along with the more numerous micronemes and dense granules, constitute the apical complex in Plasmodium and other members of the phylum Apicomplexa. Several proteins of varying molecular weight have been identified in P. falciparum rhoptries. These include the 225-, 140/130/110-, 80/60/40-, RAP-1 80-, AMA-1 80-, QF3 80-, and 55-kDa proteins. Some of these proteins are lost during schizont rupture and release of merozoites. Others such as the 140/130/110-kDa complex are transferred to the erythrocyte membrane during invasion. The ring-infected surface antigen (RESA), a 155-kDa polypeptide located in dense granules also associates with the erythrocyte membrane during invasion. Erythrocyte-binding studies have demonstrated that both the 140/130/110-kDa rhoptry complex and RESA bind to inside-out-vesicles (IOVs) prepared from human erythrocytes. The 140/130/110-kDa complex also binds to erythrocyte membranes prepared by hypotonic lysis. These proteins, however, do not bind to intact human erythrocytes. In a heterologous erythrocyte model, both the 140/130/110-kDa complex and RESA are shown to bind directly to mouse erythrocytes. Other studies have shown that RESA associates with spectrin in the erythrocyte cytoskeleton. We have recently developed a liposome-binding assay to demonstrate the lipophilic binding properties of the P. falciparum rhoptry complex of 140/130/110 kDa. The rhoptry complex binds to liposomes containing neutrally, positively, and negatively charged phospholipids. However, liposomes containing phosphatidylethanolamine compete effectively for rhoptry protein binding to mouse erythrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
ABSTRACT. In Plasmodium falciparum. the rhoptries involved in the invasion process are a pair of flask-shaped organelles located at the apical tip of invading stages. They, along with the more numerous micronemes and dense granules, constitute the apical complex in Plasmodium and other members of the phylum Apicomplexa. Several proteins of varying molecular weight have been identified in P. falciparum rhoptries. These include the 225-, 140/130/110-, 80/60/40-, RAP-1 80-, AMA-1 80-, QF3 80-, and 55-kDa proteins. Some of these proteins are lost during schizont rupture and release of merozoites. Others such as the 140/130/110-kDa complex are transferred to the erythrocyte membrane during invasion. The ring-infected surface antigen (RESA). a 155-kDa polypeptide located in dense granules also associates with the erythrocyte membrane during invasion. Erythrocyte-binding studies have demonstrated that both the 140/130/110-kDa rhoptry complex and RESA bind to inside-out-vesicles (IOVs) prepared from human erythrocytes. The 140/130/110-kDa complex also binds to erythrocyte membranes prepared by hypotonic lysis. These proteins, however, do not bind to intact human erythrocytes. In a heterologous erythrocyte model, both the 140/130/110-kDa complex and RESA are shown to bind directly to mouse erythrocytes. Other studies have shown that RESA associates with spectrin in the erythrocyte cytoskeleton. We have recently developed a liposome-binding assay to demonstrate the lipophilic binding properties of the P. falciparum rhoptry complex of 140/130/110 kDa. The rhoptry complex binds to liposomes containing neutrally, positively, and negatively charged phospholipids. However, liposomes containing phosphatidylethanolamine compete effectively for rhoptry protein binding to mouse erythrocytes. The rhoptry complex also binds to membrane and inside-out-vesicles prepared from human erythrocytes and erythrocytes from other species. The rhoptry complex associated with the erythrocyte membrane in ring-infected erythrocytes is accessible to cleavage by phospholipase A. Studies are in progress to identify the molecular epitopes on the individual proteins within the complex responsible for lipid interaction in the erythrocyte bilayer and to determine the specificity of the phospholipid interaction using erythrocyte phospholipids.  相似文献   

