首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When haploid yeast strains containing mitochondrial DNAs (mtDNAs) of different buoyant densities are mated, the resulting zygotes contain a mixed population of mitochondria and mitochondrial DNAs. During vegetative growth of diploid cells formed from such a cross between a petite strain with mtDNA of density 1.677 g cm?3 and a respiratory competent strain with mtDNA of density 1.684 g cm?3, mtDNAs with intermediate buoyant densities are obtained. Virtually all newly synthesized mtDNA in diploid ρ? progeny has the intermediate buoyant density. Therefore, within 2 generations of growth of the diploid cells, the intermediate buoyant density species predominate. In crosses between a respiratory competent strain and other petite strains with different values of genetic suppressiveness, it was found that the amount of recombination yielding mtDNAs of intermediate buoyant densities roughly parallels the degree of suppressiveness. Individual clones of respiratory deficient cells from such crosses were also isolated to confirm that stable mtDNAs with intermediate buoyant densities were obtained. Thus, it is apparent that some form of recombination takes place within the mtDNAs of yeast cells that results in stable mtDNA species.  相似文献   

2.
Recombination in animal mitochondrial DNA   总被引:1,自引:0,他引:1  
  相似文献   

3.
A variable combination of developmental delay, retinitis pigmentosa, dementia, seizures, ataxia, proximal neurogenic muscle weakness, and sensory neuropathy occurred in four members of a family and was maternally transmitted. There was no histochemical evidence of mitochondrial myopathy. Blood and muscle from the patients contained two populations of mitochondrial DNA, one of which had a previously unreported restriction site for AvaI. Sequence analysis showed that this was due to a point mutation at nucleotide 8993, resulting in an amino acid change from a highly conserved leucine to arginine in subunit 6 of mitochondrial H(+)-ATPase. There was some correlation between clinical severity and the amount of mutant mitochondrial DNA in the patients; this was present in only small quantities in the blood of healthy elderly relatives in the same maternal line.  相似文献   

4.
Recombination and DNA replication in Bacillus subtilis transformation   总被引:6,自引:0,他引:6  
  相似文献   

5.
6.
Unidirectionality of replication in mouse mitochondrial DNA   总被引:11,自引:0,他引:11  
  相似文献   

7.
A novel DNA helicase has been isolated from Saccharomyces cerevisiae. This DNA helicase co-purified with replication factor C (RF-C) during chromatography on S-Sepharose, DEAE-silica gel high performance liquid chromatography (HPLC), Affi-Gel Blue-agarose, heparin-agarose, single-stranded DNA-cellulose, fast protein liquid chromatography MonoS, and hydroxyapatite HPLC. Surprisingly, the helicase could be separated from RF-C by sedimentation on a glycerol gradient in the presence of 200 mM NaCl. The helicase is probably a homodimer of a 60-kDa polypeptide, which by UV cross-linking has been shown to bind ATP. It has a single-stranded DNA-dependent ATPase activity, with a Km for ATP of 60 microM. The DNA helicase activity depends on the hydrolysis of NTP (dNTP), with ATP and dATP the most efficient cofactors, followed by CTP and dCTP. The DNA helicase has a 5' to 3' directionality and is only marginally stimulated by coating the single-stranded DNA with the yeast single-stranded DNA-binding protein RF-A.  相似文献   

8.
Xue L  Chen H  Meng YZ  Wang Y  Lu ZQ  Lu JX  Guan MX 《遗传》2011,33(9):911-918
线粒体DNA(mtDNA)突变是高血压发病的分子机制之一。已经报道的与原发性高血压相关的mtDNA突变包括:tRNAMet A4435G,tRNAMet/tRNAGln A4401G,tRNAIle A4263G,T4291C和A4295G突变。这些高血压相关的mtDNA突变改变了相应的线粒体tRNA的结构,导致线粒体tRNA的代谢障碍。而线粒体tRNAs的代谢缺陷则影响蛋白质合成,造成氧化磷酸化缺陷,降低ATP的合成,增加活性氧的产生。因此,线粒体的功能缺陷可能在高血压的发生发展中起一定的作用。mtDNA突变发病的组织特异性则可能与线粒体tRNAs的代谢以及核修饰基因相关。目前发现的这些高血压相关的mtDNA突变则应该作为今后高血压诊断的遗传风险因子。高血压相关的线粒体功能缺陷的深入研究也将进一步诠释母系遗传高血压的分子致病机制,为高血压的预防、控制和治疗提供依据。文章对高血压相关的mtDNA突变进行了综述。  相似文献   

9.
Mitochondrial DNA from Drosophila contains high “A+T”-rich region. Its DNA replication starts in the “A+T”-rich region and proceeds unidirectionally around the molecule. In order to determine precise location of the DNA replication origin and elucidate unique feature of its nucleotide sequence, the “A+T”-rich region of mitochondrial DNA from Drosophilavirilis has been cloned in Escherichiacoli. The chimeric plasmid DNA containing the “A+T”-rich region stimulates invitro DNA replication system from Drosophilavirilis mitochondria about ten fold higher than the parental plasmid DNA, as does native mitochondrial DNA.  相似文献   

10.
Extensive recombination events characterize higher-plant mitochondrial DNAs. Numerous recombination events resulted in the appearance of an unusual mitochondrial open reading frame, urf13-T, which encodes a 13 kDa polypeptide in the male-sterile T cytoplasm of maize. Maize lines with T cytoplasm are unusually susceptible to two fungal pathogens which produce host-selective toxins. Mutants derived from tissue culture expressing male fertility and toxin-insensitivity are characterized by truncation or deletion of urf13-T. These events result from a frameshift associated with a tandem 5 base pair repeat, placing a premature stop codon in frame, or from a recombination event, apparently limited to tissue culture, resulting in the deletion of urf13-T. Neither class of mutants produces the 13 kDa gene product. Repeated sequences that participate in recombination in sorghum appear to be randomly distributed among male-fertile or male-sterile cytoplasms. Processes involved in the evolution of mitochondrial DNAs in higher plants therefore include the generation and deletion of configurations through recombination.  相似文献   

11.
12.
13.
14.
Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase g in concert with accessory proteins such as the mtDNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease.  相似文献   

15.
Chatre L  Ricchetti M 《PloS one》2011,6(3):e17235
The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS) consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in.  相似文献   

16.
Male sterility results from a number of characterized exogeneous or genetic dysfunctions preventing normal differentiation into mobile spermatozoa. This may now be overcome by intra cytoplasmic sperm injection (ICSI). This practice does not require mobile, or even mature spermatozoa for in vitro fecondation. However, a functional respiratory chain, partly encoded by the mitochondrial DNA (mtDNA), is required for the mobility of the spermatozoa. We report the case of an infertile patient who wished to procreate. ICSI was proposed but he displayed multiple mtDNA deletions of possible nuclear origin in the spermatozoa and in the deltoid muscle. Even though mtDNA is maternally inherited, the possibility of a nuclear-driven mutation affecting the integrity of the mtDNA should be taken into account when ICSI is to be performed. Together with recent genetic in vitro manipulations in mammals, our data point to the importance of studying the mtDNA structure in human spermatozoa, and the potential risks of these non-natural practices for procreation.  相似文献   

17.
18.
Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase g in concert with accessory proteins such as the mtDNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号