首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Rat hepatocytes, freshly isolated with a collagenase perfusion technique, were found to attach within 1 h on collagen substrates and on culture dishes coated with cold insoluble globulin (CIG) or asialoceruloplasmin (AC). Spreading was observed on collagen and CIG but not on AC. Both attachment and spreading occurred in a simple balanced salt solution in the absence of serum. In the absence of serum no attachment was observed on plain plastic dishes or on dishes coated with serum albumin or other plasma proteins, unless divalent manganese ions were present. In the presence of manganese the hepatocytes attached to all surfaces tested, but no spreading occurred. Attachment to collagen occurred equally well to collagens type I or type III both in the native, fibrillar state and in the denatured state. Collagen attachment required magnesium ions but did not appear to involve the collagen-linked carbohydrates. Different mechanisms were found to operate in hepatocyte attachment to collagen and to AC; the latter is most likely mediated by the hepatocyte surface receptor involved in recognition and uptake of asialoglycoproteins. The role of CIG in hepatocyte attachment to collagen was investigated. Data are presented suggesting that this glycoprotein, which mediates the adhesion of fibroblasts to collagen, is not required for hepatocyte attachment to collagen.  相似文献   

2.
Summary The influence of trout serum on the attachment and spreading of isolated trout hepatocytes maintained in primary culture at different temperatures was evaluated. Hepatocytes were obtained from young rainbow trout (Salmo gairdneri) by collagenase dissociation and maintained in modified Leibowitz L15 medium at 10° or 27° C for 24 h in plastic dishes previously coated with type I bovine collagen. In the absence of serum, fewer than 10% of hepatocytes attached and none of them spread on the collagen substrate. Trout serum at concentrations as low as 1.25% in the medium resulted in a pronounced concentration-dependent increase in hepatocyte attachment, as determined by direct counts by phase contrast microscopy, or by percentage of lactate dehydrogenase activity attached to the dishes after washing away unattached cells. Attachment rates were greater at the lower temperature (10° C). Trout serum also substantially increased the proportion of attached hepatocytes that spread as monolayers on the collagen substrate, especially at 10° C. By comparison, fetal bovine serum had little influence on the attachment or spreading of trout hepatocytes. These studies demonstrate a simple inexpensive method for preparing attached monolayer trout hepatocyte cultures. This procedure may be useful in toxicologic or functional studies in which fish hepatocyte attachment is an operational requirement.  相似文献   

3.
The angiogenic factor, basic fibroblast growth factor (FGF), either stimulates endothelial cell growth or promotes capillary differentiation depending upon the microenvironment in which it acts. Analysis of various in vitro models of spontaneous angiogenesis, in combination with time-lapse cinematography, demonstrated that capillary tube formation was greatly facilitated by promoting multicellular retraction and cell elevation above the surface of the rigid culture dish or by culturing endothelial cells on malleable extracellular matrix (ECM) substrata. These observations suggested to us that mechanical (i.e., tension-dependent) interactions between endothelial cells and ECM may serve to regulate capillary development. To test this hypothesis, FGF-stimulated endothelial cells were grown in chemically defined medium on bacteriological (nonadhesive) dishes that were precoated with different densities of fibronectin. Extensive cell spreading and growth were promoted by fibronectin coating densities that were highly adhesive (greater than 500 ng/cm2), whereas cell rounding, detachment, and loss of viability were observed on dishes coated with low fibronectin concentrations (less than 100 ng/cm2). Intermediate fibronectin coating densities (100-500 ng/cm2) promoted cell extension, but they could not completely resist cell tractional forces. Partial retraction of multicellular aggregates resulted in cell shortening, cessation of growth, and formation of branching tubular networks within 24-48 h. Multicellular retraction and subsequent tube formation also could be elicited on highly adhesive dishes by overcoming the mechanical resistance of the substratum using higher cell plating numbers. Dishes coated with varying concentrations of type IV collagen or gelatin produced similar results. These results suggest that ECM components may act locally to regulate the growth and pattern-regulating actions of soluble FGF based upon their ability to resist cell-generated mechanical loads. Thus, we propose that FGF-stimulated endothelial cells may be "switched" between growth, differentiation, and involution modes during angiogenesis by altering the adhesivity or mechanical integrity of their ECM.  相似文献   

