首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Matrix metalloproteinases (MMPs) are involved in inflammatory reaction, including asthma-related airway inflammation. MMP-8, mainly produced by neutrophils, has recently been reported to be increased in the bronchoalveolar lavage fluid (BALF) from asthmatic patients. To evaluate the role of MMP-8 in asthma, we measured MMP-8 expression in lung tissue in an OVA-sensitized mouse model of asthma and addressed the effect of MMP-8 deletion on allergen-induced bronchial inflammation. MMP-8 production was increased in lungs from C57BL/6 mice exposed to allergens. After allergen exposure, MMP-8(-/-) mice developed an airway inflammation characterized by an increased neutrophilic inflammation in BALF and an increased neutrophilic and eosinophilic infiltration in the airway walls. MMP-8 deficiency was associated with increased levels of IL-4 and anti-OVA IgE and IgG1 in BALF and serum, respectively. Although allergen exposure induced an enhancement of LPS-induced CXC chemokine, KC, and MIP-2 levels in BALF and lung parenchyma, no difference was observed between the two genotypes. Inflammatory cell apoptosis was reduced in the lungs from MMP-8(-/-) mice. For the first time, our study evidences an important role of MMP-8 in the control of neutrophilic and eosinophilic infiltration during allergen-induced lung inflammation, and demonstrates that the anti-inflammatory effect of MMP-8 is partly due to a regulation of inflammatory cell apoptosis.  相似文献   

3.
The myeloid cell-derived calcium-binding murine protein, S100A8, is secreted to act as a chemotactic factor at picomolar concentrations, stimulating recruitment of myeloid cells to inflammatory sites. S100A8 may be exposed to oxygen metabolites, particularly hypochlorite, the major oxidant generated by activated neutrophils at inflammatory sites. Here we show that hypochlorite oxidizes the single Cys residue (Cys41) of S100A8. Electrospray mass spectrometry and SDS-polyacrylamide gel electrophoresis analysis indicated that low concentrations of hypochlorite (40 microM) converted 70-80% of S100A8 to the disulfide-linked homodimer. The mass was 20,707 Da, 92 Da more than expected, indicating additional oxidation of susceptible amino acids (possibly methionine). Phorbol 12-myristate 13-acetate activation of differentiated HL-60 granulocytic cells generated an oxidative burst that was sufficient to efficiently oxidize exogenous S100A8 within 10 min, and results implicate involvement of the myeloperoxidase system. Moreover, disulfide-linked dimer was identified in lung lavage fluid of mice with endotoxin-induced pulmonary injury. S100A8 dimer was inactive in chemotaxis and failed to recruit leukocytes in vivo. Positive chemotactic activity of recombinant Ala41S100A8 indicated that Cys41 was not essential for function and suggested that covalent dimerization may structurally modify accessibility of the chemotactic hinge domain. Disulfide-dependent dimerization may be a physiologically significant regulatory mechanism controlling S100A8-provoked leukocyte recruitment.  相似文献   

4.
Mast cell and monocyte recruitment by S100A12 and its hinge domain   总被引:1,自引:0,他引:1  
S100A12 is expressed at sites of acute, chronic, and allergic inflammation. S100 proteins have regions of high sequence homology, but the "hinge" region between the conserved calcium binding domains is structurally and functionally divergent. Because the murine S100A8 hinge domain (mS100A8(42-55)) is a monocyte chemoattractant whereas the human sequence (hS100A8(43-56)) is inactive, we postulated that common hydrophobic amino acids within the S100A12 hinge sequence may be functional. The hinge domain, S100A12(38-53), was chemotactic for human monocytes and murine mast cells in vitro. S100A12(38-53) provoked an acute inflammatory response similar to that elicited by S100A12 in vivo and caused edema and leukocyte and mast cell recruitment. Circular dichroism studies showed that S100A12(38-53) had increased helical structure in hydrophobic environments. Mutations in S100A12(38-53) produced using an alanine scan confirmed that specific hydrophobic residues (I44A, I47A, and I53A) on the same face of the helix were critical for monocyte chemotaxis in vitro and generation of edema in vivo. In a hydrophobic environment such as the cell membrane, these critical residues would likely align on one face of an alpha-helix to facilitate receptor interaction. Interaction is unlikely to occur via the receptor for advanced glycation end products but, rather, via a G-protein-coupled mechanism.  相似文献   

