首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the mechanism of lipoprotein transport through arterial endothelial cells, porcine endothelial cells were cultured on gelated type I collagen supported by a dacron sheet, and the transport of low density lipoprotein (LDL) labeled with rhodamine B isothiocyanate (RB-LDL) through the cells was measured. Light and scanning electron microscopy showed that the cells on the gel were confluent. There was little RB-LDL transport through the endothelial monolayer at 0 degrees C. RB-LDL transport through the monolayer at 37 degrees C was dose-dependent saturable at 0.4 mg protein/ml. The transport was energy-dependent, since its rate was affected by temperature and was inhibited by a combination of 2-deoxyglucose (50 mM) and NaN3 (10 mM). RB-LDL was shown not to be degraded during transport.  相似文献   

2.
The physiological function of alkaline phosphatase (ALP) remains controversial. It was recently suggested that this membrane-bound enzyme has a role in the modulation of transmembranar transport systems into hepatocytes and Caco-2 cells. ALP activity expressed on the apical surface of blood-brain barrier cells, and its relationship with (125)I-insulin internalization were investigated under physiological conditions using p-nitrophenylphosphate (p-NPP) as substrate. For this, an immortalized cell line of rat capillary cerebral endothelial cells (RBE4 cells) was used. ALP activity and (125)I-insulin internalization were evaluated in these cells. The results showed that RBE4 cells expressed ALP, characterized by an ecto-oriented active site which was functional at physiological pH. Orthovanadate (100 microM), an inhibitor of phosphatase activities, decreased both RBE4-ALP activity and (125)I-insulin internalization. In the presence of L-arginine (1 mM) or adenosine (100 microM) RBE4-ALP activity and (125)I-insulin, internalization were significantly reduced. However, D-arginine (1 mM) had no significant effect. Additionally, RBE4-ALP activity and (125)I-insulin internalization significantly increased in the presence of the bioflavonoid kaempferol (100 microM), of the phorbol ester PMA (80 nM), IBMX (1 mM), progesterone (200 microM and 100 microM), beta-estradiol (100 microM), iron (100 microM) or in the presence of all-trans retinoic acid (RA) (10 microM). The ALP inhibitor levamisole (500 microM) was able to reduce (125)I-insulin internalization to 69.1 +/- 7.1% of control. Our data showed a positive correlation between ecto-ALP activity and (125)I-insulin incorporation (r = 0.82; P < 0.0001) in cultured rat brain endothelial cells, suggesting that insulin entry into the blood-brain barrier may be modulated through ALP.  相似文献   

3.
We determined the concentration dependence of albumin binding, uptake, and transport in confluent monolayers of cultured rat lung microvascular endothelial cells (RLMVEC). Transport of (125)I-albumin in RLMVEC monolayers occurred at a rate of 7.2 fmol. min(-1). 10(6) cells(-1). Albumin transport was inhibited by cell surface depletion of the 60-kDa albumin-binding glycoprotein gp60 and by disruption of caveolae using methyl-beta-cyclodextrin. By contrast, gp60 activation (by means of gp60 cross-linking using primary and secondary antibodies) increased (125)I-albumin uptake 2.3-fold. At 37 degrees C, (125)I-albumin uptake had a half time of 10 min and was competitively inhibited by unlabeled albumin (IC(50) = 1 microM). Using a two-site model, we estimated by Scatchard analysis the affinity (K(D)) and maximal capacity (B(max)) of albumin uptake to be 0.87 microM (K(D1)) and 0.47 pmol/10(6) cells (B(max1)) and 93.3 microM (K(D2)) and 20.2 pmol/10(6) cells (B(max2)). At 4 degrees C, we also observed two populations of specific binding sites, with high (K(D1) = 13.5 nM, 1% of the total) and low (K(D2) = 1.6 microM) affinity. On the basis of these data, we propose a model in which the two binding affinities represent the clustered and unclustered gp60 forms. The model predicts that fluid phase albumin in caveolae accounts for the bulk of albumin internalized and transported in the endothelial monolayer.  相似文献   