4.
This study was undertaken to determine the importance of integrin binding and cell shape changes in the control of cell-cycle progression by extracellular matrix (ECM). Primary rat hepatocytes were cultured on ECM-coated dishes in serum-free medium with saturating amounts of growth factors (epidermal growth factor and insulin). Integrin binding and cell spreading were promoted in parallel by plating cells on dishes coated with fibronectin (FN). Integrin binding was separated from cell shape changes by culturing cells on dishes coated with a synthetic arg-gly-asp (RGD)-peptide that acts as an integrin ligand but does not support hepatocyte extension. Expression of early (junB) and late (ras) growth response genes and DNA synthesis were measured to determine whether these substrata induce G0-synchronized hepatocytes to reenter the growth cycle. Cells plated on FN exhibited transient increases in junB and ras gene expression (within 2 and 8 h after plating, respectively) and synchronous entry into S phase. Induction of junB and ras was observed over a similar time course in cells on RGD-coated dishes, however, these round cells did not enter S phase. The possibility that round cells on RGD were blocked in mid to late G1 was confirmed by the finding that when trypsinized and replated onto FN-coated dishes after 30 h of culture, they required a similar time (12-15 h) to reenter S phase as cells that had been spread and allowed to progress through G1 on FN. We have previously shown that hepatocytes remain viable and maintain high levels of liver-specific functions when cultured on these RGD-coated dishes. Thus, these results suggest that ECM acts at two different points in the cell cycle to regulate hepatocyte growth: first, by activating the G0/G1 transition via integrin binding and second, by promoting the G1/S phase transition and switching off the default differentiation program through mechanisms related to cell spreading.  相似文献   

5.
We have examined the interaction of adult rat hepatocytes in primary culture, to type IV collagen, fibronectin, and laminin, the major basement membrane proteins of normal rat liver. Culture substrata consisted of glass coverslips, which were covalently derivatized with individual purified basement membrane constituents at varying densities of protein. The attachment of freshly prepared hepatocytes was examined after incubation at 37 degrees C for 30 min as a function of the amount of protein on the coverslips. For each of the three types of substratum under study, distinct modes of cell attachment were observed, with the apparent affinity of hepatocytes for type IV collagen being three-fold greater than for fibronectin and ten-fold greater than for laminin. Cell attachment exhibited saturation on all substrata. Hepatocyte spreading was measured by scanning electron microscopy of cells incubated at 37 degrees for 2 h on similarly prepared coverslips. A five-fold greater surface density of type IV collagen was required for maximal spreading compared with attachment. For cells on fibronectin or laminin the maximal cell spreading reached on type IV collagen did not occur even at coverslip protein densities 10 to 20 times those providing for maximal cell attachment. A very similar qualitative pattern of cell proteins was secreted within a few hours of plating on the various substrata and further studies failed to reveal any evidence that attachment and spreading was mediated by endogenously produced matrix molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Membrane glycoproteins involved in hepatocyte adhesion to collagen type I   总被引:1,自引:0,他引:1  
Liver membrane glycoproteins with affinity for immobilized collagen type I were subjected to preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by electroelution of the separated proteins. Electroeluted glycoproteins with ability to neutralize the inhibitory effect of anti-CollCAM antibodies on hepatocyte adhesion to collagen were collected from several consecutive runs and used to raise a high titer antiserum, denoted anti-CollCAM II. IgG from this antiserum inhibited the attachment of hepatocytes to dishes coated with collagen type I, but not to fibronectin- or collagen type IV-coated dishes. When the antibodies were immobilized to Sepharose CL-4B they bound three sets of glycoproteins with apparent Mr's of 105,000, 115,000, and 130,000 as analyzed by SDS-PAGE under nonreducing (NR) conditions. Upon reduction (R) the glycoproteins migrated with apparent Mr's of 115,000, 130,000, and 160,000, respectively. The Mr 105,000-115,000 (NR) glycoproteins effectively neutralized the inhibitory effect exerted by both anti-CollCAM and anti-CollCAM II antibodies, on hepatocyte spreading and attachment to collagen type I substrates. Peptide mapping suggested the Mr 160,000 (R) species to be different from the Mr 115,000 (R).  相似文献   