5.
The major cause of death in cystic fibrosis (CF) is chronic lung disease associated with persistent infection by the bacterium, Pseudomonas aeruginosa. S100A8, an S-100 calcium-binding protein with chemotactic activity, is constitutively expressed in the lungs and serum of CF patients. Levels of S100A8 mRNA were found to be three to four times higher in the lungs of mice carrying the G551D mutation in CF transmembrane conductance regulator compared with littermate controls. Intravenous injection of bacterial LPS induced S100A8 mRNA in the lung to a greater extent in G551D mice than in wild-type littermates. Localization of S100A8 mRNA and protein in the lung indicate that it is a marker for neutrophil accumulation. Bone marrow-derived macrophages from G551D mice were shown to also exhibit hypersensitivity to LPS, measured by induction of TNF-alpha. These results provide evidence that the pathology of CF relates to abnormal regulation of the immune system.  相似文献   

6.
Matrix metalloproteinase-8, released mainly from neutrophils, is a critical regulator of the inflammatory response by its ability to cleave multiple mediators. Herein, we report the results of a model of endotoxemia after intraperitoneal LPS injection in mice lacking MMP-8 and their wildtype counterparts. Control, saline-treated animals showed no differences between genotypes. However, there was an increased lung inflammatory response, with a prominent neutrophilic infiltration in mutant animals after LPS treatment. Using a proteomic approach, we identify alarmins S100A8 and S100A9 as two of the main differences between genotypes. Mice lacking MMP-8 showed a significant increase in these two molecules in lung homogenates, but not in spleen and serum. Mice lacking MMP-8 also showed an increase in MIP-1α levels and a marked activation of the non-canonical NF-κB pathway, with no differences in CXC-chemokines such as MIP-2 or LIX. These results show that MMP-8 can modulate the levels of S100A8 and S100A9 and its absence promotes the lung inflammatory response during endotoxemia.  相似文献   

7.
8.
9.
We investigated the roles of the potent, chemotactic antimicrobial proteins S100A8, S100A9, and S100A8/A9 in leukocyte migration in a model of streptococcal pneumonia. We first observed differential secretion of S100A8, S100A9, and S100A8/A9 that preceded neutrophil recruitment. This is partially explained by the expression of S100A8 and S100A9 proteins by pneumocytes in the early phase of Streptococcus pneumoniae infection. Pretreatment of mice with anti-S100A8 and anti-S100A9 Abs, alone or in combination had no effect on bacterial load or mice survival, but caused neutrophil and macrophage recruitment to the alveoli to diminish by 70 and 80%, respectively, without modifying leukocyte blood count, transendothelial migration or neutrophil sequestration in the lung vasculature. These decreases were also associated with a 68% increase of phagocyte accumulation in lung tissue and increased expression of the chemokines CXCL1, CXCL2, and CCL2 in lung tissues and bronchoalveolar lavages. These results show that S100A8 and S100A9 play an important role in leukocyte migration and strongly suggest their involvement in the transepithelial migration of macrophages and neutrophils. They also indicate the importance of antimicrobial proteins, as opposed to classical chemotactic factors such as chemokines, in regulating innate immune responses in the lung.  相似文献   