7.
During erythrocyte invasion, the Plasmodium falciparum Ring-infected erythrocyte surface antigen (RESA) establishes specific interactions with spectrin. Based on analysis of strains with a large chromosome 1 deletion, RESA has been assigned several functions, none of which is firmly established. Analysis of parasites with a disrupted resa1 gene and isogenic parental or resa3-disrupted controls confirmed the critical role of RESA in the surface reactivity of immune adult sera on glutaraldehyde-fixed ring stages. Absence of RESA did not influence merozoite invasion or erythrocyte membrane rigidity, was associated with a modest increase of cytoadhesion to CD36 under conditions of flow, but resulted in marked susceptibility to heat shock. resa1-KO-infected erythrocytes were prone to heat-induced vesiculation like uninfected erythrocytes, whereas parental or resa3-KO infected erythrocytes remained undamaged. Furthermore, a 6 h exposure of ring stages at 41 degrees C resulted in 33% culture inhibition of resa1-KO parasites while marginally impacting parental and resa3-KO parasite growth. This points to a role for RESA in protecting the infected erythrocyte cytoskeleton during febrile episodes. Infection patterns of resa1-KO and parental parasites in Saimiri sciureus indicated that RESA does not, at least on its own, modulate virulence in the squirrel monkey, as had been previously suggested.  相似文献   

8.
Abstract Two different expression systems were investigated for the production of an 80 amino acid polypeptide, M3, from the C-terminus of the Plasmodium falciparum blood stage antigen Pf155/RESA in an attenuated Salmonella typhimurium vaccine strain. Upon expression, the malarial polypeptide was targeted either to the periplasm as a soluble fusion protein containing two IgG-binding domains (ZZ) from the staphylococcal protein A or, to the bacterial surface as an insert within a chimeric outer membrane protein A (OmpA) derived from Escherichia coli and Shigella dysenteriae . Both the ZZM3 and the OmpAM3 proteins were stably expressed in the periplasm or on the surface of Salmonella , respectively. The ZZ expression system yielded 10–100 times more malarial immunogen than did the OmpA system. Live recombinant Salmonella expressing ZZM3 or OmpAM3 were used to immunize mice intraperitoneally. Both the ZZM3 and OmpAM3 genes persisted for up to three weeks in bacteria isolated from different lymphoid organs. Bacteria expressing ZZM3 induced antibodies to M3, ZZ and to the Pf155/RESA antigen whereas, bacteria producing OmpAM3 induced similar levels of antibodies reactive with M3 but not with Pf155/RESA. Both recombinants induced a memory response of antibodies reactive with both M3 and Pf155/RESA. The high levels of M3 produced by the ZZ expression system make it suitable for the expression of heterologous antigens in Salmonella . Nevertheless, in spite of the quantitative difference in M3 expression, the ZZ and OmpA constructs elicited comparable immune responses to M3.  相似文献   

9.
A ring-infected erythrocyte surface antigen (RESA) has been detected by modified immunofluorescence assay in erythrocytes infected with the simian malaria parasite, Plasmodium fragile. This RESA, of Mr 95,000, shares many characteristics with the RESA initially found in the human malaria parasite P. falciparum. Both antigens are found in the membrane of erythrocytes infected with young asexual parasite stages, in merozoite-enriched preparations, and in parasite culture supernatant. Since the RESA of P. falciparum has been shown to confer protective immunity and since P. fragile infection of rhesus monkeys mimics P. falciparum infection in humans, the finding of a RESA in P. fragile underlines the importance of this species as an animal model for antimalarial vaccines.  相似文献   

