首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Transient absorption spectroscopy in the time range from -1 ps to 4 ns, and over the wavelength range from 420 to 550 nm, was applied to the Glu46Gln mutant of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila. This has allowed us to elucidate the kinetic constants of excited state formation and decay and photochemical product formation, and the spectral characteristics of stimulated emission and the early photocycle intermediates. Both the quantum efficiency ( approximately 0.5) and the rate constants for excited state decay and the formation of the initial photochemical intermediate (I(0)) were found to be quite similar to those obtained for wild-type PYP. In contrast, the rate constants for the formation of the subsequent photocycle intermediates (I(0)(double dagger) and I(1)), as well as for I(2) and for ground state regeneration as determined in earlier studies, were found to be from 3- to 30-fold larger. The structural implications of these results are discussed.  相似文献   

2.
In the photoactive yellow protein, PYP, both Glu46 and Tyr42 form hydrogen bonds to the phenolic OH group of the p-hydroxycinnamoyl chromophore. Previous work on replacement of the carboxyl group of Glu46 by an amide group (Glu46Gln) has shown that changing the nature of this hydrogen bond has a minimal effect on the rate constant for the formation of the first intermediate (I(0)) and on the excited state lifetime, whereas the rate constants for the formation of the second (I(0)( not equal)) and third (I(1)) intermediates were increased by factors of approximately 30 and 5, respectively. In the present experiments, two additional mutants (Glu46Ala and Tyr42Phe) have been studied. These two mutants are shown to behave kinetically very similarly to one another. In both cases, the rate constant for I(0) formation is decreased by a factor of approximately 2, with little or no effect on the photochemical yield as a consequence of a compensating increase in the excited state lifetime. Although we are unable to resolve the rate constant for the formation of the second intermediate from that of the first intermediate, the rate constant for the formation of the third intermediate is increased by a factor of approximately 100. The structural implications of these results are discussed.  相似文献   

3.
We studied the kinetics of proton uptake and release by photoactive yellow protein (PYP) from Ectothiorhodospira halophila in wild type and the E46Q and E46A mutants by transient absorption spectroscopy with the pH-indicator dyes bromocresol purple or cresol red in unbuffered solution. In parallel, we investigated the kinetics of chromophore protonation as monitored by the rise and decay of the blue-shifted state I(2) (lambda(max) = 355 nm). For wild type the proton uptake kinetics is synchronized with the fast phase of I(2) formation (tau = 500 micros at pH 6.2). The transient absorption signal from the dye also contains a slower component which is not due to dye deprotonation but is caused by dye binding to a hydrophobic patch that is transiently exposed in the structurally changed and partially unfolded I(2) intermediate. This conclusion is based on the wavelength, pH, and concentration dependence of the dye signal and on dye measurements in the presence of buffer. SVD analysis, moreover, indicates the presence of two components in the dye signal: protonation and dye binding. The dye binding has a rise time of about 4 ms and is coupled kinetically with a transition between two I(2) intermediates. In the mutant E46Q, which lacks the putative internal proton donor E46, the formation of I(2) is accelerated, but the proton uptake kinetics remains kinetically coupled to the fast phase of I(2) formation (tau = 100 micros at pH 6.3). For this mutant the protein conformational change, as monitored by the dye binding, occurs with about the same time constant as in wild type but with reduced amplitude. In the alkaline form of the mutant E46A the formation of the I(2)-like intermediate is even faster as is the proton uptake (tau = 20 micros at pH 8.3). No dye binding occurred in E46A, suggesting the absence of a conformational change. In all of the systems proton release is synchronized with the decay of I(2). Our results support mechanisms in which the chromophore of PYP is protonated directly from the external medium rather than by the internal donor E46.  相似文献   