10.
Calprotectin has been recently described as a novel marker of obesity. The aim of this study was to determine the circulating concentrations and expression levels of calprotectin subunits (S100A8 and S100A9) in visceral adipose tissue (VAT), exploring its impact on insulin resistance and inflammation and the effect of weight loss. We included 53 subjects in the study. Gene expression levels of the S100A8/A9 complex were analyzed in VAT as well as in both adipocytes and stromovascular fraction cells (SVFCs). In addition, circulating calprotectin and soluble receptor for the advanced glycation end product (sRAGE) concentrations were measured before and after weight loss achieved by Roux-en-Y gastric bypass (RYGB) (n = 26). Circulating concentrations and VAT expression of S100A8/A9 complex were increased in normoglycemic and type 2 diabetic obese patients (P < 0.01) and associated with markers of inflammation (P < 0.01). Oppositely, concentrations of sRAGE were significantly lower (P < 0.001) in both obese groups compared to lean volunteers. Elevated calprotectin levels in obese patients decreased (P < 0.00001) after RYGB, whereas sRAGE concentrations tended to increase. Calprotectin was mainly expressed by SVFCs, and its expression was significantly correlated (P < 0.01) with mRNA levels of the monocyte-macrophage-related molecules macrophage-specific antigen CD68 (CD68), monocyte chemotactic protein 1 (MCP1), integrin α-M (CD11B), and NADPH oxidase 2 (NOX2). Tumor necrosis factor-α treatment significantly enhanced (P < 0.05) the mRNA levels of S100 calcium-binding protein A8 (S100A8) of human visceral adipocytes. The increased levels of calprotectin in obesity and obesity-associated type 2 diabetes, its positive association with inflammation as well as the higher expression levels in the SVFCs in VAT suggests a potential role of this protein as a chemotactic factor in the recruitment of macrophages to VAT, increasing inflammation and the development of obesity-associated comorbidities.  相似文献   

11.
S100A8 and S100A9 are members of the S100A8 protein family that exist as homodimers and heterodimers in neutrophils, monocytes, and macrophages. Recent studies have shown the pivotal roles of S100A8 and S100A9 in the propagation of inflammation and keratinocyte proliferation in psoriasis. We found significant up-regulation of S100A8 and S100A9 secretion from keratinocytes in psoriatic lesions. To mimic the in vivo secretory conditions of S100A8 and S100A9 from psoriatic epidermal keratinocytes, we used the culture medium (CM) of S100A8 and S100A8/A9 adenovirus-transduced keratinocytes to investigate the functions of S100A8 and S100A9. We detected increased levels of various pro-inflammatory cytokines in the CM, including IL-8 and TNF-α, which are involved in aggravating psoriatic skin lesions, and IL-6 and members of the CXCL family of pro-angiogenic cytokines. The CM increased immune cell migration and increased angiogenesis in human umbilical vein endothelial cells. In conclusion, we found that the upregulated production of S100A8 and S100A9 by psoriatic epidermal keratinocytes activated adjacent keratinocytes to produce several cytokines. Moreover, S100A8 and S100A9 themselves function as pro-angiogenic and chemotactic factors, generating a psoriatic milieu in skin.  相似文献   

12.
S100A12 is elevated in the circulation in patients with chronic inflammatory diseases and recent studies indicate pleiotropic functions. Serum amyloid A induces monocyte cytokines and tissue factor. S100A12 did not stimulate IL-6, IL-8, IL-1β or TNF-α production by human peripheral blood mononuclear cells but low amounts consistently reduced cytokine mRNA and protein levels induced by serum amyloid A, by ∼49% and ∼46%, respectively. However, S100A12 did not affect serum amyloid A-induced monocyte tissue factor. In marked contrast, LPS-induced cytokines or tissue factor were not suppressed by S100A12. S100A12 did not alter cytokine mRNA stability or the cytokine secretory pathway. S100A12 and serum amyloid A did not appear to form complexes and although they may have common receptors, suppression was unlikely via receptor competition. Serum amyloid A induces cytokines via activation of NF-κB and the MAPK pathways. S100A12 reduced serum amyloid A-, but not LPS-induced ERK1/2 phosphorylation to baseline. It did not affect JNK or p38 phosphorylation or the NF-κB pathway. Reduction in ERK1/2 phosphorylation by S100A12 was unlikely due to changes in intracellular reactive oxygen species, Ca2+ flux or to recruitment of phosphatases. We suggest that S100A12 may modulate sterile inflammation by blunting pro-inflammatory properties of lipid-poor serum amyloid A deposited in chronic lesions where both proteins are elevated as a consequence of macrophage activation.  相似文献   