10.
A specific association between spectrin and the inner surface of the human erythrocyte membrane has been examined by measuring the binding of purified [32P]spectrin to inside out, spectrin-depleted vesicles and to right side out ghost vesicles. Spectrin was labeled by incubating erythrocytes with 32Pi, and eluted from the ghost membranes by extraction in 0.3 mM NaPO4, pH 7.6. [32P]Spectrin was separated from actin and other proteins and isolated in a nonaggregated state as a So20,w = 7 S (in 0.3 mM NaPO4) or So20,w = 8 S (in 20 mM KCl, 0.3 mM NaPO4) protein after sedimentation on linear sucrose gradients. Binding of [32P]spectrin to inverted vesicles devoid of spectrin and actin was at least 10-fold greater than to right side out membranes, and exhibited different properties. Association with inside out vesicles was slow, was decreased to the value for right side out vesicles at high pH, or after heating spectrin above 50 degrees prior to assay, and was saturable with increasing levels of spectrin. Binding to everted vesicles was rapid, unaffected by pH or by heating spectrin, and rose linearly with the concentration of spectrin. Scatchard plots of binding to inverted vesicles were linear at pH 7.6, with a KD of 45 microng/ml, while at pH 6.6, plots were curvilinear and consistent with two types of interactions with a KD of 4 and 19 microng/ml, respectively. The maximal binding capacity at both pH values was about 200 microng of spectrin/mg of membrane protein. Unlabeled spectrin competed for binding with 50% displacement at 27 microng/ml. [32P]Spectrin dissociated and associated with inverted vesicles with an identical dependence on ionic strength as observed for elution of native spectrin from ghosts. MgCl2, CaCl2 (1 to 4 mM) and EDTA (0.5 to 1 mM) had little effect on binding in the presence of 20 mM KCl, while at low ionic strength, MgCl2 (1 mM) increased binding and inhibited dissociation to the same extent as 10 to 20 mM KCl. Binding was abolished by pretreatment of vesicles with 0.1 M acetic acid, or with 0.1 microng/ml of trypsin. The periodic acid-Schiff-staining bands were unaffected by trypsin digestion which destroyed binding; mild digestion, which decreased binding only 50%, converted Band 3 almost completely to a membrane-bound 50,000-dalton fragment resistant to further proteolysis. These experiments suggest that attachment of spectrin to the cytoplasmic surface of the membrane results from a selective protein-protein interaction which is independent of erythrocyte actin. A direct role of the major sialoglycoprotein or Band 3 as a membrane binding site appears unlikely.  相似文献   

11.
Role of Se in stabilization of human erythrocyte membrane skeleton   总被引:1,自引:0,他引:1  
Na2SeO3 supplementation in the ageing medium could protect aged erythrocyte ghosts from decreases in lipid fluidity, Na, K-ATPase activity, and sensitivity to ouabain. Results also showed that Se could obviously prevent the dissociation of spectrin from the erythrocyte membrane. Furthermore, Se could markedly promote the reassociation of spectrin with the spectrin-stripped inside out membrane vesicles(IOVs) of erythrocytes. The protective action of Se on biomembranes is generally interpreted in terms of the activity of Se-containing glutathione peroxidase (GSHPx). However, since GSHPx is mainly distributed in the cytoplasm of erythrocytes, the stabilizing effect of Se on erythrocyte membranes might not be related to the activity of this enzyme.  相似文献   

12.
The distributions of ankyrin, spectrin, band 3, and glycophorin A were examined in Plasmodium falciparum-infected erythrocytes by immunoelectron microscopy to determine whether movement of parasite proteins and membrane vesicles between the parasitophorous vacuole membrane and erythrocyte surface membrane involves internalization of host membrane skeleton proteins. Monospecific rabbit antisera to spectrin, band 3 and ankyrin and a mouse monoclonal antibody to glycophorin A reacted with these erythrocyte proteins in infected and uninfected human erythrocytes by immunoblotting. Cross-reacting malarial proteins were not detected. The rabbit sera also failed to immunoprecipitate [3H]isoleucine labeled malarial proteins from Triton X-100 and sodium dodecyl sulfate (SDS) extracts of infected erythrocytes. These three antibodies as well as the monoclonal antibody to glycophorin A bound to the membrane skeleton of infected and uninfected erythrocytes. The parasitophorous vacuole membrane was devoid of bound antibody, a result indicating that this membrane contains little, if any, of these host membrane proteins. With ring-, trophozoite- and schizont-infected erythrocytes, spectrin, band 3 and glycophorin A were absent from intracellular membranes including Maurer's clefts and other vesicles in the erythrocyte cytoplasm. In contrast, Maurer's clefts were specifically labeled by anti-ankyrin antibody. There was a slight, corresponding decrease in labeling of the membrane skeleton of infected erythrocytes. A second, morphologically distinct population of circular, vesicle-like membranes in the erythrocyte cytoplasm was not labeled with anti-ankyrin antibody. We conclude that membrane movement between the host erythrocyte surface membrane and parasitophorous vacuole membrane involves preferential sorting of ankyrin into a subpopulation of cytoplasmic membranes.  相似文献   