4.
Angiotensin-II (A-II) receptor subtypes and their potential coupling mechanisms were investigated in bovine adrenal fasciculata cells (BAC) in culture, by the use of selective antagonists for AT1 (DUP 753 or Losartan) and AT2 (PD 123177 and CGP 42112A) sites. Competition for [125I]A-II specific binding with AT1 or AT2 selective ligands produced a biphasic displacement curve, suggesting two distinct A-II binding sites. In the presence of PD 123177 (10(-5) M), a concentration at which most of the AT2 sites were saturated, DUP 753 displaced [125I]A-II specific binding in a monophasic manner with an IC50 of 6.2 +/- 1.4 x 10(-7) M. In the presence of DUP 753 (10(-5) M), the displacement produced by CGP 42112A and PD 123177 was also monophasic, with IC50s of 8 +/- 3 x 10(-10) and 4.6 +/- 2.1 x 10(-7) M, respectively. The reducing agent dithio-1,4-erythritol inhibited the binding of [125I]A-II to AT1 (DUP 753 sensitive) sites, but increased its binding to AT2 sites 2-fold. The IC50 values for these two effects were about 0.5 and 3 mM, respectively. The biological effects of A-II in BAC, phosphoinositide hydrolysis and cortisol production, were inhibited in a dose-dependent manner by DUP 753, but not by AT2 antagonists. Similarly, the potentiating action of A-II on corticotropin-induced cAMP production was blocked by DUP 753, but not by AT2 antagonists. These data indicate that BAC contain both receptor subtypes, but that all the known effects of A-II in BAC were induced via the AT1 receptor subtype.  相似文献   

5.
Permeability coefficients of human umbilical vein endothelial cell monolayers cultured on polycarbonate filters were determined by monitoring transendothelial albumin transport. Permeability was determined as a function of time in culture and in the presence of vasoactive agonists. Permeability decreased with increasing time in culture. All agonist experiments were performed with 15-day cultures because this time point best modeled the in vivo permeability barrier function. Permeability of endothelial monolayers decreased significantly in the presence of the stable prostacyclin analogue iloprost (6 nM), dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP, 0.5 mM)-3-isobutyl-1-methylxanthine (IBMX, 0.1 mM), 8-bromo cAMP (0.5 mM)-IBMX, dibutyryl cAMP-theophylline (0.5 mM), or IBMX. A 9.6-fold increase in permeability resulting from thrombin [0.15 U/ml (1 nM)] treatment was inhibited by pretreating the monolayers with dibutyryl cAMP-IBMX, 8-bromo cAMP-IBMX, dibutyryl cAMP-theophylline, dibutyryl cAMP, IBMX, iloprost, or D-Phe-Pro-Arg-CH2-alpha-thrombin (1 nM). The thrombin-induced permeability increase was not significantly altered by pretreating monolayers with aspirin (5 microM) or indomethacin (50 microM). Inactivated forms of thrombin, diisopropylflurophosphate-alpha-thrombin (1 nM) and D-Phe-Pro-Arg-CH2-alpha-thrombin, did not significantly affect permeability. Monolayer permeability was not altered in response to bradykinin (1 microM). These results suggest a mediating role for intracellular cAMP in the permeability barrier function of endothelial monolayers.  相似文献   

6.
myo-inositol is a growth factor for mammalian cells as well as for the pathogenic protozoa Trypanosoma cruzi. Most of the cell surface molecules in this organism rely on myo-inositol as the biosynthetic precursor for phosphoinositides and glycosylated phosphatidylinositols. The aim of this work was to investigate the process of myo-inositol translocation across the parasite cell membrane. myo-Inositol uptake was concentration-dependent in the concentration range 0.1-10 microM with maximal transport obtained at 8 microM. Using sodium-free buffers, where Na+ was replaced by choline or K+, myo-inositol uptake was inhibited by 50%. Furosemide, an inhibitor of the ouabain-insensitive Na+-ATPase, inhibited the Na+-dependent and Na+-independent myo-inositol uptake by 68 and 33%, respectively. In contrast, ouabain, an (Na++/K+) ATPase inhibitor, did not affect transport. Part of the myo-inositol uptake is mediated by active transport as it was inhibited when energy metabolism inhibitors such as carbonyl cyanide p-(trifluoromethoxy)-phenylhydrazone (34%), 2,4-dinitrophenol (50%), KCN (71%) and NaN3 (69%) were added to the medium, or the temperature of the medium was lowered to 4 degrees C. The addition of glucose (5-50 mM) or mannose (10 mM) did not change the myo-inositol uptake, whereas the addition of 10 mM nonlabeled myo-inositol totally inhibited this transport, indicating that the transporter is specific for myo-inositol. Phloretin (0.3 mM) and phoridzin (5 mM), but not cytochalasin B, were efficient inhibitors of myo-inositol uptake. A portion of the accumulated myo-inositol is converted to inositol phosphates and phosphoinositides. These data show that myo-inositol transport in T. cruzi epimastigotes is mediated by at least two specific transporters - one Na+-dependent and the other Na+-independent.  相似文献   