4.
Crystallographic and spectroscopic analyses of three hinge-bending mutants of the photoactive yellow protein are described. Previous studies have identified Gly(47) and Gly(51) as possible hinge points in the structure of the protein, allowing backbone segments around the chromophore to undergo large concerted motions. We have designed, crystallized, and solved the structures of three mutants: G47S, G51S, and G47S/G51S. The protein dynamics of these mutants are significantly affected. Transitions in the photocycle, measured with laser induced transient absorption spectroscopy, show rates up to 6-fold different from the wild type protein and show an additive effect in the double mutant. Compared with the native structure, no significant conformational differences were observed in the structures of the mutant proteins. We conclude that the structural and dynamic integrity of the region around these mutations is of crucial importance to the photocycle and suggest that the hinge-bending properties of Gly(51) may also play a role in PAS domain proteins where it is one of the few conserved residues.  相似文献   

5.
In the bacterial photoreceptor photoactive yellow protein (PYP), absorption of blue light by its chromophore leads to a conformational change in the protein associated with differential signaling activity, as it executes a reversible photocycle. Time-resolved Laue crystallography allows structural snapshots (as short as 150 ps) of high crystallographic resolution (approximately 1.6 A) to be taken of a protein as it functions. Here, we analyze by singular value decomposition a comprehensive time-resolved crystallographic data set of the E46Q mutant of PYP throughout the photocycle spanning 10 ns-100 ms. We identify and refine the structures of five distinct intermediates and provide a plausible chemical kinetic mechanism for their inter conversion. A clear structural progression is visible in these intermediates, in which a signal generated at the chromophore propagates through a distinct structural pathway of conserved residues and results in structural changes near the N terminus, over 20 A distant from the chromophore.  相似文献   

6.
The blue light receptor photoactive yellow protein (PYP) displays rhodopsin-like photochemistry based on the trans to cis photoisomerization of its p-coumaric acid chromophore. Here, we report that protein refolding from the acid-denatured state of PYP mimics the last photocycle transition in PYP. This implies a direct link between transient protein unfolding and photosensory signal transduction. We utilize this link to study general issues in protein folding. Chromophore trans to cis photoisomerization in the acid-denatured state strongly decelerates refolding, and converts the pH dependence of the barrier for refolding from linear to nonlinear. We propose transition state movement to explain this phenomenon. The cis chromophore significantly stabilizes the acid-denatured state, but acidification of PYP results in the accumulation of the acid-denatured state containing a trans chromophore. This provides a clear example of kinetic control in a protein unfolding reaction. These results demonstrate the power of PYP as a light-triggered model system to study protein folding.  相似文献   

7.
Light-induced activation of the photoreceptors phytochrome and photoactive yellow protein (PYP) is accompanied by protonation changes of the respective chromophores and key residues in the protein moiety. For both systems, proton exchange with the external medium could be observed with pH electrode measurements and with UV-visible absorption spectroscopy using appropriate pH indicator dyes. From these signals, the stoichiometry of proton release and uptake, respectively, was determined by different calibration procedures which will be presented and discussed. Kinetic information on these processes is only available from time-resolved measurements with pH indicator dyes. Vibrational spectroscopy methods such as Fourier transform infrared spectroscopy and resonance Raman scattering provided information on the protonation state of individual functional groups suggesting that internal proton transfer processes are involved as well. Deuterium kinetic isotope effects that occurred in the Pr --> Pfr phototransformation of the bacteriophytochromes Cph1 and Agp1 were consistent with proton transfer reactions as rate-limiting steps. In contrast, the apparent rate constants in the photocycle of PYP exhibited only small kinetic isotope effects that could not be interpreted conclusively. Possible mechanisms of proton transfer in the activation of phytochrome and PYP will be discussed.  相似文献   

8.
The fluorescence decays of several analogues of the photoactive yellow protein (PYP) chromophore in aqueous solution have been measured by femtosecond fluorescence up-conversion and the corresponding time-resolved fluorescence spectra have been reconstructed. The native chromophore of PYP is a thioester derivative of p-coumaric acid in its trans deprotonated form. Fluorescence kinetics are reported for a thioester phenyl analogue and for two analogues where the thioester group has been changed to amide and carboxylate groups. The kinetics are compared to those we previously reported for the analogues bearing ketone and ester groups. The fluorescence decays of the full series are found to lie in the 1-10 ps range depending on the electron-acceptor character of the substituent, in good agreement with the excited-state relaxation kinetics extracted from transient absorption measurements. Steady-state photolysis is also examined and found to depend strongly on the nature of the substituent. While it has been shown that the ultrafast light-induced response of the chromophore in PYP is controlled by the properties of the protein nanospace, the present results demonstrate that, in solution, the relaxation dynamics and pathway of the chromophore is controlled by its electron donor-acceptor structure: structures of stronger electron donor-acceptor character lead to faster decays and less photoisomerisation.  相似文献   