13.
Interactions between spectrin and the inner surface of the human erythrocyte membrane have been implicated in the control of lateral mobility of the integral membrane proteins. We report here that incubation of “leaky” erythrocytes with a water-soluble proteolytic fragment containing the membrane attachment site for spectrin achieves a selective and controlled dissociation of spectrin from the membrane, and increases the rate of lateral mobility of fluorescein isothiocyanate-labeled integral membrane proteins (> 70% of label in band 3 and PAS-1). Mobility of membrane proteins is measured as an increase in the percentage of uniformly fluorescent cells with time after fusion of fluorescent with nonfluorescent erythrocytes by Sendai virus. The cells are permeable to macromolecules since virus-fused erythrocytes lose most of their hemoglobin. The membrane attachment site for spectrin has been solubilized by limited proteolysis of inside-out erythrocyte vesicles and has been purified (V). Bennett, J Biol Chem 253:2292 (1978). This 72,000-dalton fragment binds to spectrin in solution, competitively inhibits association of 32P-spectrin with inside-out vesicles with a Ki of 10?7M, and causes rapid dissociation of 32P-spectrin from vesicles. Both acid-treated 72,000-dalton fragment and the 45,000 dalton-cytoplasmic portion of band 3, which also was isolated from the proteolytic digest, have no effect on spectrin binding, release, or membrane protein mobility. The enhancement of membrane protein lateral mobility by the same polypeptide that inhibits binding of spectrin to inverted vesicles and displaces spectrin from these vesicles provides direct evidence that the interaction of spectrin with protein components in the membrane restricts the lateral mobility of integral membrane proteins in the erythrocyte.  相似文献   

14.
The spectrins isolated from chicken erythrocytes and chicken intestinal brush border, TW260/240, share a common alpha subunit and a tissue-specific beta subunit. The ability of these related proteins to bind human erythrocyte inside out vesicles (IOVs) and human erythrocyte ankyrin in vitro have been quantitatively compared with human erythrocyte spectrin. Chicken erythrocyte spectrin binds human IOVs and human ankyrin with affinities nearly identical to that for human erythrocyte spectrin. TW260/240 does not significantly bind to either IOVs or ankyrin. These results demonstrate a remarkable tissue preservation of ankyrin-binding capacity, even between diverse species, and confirm the role of the avian beta-spectrins in modulating this functionality. Avian brush border spectrin may represent a unique spectrin which serves primarily as a filament cross-linker and which does not interact strongly with membrane-associated proteins.  相似文献   

15.
We have prepared an antibody against chicken erythrocyte α spectrin, using as immunogen protein purified by two-dimensional polyacrylamide gel electrophoresis. One- and two-dimensional immunoautoradiography show that this antiserum reacts only with α spectrin in chicken erythrocytes and crossreacts with α spectrin in erythrocytes from various mammals. Immunofluorescence reveals that this antiserum reacts with a plasma membrane component in erythrocytes as well as in most nonerythroid avian and mammalian cells. Intense staining is seen at or near the plasma membrane in neurons, lens cells, endothelial and epithelial cells of the gastrointestinal and respiratory tracts, skeletal and cardiac muscle, as well as skeletal myotubes grown in tissue culture. Immunoautoradiography indicates that the crossreactive antigen in these nonerythroid tissues has the same molecular weight and isoelectric point as the chicken erythrocyte antigen. Smooth muscle, tracheal cilia, myelin and mature sperm stain weakly or not at all. These results suggest that spectrin is more extensively distributed than previously recognized, and that the functions of spectrin elucidated for erythrocytes may apply to other cell types as well.  相似文献   