7.
The hypothesis that insulin action involves a membrane proteolytic step was further explored, by using isolated rat adipocytes and liver plasma membranes. (1) The maximal insulin stimulation of 2-deoxyglucose transport and lipogenesis in fat-cells was selectively inhibited (73-88%) by N alpha-p-tosyl-L-lysine chloromethyl ketone (Tos-Lys-CH2Cl; active-site inhibitor of trypsin; 30-125 microM), p-nitrophenyl p'-guanidinobenzoate (active-site inhibitor of serine proteinases; 30-125 microM) and p-tosyl-L-arginine methyl ester (arginine ester substrate analogue of proteinases; 1-2 mM), under conditions where neither the basal rate of each metabolic process nor insulin binding nor cellular ATP content were affected. In contrast, N-acetyl-L-alanyl-L-alanyl-L-alanine methyl ester (alanine ester substrate analogue of proteinases; 1-2 mM) was ineffective. (2) Endoproteinase Arg-C (0.25-40 micrograms/ml) exerted dose-dependent insulin-like effects on both 2-deoxyglucose transport and lipogenesis in fat-cells, whereas endoproteinase Lys-C (5-100 micrograms/ml) was ineffective. The maximal activation by endoproteinase Arg-C of both processes (200 and 177% of control values respectively) was shown to occur under conditions where membrane integrity (assessed by measurement of lactate dehydrogenase leakage and passive glucose diffusion) was preserved. This effect was inhibited by Tos-Lys-CH2Cl (125 microM) and was not additive with the maximal insulin effect. (3) Insulin (1-100 ng/ml) produced a dose-dependent increase in the trichloroacetic acid-soluble 125I radioactivity released after a 30 min incubation at 37 degrees C of 125I-labelled liver plasma membranes, but was ineffective on 125I-labelled bovine serum albumin. Insulin effects on both radio-labelled proteins were reproduced by wheat-germ agglutinin (20 micrograms/ml), an insulin mimicker shown to act through the insulin receptor. These data provide further evidence for the hypothesis that insulin bioeffects involve the activation of a membrane serine proteinase with arginine specificity.  相似文献   

8.
The transport of ascorbate into cultured bovine retinal pigment epithelial (RPE) cells is reported. Primary or subcultured RPE cells were incubated in the presence of 10-500 microM L-[carboxyl-14C]-ascorbate for various periods of time. Accumulation of ascorbate into RPE cells followed a saturable active transport with a Km of 125 microM and a Vmax of 28 pmole/micrograms DNA/min. RPE intracellular water was calculated to be 0.8 pL/cell, and the transported cellular ascorbate concentration was 7.5 +/- 0.8 mM. Replacement of 150 mM NaCl in the incubation media with choline-Cl strongly inhibited (80 +/- 8%) ascorbate uptake into cultured RPE cells. Although the depletion of cellular ATP by 2,4-dinitrophenol and the inhibition of Na+-K+-ATPase by ouabain reduced ascorbate transport into RPE significantly, active transport of ascorbate was not entirely inhibited by these metabolic inhibitors. The ascorbate analogue, D-isoascorbate, competitively inhibited ascorbate transport into cultured RPE with a Ki of 12.5 mM. Cells grown in the presence of 5 to 50 mM alpha-D-glucose in the growth media did not differ in their ability to transport ascorbate. In contrast, the presence of alpha-D-glucose or its nonmetabolizable analogues, 3-0-methyl-glucose, alpha-methyl-glucose, and 2-deoxy-glucose, but not L-glucose or beta-D-fructose, in the incubation media inhibited ascorbate transport. myo-Inositol (10 or 20 mM) also inhibited ascorbate transport into RPE cells. The active uptake of ascorbate into cultured RPE cells was primarily coupled to the movement of sodium ion down its electrochemical gradient. A bifunctional, cotransport carrier possessing an ascorbate-binding site and a sodium-binding site may be involved in the ascorbate uptake system. The inhibition of ascorbate uptake by sugars appeared to be heterologous in nature, occurring between two distinct carrier systems, both of which were dependent on the sodium ions.  相似文献   