9.
Photoactive yellow protein (PYP) is a prototype of the PAS domain superfamily of signaling proteins. The signaling process is coupled to a three-state photocycle. After the photoinduced trans-cis isomerization of the chromophore, 4-hydroxycinnamic acid (pCA), an early intermediate (pR) is formed, which proceeds to a second intermediate state (pB) on a sub-millisecond time scale. The signaling process is thought to be connected to the conformational changes upon the formation of pB and its recovery to the ground state (pG), but the exact signaling mechanism is not known. Experimental studies of PYP by solution NMR and X-ray crystallography suggest a very flexible protein backbone in the ground as well as in the signaling state. The relaxation from the pR to the pB state is accompanied by the protonation of the chromophore's phenoxyl group. This was found to be of crucial importance for the relaxation process. With the goal of gaining a better understanding of these experimental observations on an atomistic level, we performed five MD simulations on the three different states of PYP: a 1 ns simulation of PYP in its ground state [pG(MD)], a 1 ns simulation of the pR state [pR(MD)], a 2 ns simulation of the pR state with the chromophore protonated (pRprot), a 2 ns simulation of the pR state with Glu46 exchanged by Gln (pRGln) and a 2 ns simulation of PYP in its signaling state [pB(MD)]. Comparison of the pG simulation results with X-ray and NMR data, and with the results obtained for the pB simulation, confirmed the experimental observations of a rather flexible protein backbone and conformational changes during the recovery of the pG from the pB state. The conformational changes in the region around the chromophore pocket in the pR state were found to be crucially dependent on the strength of the Glu46-pCA hydrogen bond, which restricts the mobility of the chromophore in its unprotonated form considerably. Both the mutation of Glu46 with Gln and the protonation of the chromophore weaken this hydrogen bond, leading to an increased mobility of pCA and large structural changes in its surroundings. These changes, however, differ considerably during the pRGln and pRprot simulations, providing an atomistic explanation for the enhancement of the rate constant in the Gln46 mutant. Electronic supplementary material to this article is available at and is accessible for athorized users. Electronic Publication  相似文献   

10.
Y Imamoto  K Mihara  F Tokunaga  M Kataoka 《Biochemistry》2001,40(48):14336-14343
The absorption spectra of photocycle intermediates of photoactive yellow protein mutants were compared with those of the corresponding intermediates of wild type to probe which amino acid residues interact with the chromophore in the intermediate states. B and H intermediates were produced by irradiation and trapped at 80 K, and L intermediates at 193 K. The absorption spectra of these intermediates produced from R52Q were identical to those from wild type, whereas those from E46Q and T50V were 7-15 nm red-shifted as those in the dark states. The absorption spectra of M intermediates were measured by flash photolysis at room temperature. Those of Y42F, T50V, and R52Q were identical to that of wild type, whereas that of E46Q was 11 nm red-shifted. Assuming that the intermediates of mutants have a structure comparable to that of wild type, these findings suggest the following: Glu46 interacts with the chromophore throughout the photocycle, interaction between the chromophore and Thr50 as well as Tyr42 is lost upon the formation of M intermediate, and Arg52 never interacts with the chromophore directly. The hydrogen-bonding network around the phenolic oxygen of the chromophore would be thus maintained until L intermediate decays, and the global conformational change would take place by the loss of the hydrogen bond between the chromophore and Tyr42. This model conflicts with some of the results of previous crystallographic studies, suggesting that the reaction mechanism in the crystal may be different from that in solution.  相似文献   