16.
Autologous cell mixtures containing T cells, B cells, and adherent accessory cells from individuals primed to the malaria parasite Plasmodium falciparum by repeated natural infections were investigated for induction of Ig and antibody secretion in vitro. In vitro activation of cell cultures with two synthetic peptides corresponding to immunodominant T cell epitopes of the merozoite Ag ring-infected erythrocyte surface Ag (Mr 155,000) (Pf155/RESA), one from its carboxyl-terminal repeat and one from its nonrepeated amino-terminal region, gave rise to significant IgG secretion. Supernatants from lymphocyte cultures activated with either one of these peptides contained antibodies reacting with P. falciparum Ag in immunofluorescence assays and with Pf155/RESA peptides in a slot blot assay. No anti-P. falciparum antibodies were induced in the medium controls by lymphocyte stimulation with either tetanus toxoid or PWM. Induction in vitro of anti-Pf155/RESA antibodies was correlated with the presence of such antibodies in the sera of the lymphocyte donors, suggesting that the induction of antibody secretion reflected a secondary response in vitro of in vivo primed cells. Inspection of antibody profiles in individual donors revealed that the peptide corresponding to a sequence in the 3' repeat region induced anti-Pf155/RESA peptide antibodies reacting with identical or related and cross-reacting sequences in the 3' or 5' repeat region of the molecule. In contrast, the peptide corresponding to a nonrepeated T cell epitope in the amino terminus of the molecule only induced antibodies to an immunodominant amino-terminal B cell epitope partly overlapping with the T cell reactive sequence. Similar findings were made in the lymphocyte donors' plasma, frequently displaying significant correlations between antibody reactivities to the repeat peptides but not between these reactivities and those to the amino-terminal peptide. The marked specificity of this antibody formation in vitro suggests an underlying process of cognate recognition involving Ag-specific T and B cells reacting with different segments of the inducer peptide. The present experimental system should be well suited for identification of Th epitopes capable of inducing the production of antibodies of defined specificity in the human system.  相似文献   

17.
Intracellular development of the malarial parasite results in substantial modifications of the membrane and cytoskeleton of the erythrocyte host cell. Two related Plasmodium falciparum-encoded proteins of 50 kDa and 43 kDa (Pf 50/43), identified by reactivity with a single mAb, were demonstrated to be localized to the erythrocyte cytoplasm of parasite-infected cells. Immunofluorescence and immunoelectron microscopy using mAb.7E11 demonstrated the Pf 50/43 is localized in the membrane of the vesicles in the erythrocyte cytoplasm, vesicles which correspond to Maurer's clefts. Solubility properties of the proteins suggest they are integral membrane proteins. By immunofluorescence, Pf 50/43 is shown to colocalize with actin which has a highly modified organization in the infected erythrocyte. Pf 50/43 is located exclusively in the vesicles, is not transported to the erythrocyte membrane or secreted. It is proposed the vesicles may play a role in transport of molecules across the erythrocyte cytoplasm, between the parasite and the external erythrocyte plasma membrane.  相似文献   

18.
PBMC from Melanesians who had high antibody reactivities to fusion proteins encompassing the 3' and the 5' repeat regions of the ring infected E surface antigen (Pf155/RESA), were tested for their ability to respond to synthetic and recombinant peptides representing regions of Pf155/RESA. The aim was to identify T cell epitopes within the Ag. Most of the synthetic peptides from the nonrepeat regions of Pf155/RESA were selected for study on the basis of their tendency to form amphipathic alpha-helices. Peptides representing immunodominant B cell epitopes were also tested. Three-quarters of the Melanesian donors responded to the recombinant peptides (Ag 1505 and Ag 632-100) and to the 8 x 4 mer, a synthetic peptide representative of the 3' repeat region. Whereas all the remaining eight peptides tested elicited a response in at least one donor, three peptides (M40, M42, and BTA3) representing sequences in the nonrepeat regions showed greatest promise as potentially useful T epitopes. Responses in control donors were also observed to most of the peptides but the percentage of responders was lower. T cell bulk lines specific to Ag 1505 and Ag 632-100 were established. All donors were HLA tissue typed, but no obvious correlations between responsiveness and HLA type were observed. Our results suggest that there are T cell epitopes within and outside the repeat regions of Pf155/RESA.  相似文献   