13.
Clearance of allergic inflammatory cells from the lung through matrix metalloproteinases (MMPs) is necessary to prevent lethal asphyxiation, but mechanistic insight into this essential homeostatic process is lacking. In this study, we have used a proteomics approach to determine how MMPs promote egression of lung inflammatory cells through the airway. MMP2- and MMP9-dependent cleavage of individual Th2 chemokines modulated their chemotactic activity; however, the net effect of complementing bronchoalveolar lavage fluid of allergen-challenged MMP2(-/-)/MMP9(-/-) mice with active MMP2 and MMP9 was to markedly enhance its overall chemotactic activity. In the bronchoalveolar fluid of MMP2(-/-)/MMP9(-/-) allergic mice, we identified several chemotactic molecules that possessed putative MMP2 and MMP9 cleavage sites and were present as higher molecular mass species. In vitro cleavage assays and mass spectroscopy confirmed that three of the identified proteins, Ym1, S100A8, and S100A9, were substrates of MMP2, MMP9, or both. Function-blocking Abs to S100 proteins significantly altered allergic inflammatory cell migration into the alveolar space. Thus, an important effect of MMPs is to differentially modify chemotactic bioactivity through proteolytic processing of proteins present in the airway. These findings provide a molecular mechanism to explain the enhanced clearance of lung inflammatory cells through the airway and reveal a novel approach to target new therapies for asthma.  相似文献   

14.
Allergic airway inflammation is generally considered a Th2-type immune response. Recent studies, however, demonstrated that Th17-type immune responses also play important roles in this process, especially in the pathogenesis of neutrophilic airway inflammation, a hallmark of severe asthma. We previously reported that dendritic cells release dopamine to naive CD4(+) T cells in Ag-specific cell-cell interaction, in turn inducing Th17 differentiation through dopamine D1-like receptor (D1-like-R). D1-like-R antagonist attenuates Th17-mediated diseases such as experimental autoimmune encephalomyelitis and autoimmune diabetes. However, the effect of antagonizing D1-like-R on Th17-mediated airway inflammation has yet to be studied. In this study, we examined whether D1-like-R antagonist suppresses OVA-induced neutrophilic airway inflammation in OVA TCR-transgenic DO11.10 mice and then elucidated the mechanism of action. DO11.10 mice were nebulized with OVA or PBS, and some mice received D1-like-R antagonist orally before OVA nebulization. D1-like-R antagonist significantly suppressed OVA-induced neutrophilic airway inflammation in DO11.10 mice. It also inhibited the production of IL-17 and infiltration of Th17 cells in the lung. Further, D1-like-R antagonist suppressed the production of IL-23 by lung CD11c(+) APCs. In contrast, D1-like-R antagonist did not increase Foxp3(+) regulatory T cells in the lung. D1-like-R antagonist neither suppressed nonspecific LPS-induced neutrophilic airway inflammation nor OVA-induced eosinophilic airway inflammation. These results indicate that D1-like-R antagonist could suppress Th17-mediated neutrophilic airway inflammation, raising the possibility that antagonizing D1-like-R serves as a promising new strategy for treating neutrophil-dominant severe asthma.  相似文献   