11.
The absorption spectra of two photoactive yellow protein model chromophores have been measured in vacuum using an electrostatic ion storage ring. The absorption spectrum of the isolated chromophore is an important reference for deducing the influence of the protein environment on the electronic energy levels of the chromophore and separating the intrinsic properties of the chromophore from properties induced by the protein environment. In vacuum the deprotonated trans-thiophenyl-p-coumarate model chromophore has an absorption maximum at 460 nm, whereas the photoactive yellow protein absorbs maximally at 446 nm. The protein environment thus only slightly blue-shifts the absorption. In contrast, the absorption of the model chromophore in aqueous solution is significantly blue-shifted (lambda(max) = 395 nm). A deprotonated trans-p-coumaric acid has also been studied to elucidate the effect of thioester formation and phenol deprotonation. The sum of these two changes on the chromophore induces a red shift both in vacuum and in aqueous solution.  相似文献   

12.
The light-induced isomerization of a double bond is the key event that allows the conversion of light energy into a structural change in photoactive proteins for many light-mediated biological processes, such as vision, photosynthesis, photomorphogenesis, and photo movement. Cofactors such as retinals, linear tetrapyrroles, and 4-hydroxy-cinnamic acid have been selected by nature that provide the essential double bond to transduce the light signal into a conformational change and eventually, a physiological response. Here we report the first events after light excitation of the latter chromophore, containing a single ethylene double bond, in a low temperature crystallographic study of the photoactive yellow protein. We measured experimental phases to overcome possible model bias, corrected for minimized radiation damage, and measured absorption spectra of crystals to analyze the photoproducts formed. The data show a mechanism for the light activation of photoactive yellow protein, where the energy to drive the remainder of the conformational changes is stored in a slightly strained but fully cis-chromophore configuration. In addition, our data indicate a role for backbone rearrangements during the very early structural events.  相似文献   

13.
The change in the electrostatic properties on excitation of the cofactor of wild-type photoactive yellow protein (WT-PYP) have been directly determined using Stark-effect spectroscopy. We find that, instantaneously on photon absorption, there is a large change in the permanent dipole moment, /Delta(-->)mu/, (26 Debye) and in the polarizability, (-)Deltaalpha, (1000 A(3)). We expect such a large degree of charge motion to have a significant impact on the photocycle that is associated with the important blue-light negative phototactic response of Halorhodospira halophila. Furthermore, changing E46 to Q in WT-PYP does not significantly alter its electrostatic properties, whereas, altering the chromophore to prevent it from undergoing trans-cis isomerization results in a significant diminution of /Delta(-->)mu/ and (-)Deltaalpha. We propose that the enormous charge motion that occurs on excitation of 4-hydroxycinnamyl thioester, the chromophore in WT-PYP, plays a crucial role in initiating the photocycle by translocation of the negative charge, localized on the phenolate oxygen in the ground state, across the chromophore. We hypothesize that this charge motion would consequently increase the flexibility of the thioester tail thereby decreasing the activation barrier for the rotation of this moiety in the excited state.  相似文献   

14.
Baker HM  He QY  Briggs SK  Mason AB  Baker EN 《Biochemistry》2003,42(23):7084-7089
Human transferrin is a serum protein whose function is to bind Fe(3+) with very high affinity and transport it to cells, for delivery by receptor-mediated endocytosis. Structurally, the transferrin molecule is folded into two globular lobes, representing its N-terminal and C-terminal halves, with each lobe possessing a high-affinity iron binding site, in a cleft between two domains. Central to function is a highly conserved set of iron ligands, including an aspartate residue (Asp63 in the N-lobe) that also hydrogen bonds between the two domains and an arginine residue (Arg124 in the N-lobe) that binds an iron-bound carbonate ion. To further probe the roles of these residues, we have determined the crystal structures of the D63E and R124A mutants of the N-terminal half-molecule of human transferrin. The structure of the D63E mutant, determined at 1.9 A resolution (R = 0.245, R(free) = 0.261), showed that the carboxyl group still binds to iron despite the larger size of the Glu side chain, with some slight rearrangement of the first turn of alpha-helix residues 63-72, to which it is attached. The structure of the R124A mutant, determined at 2.4 A resolution (R = 0.219, R(free) = 0.288), shows that the loss of the arginine side chain results in a 0.3 A displacement of the carbonate ion, and an accompanying movement of the iron atom. In both mutants, the iron coordination is changed slightly, the principal change being in each case a lengthening of the Fe-N(His249) bond. Both mutants also release iron more readily than the wild type, kinetically and in terms of acid lability of iron binding. We attribute this to more facile protonation of the synergistically bound carbonate ion, in the case of R124A, and to strain resulting from the accommodation of the larger Glu side chain, in the case of D63E. In both cases, the weakened Fe-N(His) bond may also contribute, consistent with protonation of the His ligand being an early intermediate step in iron release, following the protonation of the carbonate ion.  相似文献   