19.
During the asexual stage of malaria infection, the intracellular parasite exports membranes into the erythrocyte cytoplasm and lipids and proteins to the host cell membrane, essentially "transforming" the erythrocyte. To investigate lipid and protein trafficking pathways within Plasmodium falciparum-infected erythrocytes, synchronous cultures are temporally analyzed by confocal fluorescence imaging microscopy for the production, location and morphology of exported membranes (vesicles) and parasite proteins. Highly mobile vesicles are observed as early as 4 h postinvasion in the erythrocyte cytoplasm of infected erythrocytes incubated in vitro with C6-NBD-labeled phospholipids. These vesicles are most prevalent in the trophozoite stage. An immunofluorescence technique is developed to simultaneously determine the morphology and distribution of the fluorescent membranes and a number of parasite proteins within a single parasitized erythrocyte. Parasite proteins are visualized with FITC- or Texas red-labeled monoclonal antibodies. Double-label immunofluorescence reveals that of the five parasite antigens examined, only one was predominantly associated with membranes in the erythrocyte cytoplasm. Two other parasite antigens localized only in part to these vesicles, with the majority of the exported antigens present in lipid-free aggregates in the host cell cytoplasm. Another parasite antigen transported into the erythrocyte cytoplasm is localized exclusively in lipid-free aggregates. A parasite plasma membrane (PPM) and/or parasitophorous vacuolar membrane (PVM) antigen which is not exported always colocalizes with fluorescent lipids in the PPM/PVM. Visualization of two parasite proteins simultaneously using FITC- and Texas red-labeled 2 degrees antibodies reveals that some parasite proteins are constitutively transported in the same vesicles, whereas other are segregated before export. Of the four exported antigens, only one appears to cross the barriers of the PPM and PVM through membrane-mediated events, whereas the others are exported across the PPM/PVM to the host cell cytoplasm and surface membrane through lipid (vesicle)-independent pathways.  相似文献   

20.
The mature mammalian erythrocyte has a unique membranoskeleton, the spectrin-actin complex, which is responsible for many of the unusual membrane properties of the erythrocyte. Previous studies have shown that in successive stages of differentiation of the erythropoietic series leading to the mature erythrocyte there is a progressive increase in the density of spectrin associated with the membranes of these cells. An important stage of this progression occurs during the enucleation of the late erythroblast to produce the incipient reticulocyte, when all of the spectrin of the former cell is sequestered to the membrane of the reticulocyte. The reticulocyte itself, however, does not exhibit a fully formed membranoskeleton. In particular, the in vitro binding of multivalent ligands to specific membrane receptors on the reticulocyte was shown to cause a clustering of some fractions of these ligand-receptor complexes into special mobile domains on the cell surface. These domains of clustered ligand-receptor complexes became invaginated and endocytosed as small vesicles. By immunoelectron microscopic experiments, these invaginations and endocytosed vesicles were found to be specifically free of spectrin on their cytoplasmic surfaces. These earlier findings then raised the possibility that the maturation of reticulocytes to mature erythrocytes in vivo might involve a progressive loss of reticulocyte membrane free of spectrin, thereby producing a still more concentrated spectrin-actin membranoskeleton in the erythrocyte than in the reticulocyte. This proposal is tested experimentally in this paper. In vivo reticulocytes were observed in ultrathin frozen sections of spleens from rabbits rendered anemic by phenylhydrazine treatment. These sections were indirectly immunolabeled with ferritin-antibody reagents directed to rabbit spectrin. Most reticulocytes in a section had one or more surface invaginations and one or more intra-cellular vesicles that were devoid of spectrin labeling. The erythrocytes in the same sections did not exhibit these features, and their membranes were everywhere uniformly labeled for spectrin. Spectrin-free surface invaginations and intracellular vesicle were also observed with reticulocytes within normal rabbit spleens. Based on these results, a scheme for membrane remodeling during reticulocyte maturation in vivo is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号