7.
Knowing how epithelial cells regulate cell-matrix and cell-cell adhesions is essential to understand key events in morphogenesis as well as pathological events such as metastasis. During epithelial cell scattering, epithelial cell islands rupture their cell-cell contacts and migrate away as single cells on the extracellular matrix (ECM) within hours of growth factor stimulation, even as adhesion molecules such as E-cadherin are present at the cell-cell contact. How the stability of cell-cell contacts is modulated to effect such morphological transitions is still unclear. Here, we report that in the absence of ECM, E-cadherin adhesions continue to sustain substantial cell-generated forces upon hepatocyte growth factor (HGF) stimulation, consistent with undiminished adhesion strength. In the presence of focal adhesions, constraints that preclude the spreading and movement of cells at free island edges also prevent HGF-mediated contact rupture. To explore the role of cell motion and cell-cell contact rupture, we examine the biophysical changes that occur during the scattering of cell pairs. We show that the direction of cell movement with respect to the cell-cell contact is correlated with changes in the average intercellular force as well as the initial direction of cell-cell contact rupture. Our results suggest an important role for protrusive activity resulting in cell displacement and force redistribution in guiding cell-cell contact rupture during scattering.  相似文献   

8.
Sea urchin hyalin: appearance and function in development   总被引:11,自引:0,他引:11  
Embryonic chicken sensory cells from dorsal root ganglia and a clonal line of pheochromocytoma cells (PC-12) extended neuronal-like processes within 24 hr of seeding on a naturally produced, basement membrane-like extracellular matrix (ECM) in the absence of nerve growth factor (NGF). Plating on ECM also induced a rapid cell attachment and flattening of these cells and supported the survival of embryonic sensory cells in primary cultures. Unlike the effect of NGF on PC-12 cells, the ECM-induced morphological differentiation was transient and led to disintegration and degeneration of processes bearing PC-12 cells. The ECM-induced morphological differentiation was not inhibited by anti-NGF antibodies, and the cells retained their ability to bind and internalize NGF in a manner similar to that observed on plastic. PC-12 cell attachment and flattening occurred on dishes coated with collagen type IV in a way similar to that observed on ECM, but precoating the dishes with fibronectin had no effect. Extension of cell processes was not induced by either substrate. Morphological differentiation but not the induction of cell adhesion and flattening was inhibited by either prefixation with glutaraldehyde, oxidation with periodate, or preexposure to concanavalin A of the ECM, suggesting that the ECM and in particular its sugar moieties play an active role in the induction of neurite outgrowth. It is suggested that close contact with the ECM provides chemical or mechanical cues that permit contactmediated elongation and directed growth of both embryonic and regenerating nerve fibers.  相似文献   

9.
Knowing how epithelial cells regulate cell-matrix and cell-cell adhesions is essential to understand key events in morphogenesis as well as pathological events such as metastasis. During epithelial cell scattering, epithelial cell islands rupture their cell-cell contacts and migrate away as single cells on the extracellular matrix (ECM) within hours of growth factor stimulation, even as adhesion molecules such as E-cadherin are present at the cell-cell contact. How the stability of cell-cell contacts is modulated to effect such morphological transitions is still unclear. Here, we report that in the absence of ECM, E-cadherin adhesions continue to sustain substantial cell-generated forces upon hepatocyte growth factor (HGF) stimulation, consistent with undiminished adhesion strength. In the presence of focal adhesions, constraints that preclude the spreading and movement of cells at free island edges also prevent HGF-mediated contact rupture. To explore the role of cell motion and cell-cell contact rupture, we examine the biophysical changes that occur during the scattering of cell pairs. We show that the direction of cell movement with respect to the cell-cell contact is correlated with changes in the average intercellular force as well as the initial direction of cell-cell contact rupture. Our results suggest an important role for protrusive activity resulting in cell displacement and force redistribution in guiding cell-cell contact rupture during scattering.  相似文献   

