首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitogen-activated protein kinase kinase (MKK) 7, a specific upstream activator of Jun N-terminal kinases (JNKs) in the stress-activated protein kinase (SAPK)/JNK signaling pathway, plays an important role in response to global cerebral ischemia. We investigated the subcellular localization of activated (phosphorylated) MKK (p-MKK) 7 using western blotting, immunoprecipitation and immunohistochemistry analysis in rat hippocampus. Transient forebrain ischemia was induced by the four-vessel occlusion method on Sprague-Dawley rats. Our results showed that both protein expression and activation of MKK7 were increased rapidly with peaks at 10 min of reperfusion in the nucleus of the hippocampal CA1 region. Simultaneously, in the cytosol activated MKK7 enhanced gradually and peaked at 30 min of reperfusion. In addition, we also detected JNK-interacting protein (JIP) 1, which accumulated in the perinuclear region of neurons at 30 min of reperfusion. Interestingly, at the same time-point the binding of JIP-1 to p-MKK7 reached a maximum. Consequently, we concluded that MKK7 was rapidly activated and then translocated from the nucleus to the cytosol depending on its activation in the hippocampal CA1 region. To further elucidate the possible mechanism of MKK7 activation and translocation, the antioxidant N-acetylcysteine was injected into the rats 20 min before ischemia. The result showed that the levels of MKK7 activation, translocation and binding of p-MKK7 to JIP-1 were obviously limited by N-acetylcysteine in the cytosol at 30 min after reperfusion. The findings suggested that MKK7 activation, translocation and binding to JIP-1 were closely associated with reactive oxygen species and might play a pivotal role in the activation of the JNK signaling pathway in brain ischemic injury.  相似文献   

2.
Gulf war illnesses (GWI) are currently affecting thousands of veterans. To date, the molecular mechanisms underlying the pathogenesis of these illnesses remain unknown. During Gulf war I, military personnel were exposed to multiple stressors, one or more vaccines, pyridostigmine (PY), and other chemicals. In our previous studies, we found that stress induces activation of mitogen activated protein-kinase kinase 4 (MKK4) and c-Jun-N-terminal kinase (JNK) in the mouse brain (Liu et al. 2004). Our working hypothesis is that stress, vaccination, and PY may synergistically induce activation of MKK4 and JNK in the brain, leading to over-activation of these kinases and neurological injuries. To test our hypothesis, we examined the effect of keyhole limpet hemocyanin (KLH) immunization alone or in combination with PY on activation of MKK4 and JNK induced by stress. We found that KLH immunization alone had a small effect on MKK4 or JNK activity but it significantly enhanced and prolonged activation of these kinases induced by stress, from a few hours to several days. Additionally, KLH immunization caused activation of p38MAPK. PY treatment further enhanced and prolonged activation of these kinases induced by stress in combination with KLH immunization and triggered activation of caspase-3. Our current studies suggest that stress, vaccination, and PY may synergistically act on multiple stress-activated kinases in the brain to cause neurological impairments in GWI.  相似文献   

3.
Numerous studies have demonstrated the neuroprotective effects of estrogen in experimental cerebral ischemia. To investigate molecular mechanisms of estrogen neuroprotection in global ischemia, immunoblotting, immunohistochemistry and Nissel-staining analysis were used. Our results showed that chronic pretreatment with beta-estradiol 3-benzoate (E2) enhanced Akt1 activation and reduced the activation of mixed-lineage kinase 3 (MLK3), mitogen-activated protein kinase kinase 4/7 (MKK4/7), and c-Jun N-terminal kinase 1/2 (JNK1/2) in the hippocampal CA1 subfield during reperfusion after 15 min of global ischemia. In addition, E2 reduced downstream JNK nuclear and non-nuclear components, c-Jun and Bcl-2 phosphorylation and Fas ligand protein expression induced by ischemia/reperfusion. Administration of phosphoinositide 3-kinase (PI3K) inhibitor LY 294,002 prevented both activation of Akt1 and inhibition of MLK3, MKK4/7 and JNK1/2. The interaction between ERalpha and the p85 subunit of PI3K was also examined. E2 and antiestrogen ICI 182,780 promoted and prevented this interaction, respectively. Furthermore, ICI 182,780 blocked both the activation of Akt1 and the inhibition of MLK3, MKK4/7 and JNK1/2. Photomicrographs of cresyl violet-stained brain sections showed that E2 reduced CA1 neuron loss after 5 days of reperfusion, which was abolished by ICI 182,780 and LY 294,002. Our data indicate that in response to estrogen, ERalpha interacts with PI3K to activate Akt1, which may inhibit the MLK3-MKK4/7-JNK1/2 pathway to protect hippocampal CA1 neurons against global cerebral ischemia in male rats.  相似文献   