15.
We report a comparative study of the isomerization reaction in native and denatured photoactive yellow protein (PYP) and in various chromophore analogues in their trans deprotonated form. The excited-state relaxation dynamics was followed by subpicosecond transient absorption and gain spectroscopy. The free p-hydroxycinnamate (pCA(2-)) and its amide analogue (pCM(-)) are found to display a quite different transient spectroscopy from that of PYP. The excited-state deactivation leads to the formation of the ground-state cis isomer without any detectable intermediate with a mechanism comparable to trans-stilbene photoisomerization. On the contrary, the early stage of the excited-state deactivation of the free thiophenyl-p-hydroxycinnamate (pCT(-)) and of the denatured PYP is similar to that of the native protein. It involves the formation of an intermediate absorbing in the spectral region located between the bleaching and gain bands in less than 2 ps. However, in these two cases, the formation of the cis isomer has not been proved yet. This difference with pCA(-) and pCM(-) might result from the fact that, in the thioester substituted chromophore, simultaneous population of two quasi-degenerate excited states occurs upon excitation. This comparative study highlights the determining role of the chromophore structure and of its intrinsic properties in the primary molecular events in native PYP.  相似文献   

16.
The light-induced global conformational change of photoactive yellow protein was directly observed by small-angle X-ray scattering (SAXS). The N-terminal 6, 15, or 23 amino acid residues were enzymatically truncated (T6, T15, or T23, respectively), and their near-UV intermediates were accumulated under continuous illumination for SAXS measurements. The Kratky plot demonstrated that illumination induced partial loss of globularity. The change in globularity was marked in T6 but very small in T15 and T23, suggesting that structural change in positions 7-15 mainly reduces the globularity. The radius of gyration (R(g)) estimated by Guinier plot was increased by 1.1 A for T6 and 0.7 A for T15 and T23 upon illumination. As T23 lacks most of the N-terminal loop, structural change in the main part composed of the PAS core, helical connector, and beta-scaffold caused an increase of R(g) by 0.7 A. The structural change of positions 7-15 caused an additional increase by 0.4 A. The decrease of R(g) upon truncation of positions 7-15 for dark state was 0.3 A, while that for the intermediate was 0.7 A, suggesting that this region moves outward on formation of the intermediate. These results indicate that a light-induced structural change of PYP takes place in the main part and N-terminal 15 amino acid residues. The former induces only dimensional increase, but the latter results in additional change in shape.  相似文献   

17.
Dispersed pump-dump-probe spectroscopy has the ability to characterize and identify the underlying ultrafast dynamical processes in complicated chemical and biological systems. This technique builds on traditional pump-probe techniques by exploring both ground- and excited-state dynamics and characterizing the connectivity between constituent transient states. We have used the dispersed pump-dump-probe technique to investigate the ground-state dynamics and competing excited-state processes in the excitation-induced ultrafast dynamics of thiomethyl p-coumaric acid, a model chromophore for the photoreceptor photoactive yellow protein. Our results demonstrate the parallel formation of two relaxation pathways (with multiple transient states) that jointly lead to two different types of photochemistry: cis-trans isomerization and detachment of a hydrated electron. The relative transition rates and quantum yields of both pathways have been determined. We find that the relaxation of the photoexcited chromophores involves multiple, transient ground-state intermediates and the chromophore in solution does not generate persistent photoisomerized products, but instead undergoes photoionization resulting in the generation of detached electrons and radicals. These results are of great value in interpreting the more complex dynamical changes in the optical properties of the photoactive yellow protein.  相似文献   