10.
Extracellular matrix (ECM) is an important mediator of endothelial functions such as adhesion, spreading, migration, proliferation, and maintenance of differentiated functions. Attachment of cultured cells to tissue culture polystyrene (TCPS) is dependent on vitronectin which adsorbs onto the surface from the serum in the culture medium. Vitronectin (VN) will adsorb efficiently to TCPS even if the latter has been coated with another matrix molecule and blocked with albumin. This means that studies of the interactions of cells with individual coated ECM molecules will be confounded by the presence of adsorbed VN if serum is present in the culture medium. In this study, the adhesion, spreading, growth, and output of endogenous matrix molecules by bovine corneal endothelial (BCE) cells were measured on five different matrix substrates using medium which had been depleted of vitronectin to avoid such confounding effects. The same cell adhesion and spreading maxima were achieved on vitronectin, fibronectin (FN), laminin (LM), and types I and IV collagen (col I, col IV). The coating concentrations required to achieve these maxima, however, differed among the substrates, LM needing considerably higher concentrations than the other substrates for both maximal adhesion and spreading and FN needing higher concentrations for cell spreading. When cells were continuously passaged on each of the five substrates coated at concentrations optimal for cell spreading, no differences in cell proliferation rates or cell morphology were observed. Significant differences, however, were observed in the subcellular output of endogenous matrix molecules (FN, LM, col IV, and thrombospondin) between the different substrates. Col I was a poor substrate for the production of all ECM molecules tested over the 10 passages of the experiment, whereas col IV was a consistently good substrate. LM and FN substrates displayed differential effects on the output of different ECM molecules. VN was unique in that BCE cells at early passage on this substrate produced high levels of endogenous matrix molecules, whereas with continued passage on this substrate, a progressive decline in ECM secretion was observed. These results show that incorporation of individual molecules into the ECM by BCE cells in culture is significantly affected by the nature of the substratum. They further suggest that passage of endothelial cells in media containing serum (which results in coating of VN onto the substrate) may result in a progressive reduction of ECM output.  相似文献   

11.
Engineering functional activity of liver cell cultures requires the modulation of specific cell-cell interactions. We have investigated the quantitative role of systematically varied presentation of the cell-cell adhesion molecule, E-cadherin, on the differentiated function of cocultured parenchymal liver cells, hepatocytes. Specifically, we incorporated different proportions of E-cadherin transfected L-929 chaperone cells and untransfected chaperone cells, within cultures of primary rat hepatocytes on a collagen substrate. By using a strongly adhesive substrate that restricted cadherin-induced variations in cell spreading and growth-arresting chaperone cells, we could carefully isolate the potential role of cell-cell adhesion on cell differentiation. Using immunofluorescence microscopy, we confirmed that cadherins expressed at hepatocyte-hepatocyte contacts as well as hepatocyte-chaperone contacts were crossreactive. However, hepatocytes cocultured with cadherin-presenting chaperone cells had a 55-65% increase in longterm function over hepatocytes cocultured with control, nonpresenting chaperone cells. Notably, the cadherin-induced increase in function occurred over and above the basal, coculture-induced functional elevation. Further, we quantified the stoichiometric importance of cadherin contacts by comparing established markers of hepatocyte functional activity across a graded range of E-cadherin presentation. At low levels of cadherin-mediated contacts, the induction of differentiated function was weak, while high levels of contacts elicited a marked increase in function. Thus, hepatocyte biochemical functions (albumin and urea secretion) were biphasically governed by the degree of cadherin-based contacts presented during culture. Overall, our results demonstrate the unequivocal role of cell-cell adhesion molecules in hepatocyte functional engineering, through the graded use of cadherin presentation from functionally incompetent, heterotypic chaperone cells.  相似文献   