15.
Chronic neutrophilic inflammation is a manifestation of a variety of lung diseases including cystic fibrosis (CF). There is increasing evidence that fragments of extracellular matrix proteins, such as collagen and elastin, play an important role in inflammatory cell recruitment to the lung in animal models of airway inflammation. Unfortunately, the association of these peptides with human disease and the identification of therapeutic targets directed toward these inflammatory pathways have remained elusive. In this study, we demonstrate that a novel extracellular matrix-derived neutrophil chemoattractant, proline-glycine-proline (PGP), acts through CXC receptors 1 and 2 on neutrophils, similar to N-acetylated proline-glycine-proline (N-alpha-PGP). We describe the specific multistep proteolytic pathway involved in PGP generation from collagen, involving matrix metalloproteases 8 and 9 and prolyl endopeptidase, a serine protease for which we identify a novel role in inflammation. PGP generation correlates closely with airway neutrophil counts after administration of proteases in vivo. Using CF as a model, we show that CF sputum has elevated levels of PGP peptides and that PGP levels decline during the course of CF inpatient therapy for acute pulmonary exacerbation, pointing to its role as a novel biomarker for this disease. Finally, we demonstrate that CF secretions are capable of generating PGP from collagen ex vivo and that this generation is significantly attenuated by the use of inhibitors directed toward matrix metalloprotease 8, matrix metalloprotease 9, or prolyl endopeptidase. These experiments highlight unique protease interactions with structural proteins regulating innate immunity and support a role for these peptides as novel biomarkers and therapeutic targets for chronic, neutrophilic lung diseases.  相似文献   

16.
Xu YD  Yin LM  Wang Y  Wei Y  Yang YQ 《生理学报》2012,64(2):231-237
S100A8, an important member of the S100 protein family, is a low-molecular-weight (10.8 kDa) calcium-binding protein containing conserved EF-hand structural motifs. Previous studies have shown that the biological function of S100A8 protein is associated with a variety of inflammatory diseases, for example asthma. S100A8 protein plays important roles in the regulation of inflammation. It can activate inflammatory cells and cytokines via chemotactic activity for neutrophils, and bind to the receptor for advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4), thus mediating intracellular inflammatory signaling transduction. Additionally, recent studies have reported the anti-inflammation activity of S100A8 protein, which indicates that S100A8 may have a more complex function of biological regulation in the different pathophysiological conditions. In this review, we summarized the studies on the functions and molecular mechanisms of S100A8 protein in inflammation, which would propose a novel strategy for the prophylaxis and treatment of asthma and other inflammatory diseases.  相似文献   

17.
Adenovirus (Ad), particularly Ad type 7 (Ad7), causes severe lung infection and pneumonia. Initially, Ad causes neutrophilic inflammation of the distal airways and alveoli. Interleukin-8 (IL-8) is the major lung neutrophil chemotaxin, and we have shown that Ad7 induces IL-8 release from the A549 alveolar epithelial cell line. We sought to determine whether ex vivo human and bovine lung tissue containing primary pneumocytes could be used as a more accurate and relevant model to study Ad acute inflammation. We found that cultured lung tissue preserved normal lung architecture for more than 10 days. IL-8 was generated upon exposure of the lung organ culture to Ad7. IL-8 production required activation of the Ras/Erk pathway, since a pharmacological inhibitor blocked the appearance of IL-8 in the medium. Both human and bovine lung explants supported replication of Ad7, and immunohistochemistry experiments demonstrated the presence of the Ad hexon antigen within alveolar epithelial cells. These findings show that our novel human lung organ culture accurately reproduces the in vivo infectious disease process. Thus, this organ culture model represents a valuable tool for studying the acute innate immune response to respiratory infections.  相似文献   

18.
Chronic lipopolysaccharide (LPS) inhalation in rodents recapitulates many classic features of chronic obstructive pulmonary disease seen in humans, including airways hyperresponsiveness, neutrophilic inflammation, cytokine production in the lung, and small airways remodeling. CD14-deficient mice (C57BL/6(CD14-/-)) have an altered response to systemic LPS, and yet the role of CD14 in the response to inhaled LPS has not been defined. We observed that C57BL/6(CD14-/-) mice demonstrate no discernable physiological or inflammatory response to a single LPS inhalation challenge. However, the physiological (airways hyperresponsiveness) and inflammatory (presence of neutrophils and TNF-alpha in whole lung lavage fluid) responsiveness to inhaled LPS in C57BL/6(CD14-/-) mice was restored by instilling soluble CD14 intratracheally. Intratracheal instillation of wild-type macrophages into C57BL/6(CD14-/-) mice restored neutrophilic inflammation only and failed to restore airways hyperresponsiveness or TNF-alpha protein in whole lung lavage. These findings demonstrate that CD14 is critical to LPS-induced airway disease and that macrophage CD14 is sufficient to initiate neutrophil recruitment into the airways but that CD14 may need to interact with other cell types as well for the development of airways hyperresponsiveness and for cytokine production.  相似文献   