4.
The c-Jun N-terminal kinases (JNKs) are activated in response to stress, DNA damage, and cytokines by MKK4 and MKK7. We recently demonstrated that PKC can augment the degree of JNK activation by phosphorylating JNK, which requires the adaptor protein RACK1. Here we report on the conditions required for PKC-dependent JNK activation. In vitro kinase assays reveal that PKC phosphorylation of JNK is not sufficient for its activation but rather augments JNK activation by canonical JNK upstream kinases MKK4 or MKK7 alone or in combination. Further, to enhance JNK activity, PKC phosphorylation of JNK should precede its phosphorylation by MKK4/7. Inhibition of PKC phosphorylation of JNK affects both early and late phases of JNK activation following UV-irradiation and reduces the apoptotic response mediated by JNK. These data provide important insight into the requirements for PKC activation of JNK signaling.  相似文献   

5.
Saturated free fatty acid (FFA) is a major source of metabolic stress that activates the c-Jun NH(2)-terminal kinase (JNK). This FFA-stimulated JNK pathway is relevant to hallmarks of metabolic syndrome, including insulin resistance. Here we used gene ablation studies in mice to demonstrate a central role for mixed-lineage protein kinases (MLK) in this signaling pathway. Saturated FFA causes protein kinase C (PKC)-dependent activation of MLK3 that subsequently causes increased JNK activity by a mechanism that requires the MAP kinase kinases MKK4 and MKK7. Loss of PKC, MLK3, MKK4, or MKK7 expression prevents FFA-stimulated JNK activation. Together, these data establish a signaling pathway that mediates effects of metabolic stress on insulin resistance.  相似文献   

6.
7.
8.
9.
It is demonstrated that the c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in ischemic brain injury. Our previous studies have suggested that K252a can obviously inhibit JNK activation induced by ischemia/reperfusion in the vulnerable hippocampal CA1 subregion. Here, we further discussed the potential mechanism of ischemic brain injury induced by the activation of JNK after 15?min of transient global cerebral ischemia. As a result, through inhibiting phosphorylation of Bcl-2 (a cytosolic target of JNK) and 14-3-3 protein (a cytoplasmic anchor of Bax) induced by the activation of JNK, K252a decreased the release of Bax from Bcl-2/Bax and 14-3-3/Bax dimers, further attenuating the translocation of Bax from cytosol to mitochondria and the release of cytochrome c induced by ischemia/reperfusion, which related to mitochondria-mediated apoptosis. Importantly, pre-infusion of K2525a 20?min before ischemia showed neuroprotective effect against neuronal cells apoptosis. These findings imply that K252a induced neuroprotection against ischemia/reperfusion in rat hippocampal CA1 subregion via inhibiting the mitochondrial apoptosis pathway induced by JNK activation.  相似文献   

10.
Heterotrimeric G proteins stimulate the activities of two stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase in mammalian cells. In this study, we examined whether alpha subunits of G(i) family activate JNK using transient expression system in human embryonal kidney 293 cells. Constitutively activated mutants of Galpha(i1), Galpha(i2), and Galpha(i3) increased JNK activity. In contrast, constitutively activated Galpha(o) and Galpha(z) mutants did not stimulate JNK activity. To examine the mechanism of JNK activation by Galpha(i), kinase-deficient mutants of mitogen-activated protein kinase kinase 4 (MKK4) and 7 (MKK7), which are known to be JNK activators, were transfected into the cells. However, Galpha(i)-induced JNK activation was not blocked effectively by kinase-deficient MKK4 and MKK7. In addition, activated Galpha(i) mutant failed to stimulate MKK4 and MKK7 activities. Furthermore, JNK activation by Galpha(i) was inhibited by dominant-negative Rho and Cdc42 and tyrosine kinase inhibitors, but not dominant-negative Rac and phosphatidylinositol 3-kinase inhibitors. These results indicate that Galpha(i) regulates JNK activity dependent on small GTPases Rho and Cdc42 and on tyrosine kinase but not on MKK4 and MKK7.  相似文献   