12.
Using the Drosophila cell line MLDmBG-1, a monoclonal antibody aBG-1 that can inhibit not only cell clumping but also cell spreading was generated. This antibody immunoprecipitates a complex of molecules consisting of a major 120 x 10(3) Mr and other components. To characterize the 120 x 10(3) Mr component, we purified it, generated antibodies to it, and cloned its cDNA. Sequencing of this cDNA suggests that the 120 x 10(3) Mr molecule is identical to PS beta, a beta chain of Drosophila integrins. The other components immunoprecipitated included two alpha chains of Drosophila integrins, PS1 alpha and PS2 alpha, as revealed using specific antibodies to these molecules. These suggest that aBG-1 recognizes the PS beta associated with PS1 alpha or PS2 alpha. However, immunostaining of embryos and larvae with aBG-1 showed that the staining pattern is similar to that for PS2 alpha but not for PS beta, suggesting that the antibody preferentially recognizes the PS beta associated with particular alpha chains in situ. We then attempted to characterize the ligands for these integrin complexes, using culture dishes coated with various vertebrate matrix proteins. These cells spread very well on dishes coated with vitronectin and, to a lesser extent, on those with fibronectin. This spreading was partially inhibited by aBG-1, but not by other control antibodies or RGD peptides. The cell attachment to these substrata was not affected by the antibody. The cells also can attach to dishes coated with laminin but without spreading, and this attachment was not inhibited by aBG-1. Furthermore, they do not attach to dishes coated with collagen type I, type IV, and fibrinogen. These results indicate that Drosophila PS integrins can recognize vertebrate vitronectin, and also fibronectin with a weaker affinity, at sites other than RGD sequences, and thus can function in cell-substratum adhesion.  相似文献   

13.
Cells have evolved an autoregulatory mechanism to dampen variations in the concentration of tubulin monomer that is available to polymerize into microtubules (MTs), a process that is known as tubulin autoregulation. However, thermodynamic analysis of MT polymerization predicts that the concentration of free tubulin monomer must vary if MTs are to remain stable under different mechanical loads that result from changes in cell adhesion to the extracellular matrix (ECM). To determine how these seemingly contradictory regulatory mechanisms coexist in cells, we measured changes in the masses of tubulin monomer and polymer that resulted from altering cell-ECM contacts. Primary rat hepatocytes were cultured in chemically defined medium on bacteriological petri dishes that were precoated with different densities of laminin (LM). Increasing the LM density from low to high (1-1000 ng/cm2), promoted cell spreading (average projected cell area increased from 1200 to 6000 microns2) and resulted in formation of a greatly extended MT network. Nevertheless, the steady-state mass of tubulin polymer was similar at 48 h, regardless of cell shape or ECM density. In contrast, round hepatocytes on low LM contained a threefold higher mass of tubulin monomer when compared with spread cells on high LM. Furthermore, similar results were obtained whether LM, fibronectin, or type I collagen were used for cell attachment. Tubulin autoregulation appeared to function normally in these cells because tubulin mRNA levels and protein synthetic rates were greatly depressed in round cells that contained the highest level of free tubulin monomer. However, the rate of tubulin protein degradation slowed, causing the tubulin half-life to increase from approximately 24 to 55 h as the LM density was lowered from high to low and cell rounding was promoted. These results indicate that the set-point for the tubulin monomer mass in hepatocytes can be regulated by altering the density of ECM contacts and changing cell shape. This finding is consistent with a mechanism of MT regulation in which the ECM stabilizes MTs by both accepting transfer of mechanical loads and altering tubulin degradation in cells that continue to autoregulate tubulin synthesis.  相似文献   

14.
The effects on mouse liver cells of laminin, fibronectin and type IV collagen, all of which are the main matrix of the basement membrane, were studied. Laminin, a glycoprotein isolated from cultures of rat yolk sac carcinoma cells, promoted the attachment of mouse fetal liver cells to laminin-coated dishes, but did not have a strong influence upon the attachment of normal adult liver cells. On the other hand, fibronectin which was purified from mouse plasma promoted the attachment of adult liver cells but not that of fetal liver cells. The number of neonatal liver cells attached to the surfaces coated was intermediate between those of fetal and adult liver cells in each matrix. DNA synthesis and cell proliferation during the culture of full-term fetal liver cells in laminin-coated dishes were higher than those in fibronectin- or type IV collagen-coated dishes. The amount of alpha-fetoprotein secreted in the laminin-coated dishes was more than in other groups. No differences in secretion of albumin into media, however, were observed in either group. These results suggest that laminin may be necessary for cell growth, tissue organization and cell differentiation during the normal development of liver in vivo.  相似文献   