19.
(S)-(+)-decursin is a biological coumarin compound isolated from Angelica gigas Nakai. (S)-(+)-decursin and its analogue have a variety of pharmacological activities. In the present study, the anti-inflammatory effect of a (S)-(+)-decursin derivative, (S)-(+)-3-(3,4-dihydroxy-phenyl)-acrylic acid 2,2-dimethyl-8-oxo-3,4-dihydro-2H,8H-pyrano [3,2-g]-chromen-3-yl-ester (Compound 6, C6), on in vitro and in vivo atopic dermatitis was investigated. C6 suppressed the secretion of IL-6, IL-8, and monocyte chemotactic protein-1 increase by the house dust mite extract in the eosinophilic leukemia cell line and THP-1 cells. C6 inhibited the production of TARC, IL-6, and IL-8 increase by IFN-γ and TNF-α in the human keratinocyte cell line. In the in vivo experiment, NC/Nga mice were sensitized to 2,4-dinitrochlorobenzene, and then C6 or dexamethasone (Dex) were orally and dorsally administered for three weeks. C6 treatment reduced the skin severity score compared with that of the control group. C6 inhibited the thickening of the epidermis and inflammatory cell infiltration into the dermis by evaluating the histological examination. The serum immunoglobulin E (IgE) level decreased in the C6–treated group compared with that of the control group. The inhibitory effect of C6 on IgE concentration was similar to that of Dex. The levels of IL-4, IL-5, IL-13, and eotaxin increased after treatment with concanavalin A in mouse splenocytes. The cytokine levels of the C6-treated group were lower than those of the control group. Taken together, C6 may attenuate atopic dermatitis-like lesions through its anti-inflammatory effect, such as inhibition of IgE and inflammatory cytokines, and it may be valuable as a therapeutic drug for the treatment of atopic dermatitis.  相似文献   

20.

Background

Bacterial products add to mechanical ventilation in enhancing lung injury. The role of endogenous triggers of innate immunity herein is less well understood. S100A8/A9 proteins are released by phagocytes during inflammation. The present study investigates the role of S100A8/A9 proteins in ventilator-induced lung injury.

Methods

Pulmonary S100A8/A9 levels were measured in samples obtained from patients with and without lung injury. Furthermore, wild-type and S100A9 knock-out mice, naive and with lipopolysaccharide-induced injured lungs, were randomized to 5 hours of spontaneously breathing or mechanical ventilation with low or high tidal volume (VT). In addition, healthy spontaneously breathing and high VT ventilated mice received S100A8/A9, S100A8 or vehicle intratracheal. Furthermore, the role of Toll-like receptor 4 herein was investigated.

Results

S100A8/A9 protein levels were elevated in patients and mice with lung injury. S100A8/A9 levels synergistically increased upon the lipopolysaccharide/high VT MV double hit. Markers of alveolar barrier dysfunction, cytokine and chemokine levels, and histology scores were attenuated in S100A9 knockout mice undergoing the double-hit. Exogenous S100A8/A9 and S100A8 induced neutrophil influx in spontaneously breathing mice. In ventilated mice, these proteins clearly amplified inflammation: neutrophil influx, cytokine, and chemokine levels were increased compared to ventilated vehicle-treated mice. In contrast, administration of S100A8/A9 to ventilated Toll-like receptor 4 mutant mice did not augment inflammation.

Conclusion

S100A8/A9 proteins increase during lung injury and contribute to inflammation induced by HVT MV combined with lipopolysaccharide. In the absence of lipopolysaccharide, high levels of extracellular S100A8/A9 still amplify ventilator-induced lung injury via Toll-like receptor 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号