11.
The neuropathology of Parkinson's disease is reflected in experimental animals treated with the selective nigrostriatal dopaminergic neurotoxin MPTP. Neurons exposed to MPTP (MPP(+)) express morphological features of apoptosis, although the intracellular pathways that produce this morphology have not been established. The c-Jun NH(2)-terminal kinase (JNK) signaling cascade has been implicated as a mediator of MPTP-induced apoptotic neuronal death based on the ability of CEP-1347/KT-7515, an inhibitor of JNK activation, to attenuate MPTP-induced nigrostriatal dopaminergic degeneration. In these studies, MPTP-mediated activation of the JNK signaling pathway was assessed in the nigrostriatal system of MPTP-treated mice. MPTP elevated levels of phosphorylated JNK and JNK kinase (MKK4; also known as SEK1 or JNKK), by 2.5- and fivefold, respectively. Peak elevations occurred soon after administration of MPTP and coincided with peak CNS levels of MPP(+). Increased MKK4 phosphorylation, but not JNK phosphorylation, was found in the striatum, suggesting that activation of MKK4 occurs in injured dopaminergic terminals. Both JNK and MKK4 phosphorylations were attenuated by pretreatment with l-deprenyl, indicating that these phosphorylation events were mediated by MPP(+). Moreover, CEP-1347/KT-7515 inhibited MPTP-mediated MKK4 and JNK signaling at a dose that attenuates MPTP-induced dopaminergic loss. These data implicate this signaling pathway in MPTP-mediated nigrostriatal dopaminergic death and suggest that it may be activated in the degenerative process in Parkinson's disease.  相似文献   

12.
13.
Cancer cells in which the PTEN lipid phosphatase gene is deleted have constitutively activated phosphatidylinositol 3-kinase (PI3K)-dependent signaling and require activation of this pathway for survival. In non-small cell lung cancer (NSCLC) cells, PI3K-dependent signaling is typically activated through mechanisms other than PTEN gene loss. The role of PI3K in the survival of cancer cells that express wild-type PTEN has not been defined. Here we provide evidence that H1299 NSCLC cells, which express wild-type PTEN, underwent proliferative arrest following treatment with an inhibitor of all isoforms of class I PI3K catalytic activity (LY294002) or overexpression of the PTEN lipid phosphatase. In contrast, overexpression of a dominant-negative mutant of the p85alpha regulatory subunit of PI3K (Deltap85) induced apoptosis. Whereas PTEN and Delta85 both inhibited activation of AKT/protein kinase B, only Deltap85 inhibited c-Jun NH2-terminal kinase (JNK) activity. Cotransfection of the constitutively active mutant Rac-1 (Val12), an upstream activator of JNK, abrogated Deltap85-induced lung cancer cell death, whereas constitutively active mutant mitogen-activated protein kinase kinase (MKK)-1 (R4F) did not. Furthermore, LY294002 induced apoptosis of MKK4-null but not wild-type mouse embryo fibroblasts. Therefore, we propose that, in the setting of wild-type PTEN, PI3K- and MKK4/JNK-dependent pathways cooperate to maintain cell survival.  相似文献   

14.
15.
Stress kinase MKK7: savior of cell cycle arrest and cellular senescence   总被引:2,自引:0,他引:2  
The c-Jun N-terminal kinase (JNK/SAPK) signaling cascade controls a spectrum of cellular processes, including cell growth, differentiation, transformation, and apoptosis. We recently demonstrated that stress kinase MKK7, a direct activator of JNKs, couples stress signaling to G2/M cell cycle progression, CDC2 expression, and cellular senescence. We further explored other molecules involved in JNK pathway and found that both MKK4, another direct activator of JNK, and c-Jun, a direct substrate of JNK, have similar roles to MKK7. Here we discuss the importance of the MKK4/MKK7-JNK-c-Jun pathway linking stress and developmental signals to cell proliferation, cell cycle progression, cellular senescence, and apoptosis including recent unpublished data from our lab.  相似文献   

16.
17.
The c-Jun N-terminal kinase (JNK) signaling pathway plays a crucial role in cellular responses stimulated by stress-inducing agents and proinflammatory cytokines. The group I germinal center kinase family members selectively activate the JNK pathway. In this study, we have isolated a mouse cDNA encoding a protein kinase homologous to Nck-interacting kinase (NIK), a member of the group I germinal center kinase family. This protein kinase is expressed during the late stages of embryogenesis, but not in adult tissues, and thus named NESK (NIK-like embryo-specific kinase). NESK selectively activated the JNK pathway when overexpressed in HEK 293 cells but did not stimulate the p38 kinase or extracellular signal-regulated kinase (ERK) pathways. NESK-induced JNK activation was inhibited by the dominant negative mutants of MEKK1 and MKK4. Tumor necrosis factor (TNF)-alpha or TNF receptor-associated factor 2 (TRAF2) stimulated the NESK activity. Furthermore, the dominant negative NESK mutant inhibited the JNK activation induced by TNF-alpha or TRAF2. These results suggest that NESK, a novel activator of the JNK pathway, functions in coupling TRAF2 to the MEKK1 --> MKK4 --> JNK kinase cascade during the late stages of mammalian embryogenesis.  相似文献   