15.
Fluorometric cell attachment assays together with competitive inhibitors of adhesion were used to probe for the presence of integrins, a diverse family of heterodimeric cell-surface glycoproteins involved in cell-cell and cell-extracellular matrix adhesion, in the fibroblastic rainbow trout cell line, RTG-2. The adhesive properties of this cell line were evaluated. RTG-2 cells adhered poorly to TC plastic in the absence of serum but as little as 2.5% fetal bovine serum allowed over 75% of the cells to attach after 5 h. Surfaces coated with the extracellular matrix proteins collagen I, collagen IV, fibrin, fibrinogen, or fibronectin were able to support attachment of RTG-2 cells. Adhesion of RTG-2 cells to fibronectin varied linearly with fibronectin coating densities in the range 0 to 65 ng/mm(2). Oligopeptides containing the sequence Arg-Gly-Asp (RGD) caused dose-dependent inhibition of adhesion to microtiter plates coated with fibrin, fibrinogen, and fibronectin, whereas attachment to collagen I and collagen IV was less severely affected. In all cases, peptides containing Arg-Gly-Glu (RGE) or Asp-Gly-Arg (DGR) sequences caused no reduction of cell attachment. Since many integrins mediate adhesion by binding to RGD sequences in their target ligands, these results suggest the presence of integrin-like adhesion molecules on the surface of RTG-2 cells.  相似文献   

16.
Most squamous epithelial cells are strictly anchorage-dependent cell types. We observed that epidermal growth factor (EGF) promoted the growth of A431 squamous carcinoma cells in suspension cultures but suppressed cell growth and induced apoptosis in monolayer cultures, suggesting that loss of adhesion is responsible for the effects observed in monolayer culture, before cell death. Consistent with this finding, we demonstrated that EGF reduced cell attachment, cell-cell interaction, and cell spreading. Treatment with EGF increased cell adhesion-regulated expression of p21 but suppressed expressions of cyclin A, D1, cdk2, and retinoblastoma protein (pRb), leading to cell cycle arrest and adhesion-regulated programmed cell death. To test directly whether promoting cell adhesion could reduce the effects of EGF, we grew cultures on plates coated with type II collagen. On these plates, cell adhesion was enhanced and EGF treatment had little effect on cell adhesion and apoptosis when cells were attached to the collagen. The collagen effects were dose dependent, and cell cycle and cell cycle-associated proteins were altered accordingly. Finally, when cultures were plated on bacterial Petri dishes, which completely disrupted cell attachment to substratum, the level of apoptosis was greatly higher and cell cycle was arrested as compared with monolayer cultures. Taken together, our results strongly suggest that the EGF-induced cell cycle arrest and apoptosis in monolayer cultures was the result of a decline in cell adhesion.  相似文献   

17.
Thrombospondin (TSP) induced the attachment and spreading of human squamous carcinoma cells on plastic culture dishes and dishes coated with type I or type IV collagen. Increased adhesion was detected as early as 15 min after treatment. Dose-response studies indicated that 1-5 micrograms of TSP per 35 mm (diameter) culture dish was sufficient to induce a response and that a half-maximal response occurred at 10 micrograms of TSP/dish. The squamous carcinoma cells synthesized TSP as indicated by biosynthetic labeling experiments. TSP was secreted (or shed) into the culture medium by these cells and also became bound to the cell surface. TSP also promoted adhesion of human keratinocytes, fibroblasts and fibrosarcoma cells but did not induce attachment or spreading of human melanoma or glioma cells, although these cells did respond to laminin.  相似文献   