18.
The kinetics of conformational change in the N-terminal region of photoactive yellow protein (PYP) was studied by the time-resolved diffusion measurement. The transient grating signal that represented the protein diffusion of the ground state and pB state depended on the observation time range. An analysis of the signal based on the time-dependent diffusion coefficient clearly showed that protein diffusion changed with a time constant of 170 μs, corresponding to the pR2 → pB′ transition. Since a previous diffusion study of N-terminal truncated PYPs had revealed that the change in the diffusion coefficient reflected the unfolding of the α-helices in the N-terminal region of PYP, the results indicate that this unfolding took place at the same rate as the pR2 → pB′ transition. This demonstrates that the response of the conformational change in the N-terminal region was quite fast, probably due to changes in a specific hydrogen-bonding network of this domain.  相似文献   

19.
The N-terminally truncated variant of photoactive yellow protein (Delta25-PYP) undergoes a very similar photocycle as the corresponding wild-type protein (WT-PYP), although the lifetime of its light-illuminated (pB) state is much longer. This has allowed determination of the structure of both its dark- (pG) as well as its pB-state in solution by nuclear magnetic resonance (NMR) spectroscopy. The pG structure shows a well-defined fold, similar to WT-PYP and the X-ray structure of the pG state of Delta25-PYP. In the long-lived photocycle intermediate pB, the central beta sheet is still intact, as well as a small part of one alpha helix. The remainder of pB is unfolded and highly flexible, as evidenced by results from proton-deuterium exchange and NMR relaxation studies. Thus, the partially unfolded nature of the presumed signaling state of PYP in solution, as suggested previously, has now been structurally demonstrated.  相似文献   

20.
Mutant forms of aromatase cytochrome P-450 bearing modifications of amino acid residues Pro308 and Asp309 and expressed in transfected Chinese hamster ovary cells were subjected to kinetic analysis and inhibition studies. The Km for androstenedione for expressed wild type (11.0 +/- 0.3 nM SEM, n = 3) increased 4-, 25- and 31-fold for mutants Pro308Phe, Asp309Asn and Asp309Ala, respectively. There were significant differences in sensitivity among wild type and mutants to highly selective inhibitors of estrogen biosynthesis. 4-Hydroxyandrostenedione (4-OHA) a strong inhibitor of wild type aromatase activity (IC50 = 21 nM and Ki = 10 nM), was even more effective against mutant Pro308Phe (IC50 = 13 nM and Ki = 2.8 nM), but inhibition of mutants Asp309Asn and Asp309Ala was considerably less (IC50 = 345 and 330 nM and Ki = 55 and 79 nM, respectively). Expressed wild type aromatase and Pro308Phe aromatase were strongly inhibited by CGS 16949A (IC50 = 4.0 and 4.6 nM, respectively) whereas mutants Asp309Asn and Asp309Ala were markedly less sensitive (IC50 = 140 and 150 nM, respectively). CGS 18320B produced similar inhibition. Kinetic analyses produced Ki = 0.4 nM for CGS 16949A inhibition of wild type versus 1.1, 37 and 58 nM, respectively, against Pro308Phe, Asp309Asn and Asp309Ala. The results demonstrate significant changes in function resulting from single amino acid modifications of the aromatase enzyme. Our data indicate that mutation in Asp309 creates a major distortion in the substrate binding site, rendering the enzyme much less efficient for androstenedione aromatization. The substitution of Pro308 with Phe produces weaker affinity for androstenedione in the substrate pocket, but this alteration favors 4-OHA binding. Similarly, mutant Pro308Phe exhibits a slightly greater sensitivity to inhibition by CGS 18320B than does the wild type. These results indicate that residues Pro308 and Asp309 play critical roles in determining substrate specificity and catalytic capability in aromatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号