18.
Activation of the Jun-N-terminal kinase (JNK) signaling cascade by phorbol esters (TPA) or protein kinase C (PKC) is well documented, although the underlying mechanism is not known. Here, we demonstrate that the receptor for activated C kinase 1 (RACK1) serves as an adaptor for PKC-mediated JNK activation. Phosphorylation of JNK by PKC occurs on Ser129 and requires the presence of RACK1. Ser129 phosphorylation augments JNK phosphorylation by MKK4 and/or MKK7 and is required for JNK activation by TPA, TNFalpha, UV irradiation, and PKC, but not by anisomycin or MEKK1. Inhibition of RACK1 expression by siRNA attenuates JNK activation, sensitizes melanoma cells to UV-induced apoptosis, and reduces their tumorigenicity in nude mice. In finding the role of RACK1 in activation of JNK by PKC, our study also highlights the nature of crosstalk between these two signal-transduction pathways.  相似文献   

19.
We investigated the expression and subcellular localization of the multidomain protein POSH (plenty of SH3s) by immunohistochemistry and western blot analysis, as well as its role in the selective activation of mixed-lineage kinases (MLKs) 3, MAP kinase kinase (MKK) 4, c-Jun N-terminal kinases (JNKs) and the c-Jun signalling cascade in the rat hippocampal CA1 region following cerebral ischaemia. Our results indicated that the cytosol immunoreactivity of POSH was strong in the CA1-CA3 pyramidal cell but weak in the DG granule cell of the rat hippocampus both in sham control and after reperfusion. Co-immunoprecipitation experiments showed that the interactions of MLK3, MKK4 and phospho-JNKs with POSH were persistently enhanced during the early (30 min) and the later reperfusion period (from 1 to 3 days) compared with sham controls. Consistently, MLK3-MKK4-JNK activation was rapidly increased with peaks both at 30 min and 3 days of reperfusion. Intracerebroventricular infusion of POSH antisense oligodeoxynucleotides (AS-ODNs) not only significantly reduced the protein level of POSH, markedly decreased its interactions with MLK3, MKK4 and phospho-JNKs, but also attenuated the activation of the JNK signalling pathway. In addition, infusion of POSH AS-ODNs significantly increased the neuronal density in the CA1 region at 5 days of reperfusion. Our results suggest that POSH might serve as a scaffold mediating JNK signalling activation in the hippocampal CA1 region following cerebral ischaemia, and POSH AS-ODNs exerts its protective effects on ischaemic injury through a mechanism of inhibition of the MLK3-MKK4-JNK signalling pathway, involving c-Jun and caspase 3 activation.  相似文献   

20.
Chelerythrine, a natural benzophenanthridine alkaloid, has been reported to mediate a variety of biological activities, including inhibition of protein kinase C (PKC). Here we report that chelerythrine induced time- and dose-dependent activation of JNK1 and p38 in HeLa cells, which was mediated the upstream kinases, MEKK1 and MKK4. However, treatment with two other potent and selective PKC inhibitors, GF-109203X and G?6983, or down-regulation of PKC activity by prolonged treatment with phorbol 12-myristate 13-acetate had no effect on JNK1 and p38 activities. Furthermore, under the conditions where JNK1 and p38 were activated, we did not observe any significant inhibitory effect of chelerythrine on the activities of PKC isozymes present in HeLa cells. Interestingly, pretreatment with the antioxidants, N-acetyl-L-cysteine, dithiothreitol, and glutathione, impaired chelerythrine-induced JNK1 and p38 activation. In addition, chelerythrine induced apoptosis that was blocked by the antioxidants and the dominant-negative mutants of MEKK1, MKK4, JNK1, and p38. Together, these results uncover a novel biochemical property of chelerythrine, i.e. activation of MEKK1- and MKK4-dependent JNK1 and p38 pathways through an oxidative stress mechanism, which mediate the induction of apoptosis, but are independent of PKC inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号