18.
Summary The study investigates the influence of different culture conditions on attachment, viability and functional status of rainbow trout (Oncorhynchus mykiss) liver cells in primary culture. Cells were isolated by a two-step collagenase perfusion and incubated in serum-free, chemically defined minimal essential medium (MEM), (a) as a monolayer on uncoated PRI-MARIA? dishes, (b) as a monolayer on culture dishes coated with calf collagen type 1, and (c) in coculture with the established fish cell lines RTH-149 or RTG-2. Cell attachment was assessed from DNA and protein concentrations per dish, viability was estimated from cellular lactate dehydrogenase release, and the metabolic status was investigated by measuring activities of the phosphoenolpyruvate carboxykinase and biotransformation enzymes as well as the total cytochrome P450 contents. Seeding of hepatocytes on collagen-coated dishes did not alter cell attachment or detachment from the culture substrate, but had a small, but not significant effect on cell viability and metabolic parameters. Coculture of liver cells and RTG-2 cells reduced hepatocyte detachment from the culture substrate, and it was associated with a significant elevation of 7-ethoxyresorufin-O-deethylase activities in the hepatic cells. Cytochrome P450 contents, however, were not altered. The coculture effect on liver cell physiology clearly depended on the type of cell line, because coculture with RTH-149 cells led to similar, but much weaker effects than obtained in cocultures with RTG-2 cells. Electron microscopical observations revealed the existence of gap junctions and possible exocytosis-like transport between cell lines and hepatocytes. The results point to the potential of coculture systems to improve physiological parameters of trout liver cells in primary culture.  相似文献   

19.
Calcium-tolerant myocytes were isolated from adult rat hearts by collagenase perfusion and plated on various substrates in serum-free medium and their adhesion to various extracellular matrix (ECM) components was determined. The myocytes attached readily to dishes coated with collagen type IV (C-IV), laminin (LN), and to fetal bovine serum (FBS) in a manner dependent on the concentration of the components. Substantially fewer myocytes adhered to dishes coated with fibronectin (FN) or to uncoated plastic dishes. Cells adhered equally well to dishes coated with C-IV, LN and FBS within 1-4 h. However, when examined after 2 weeks in culture it was found that only C-IV and LN could support survival of the attached myocytes, and when cultured on C-IV or LN the myocytes were spread and had formed a dense monolayer. The actin filaments had at this time reorganized linearly along the long axis of the cell and the myocytes contracted spontaneously. Rabbit antibodies were raised against myocyte membranes and their ability to inhibit attachment to ECM components was studied. Purified IgG inhibited attachment to C-IV, while having only a minor effect on attachment to LN. These data are compatible with the presence of a specific cell surface component(s) that interacts with ECM substrates and influences cell shape and possibly thereby influences cellular functions.  相似文献   

20.
Previously we reported that type V collagen synthesized by Schwann cells inhibits the outgrowth of axons from rat embryo dorsal root ganglion neurons but promotes Schwann cell migration (Chernousov, M. A., Stahl, R. C., and Carey, D. J. (2001) J. Neurosci. 21, 6125-6135). Analysis of Schwann cell adhesion and spreading on dishes coated with various type V collagen domains revealed that Schwann cells adhered effectively only to the non-collagenous N-terminal domain (NTD) of the alpha4(V) collagen chain. Schwann cell adhesion to alpha4(V)-NTD induced actin cytoskeleton assembly, tyrosine phosphorylation, and activation of the Erk1/Erk2 protein kinases. Adhesion to alpha4(V)-NTD is cell type-specific because rat fibroblasts failed to adhere to dishes coated with this polypeptide. Schwann cell adhesion and spreading on alpha4(V)-NTD was strongly inhibited by soluble heparin (IC(50) approximately 30 ng/ml) but not by chondroitin sulfate. Analysis of the heparin binding activities of a series of recombinant alpha4(V)-NTD fragments and deletion mutants identified a highly basic region (not present in other type V collagen NTD) as the site responsible for high affinity heparin binding. Schwann cells adhered poorly to dishes coated with alpha4(V)-NTD that lacked the heparin binding site and failed to spread or assemble organized actin-cytoskeletal structures. Soluble alpha4(V)-NTD polypeptide that contained the heparin binding site inhibited spreading of Schwann cells on dishes coated with alpha4(V)-NTD. Affinity chromatography of Schwann cell detergent extracts on a column of immobilized alpha4(V)-NTD resulted in the isolation of syndecan-3, a transmembrane heparan sulfate proteoglycan. Together, these results suggest that Schwann cells bind to collagen type V via syndecan-3-dependent binding to a novel high affinity heparin binding site in the alpha4(V)-NTD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号