9.
Investigations determined that the cell matrix-associated prekallikrein (PK) activator is prolylcarboxypeptidase. PK activation on human umbilical vein endothelial cell (HUVEC) matrix is inhibited by antipain (IC(50)=50 microM) but not anti-factor XIIa antibody, 3 mM benzamidine, 5 mM iodoacetic acid or iodoacetamide, or 3 mM N-ethylmaleimide. Corn trypsin inhibitor (IC(50)=100 nM) or Fmoc-aminoacylpyrrolidine-2-nitrile (IC(50)=100 microM) blocks matrix-associated PK activation. Angiotensin II (IC(50)=100 microM) or bradykinin (IC(50)=3 mM), but not angiotensin 1-7 or bradykinin 1-5, inhibits matrix-associated PK activation. ECV304 cell matrix PK activator also is blocked by 100 microM angiotensin II, 1 microM corn trypsin inhibitor, and 50 microM antipain, but not angiotensin 1-7. 1 mM angiotensin II or 300 microM Fmoc-aminoacylpyrrolidine-2-nitrile indirectly blocks plasminogen activation by inhibiting kallikrein formation for single chain urokinase activation. On immunoblot, prolylcarboxypeptidase antigen is associated with HUVEC matrix. These studies indicate that prolylcarboxypeptidase is the matrix PK activator.  相似文献   

10.
We have systematically investigated certain characteristics of the ATP-dependent proton transport mechanism of bovine brain clathrin-coated vesicles. H+ transport specific activity was shown by column chromatograpy to co-purify with coated vesicles, however, the clathrin coat is not required for vesicle acidification as H+ transport was not altered by prior removal of the clathrin coat. Acidification of the vesicle interior, measured by fluorescence quenching of acridine orange, displayed considerable anion selectively (Cl- greater than Br- much greater than NO3- much greater than gluconate, SO2-(4), HPO2-(4), mannitol; Km for Cl- congruent to 15 mM), but was relatively insensitive to cation replacement as long as Cl- was present. Acidification was unaffected by ouabain or vanadate but was inhibited by N-ethylmaleimide (IC50 less than 10 microM), dicyclohexylcarbodiimide (DCCD) (IC50 congruent to 10 microM), chlorpromazine (IC50 congruent to 15 microM), and oligomycin (IC50 congruent to 3 microM). In contrast to N-ethylmaleimide, chlorpromazine rapidly dissipated preformed pH gradients. Valinomycin stimulated H+ transport in the presence of potassium salts (gluconate much greater than NO3- greater than Cl-), and the membrane-potential-sensitive dye Oxonol V demonstrated an ATP-dependent interior-positive vesicle membrane potential which was greater in the absence of permeant anions (mannitol greater than potassium gluconate greater than KCl) and was abolished by N-ethylmaleimide, protonophores or detergent. Total vesicle-associated ouabain-insensitive ATPase activity was inhibited 64% by 1 mM N-ethylmaleimide, and correlated poorly with H+ transport, however N-ethylmaleimide-sensitive ATPase activity correlated well with proton transport (r = 0.95) in the presence of various Cl- salts and KNO3. Finally, vesicles prepared from bovine brain synaptic membranes exhibited H+ transport activity similar to that of the coated vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
An iodinated photoaffinity label for the glucose transporter, 3-iodo-4-azidophenethylamido-7-O-succinyldeacetyl-forskolin (IAPS-forskolin), has been synthesized, purified, and characterized. The I50 for inhibition of 3-O-methylglucose transport in red blood cells by IAPS-forskolin was found to be 0.05 microM. The carrier free radioiodinated label is a highly specific photoaffinity label for the human erythrocyte glucose transporter. Photolysis of erythrocyte membranes (ghosts) and purified glucose transporter preparations with 1-2 nM [125I]IAPS-forskolin and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed specific derivatization of a broad band with an apparent molecular mass of 40-70 kDa. Photoincorporation into erythrocyte membranes using 2 nM [125I]IAPS-forskolin was protected with D-glucose (I50 400 mM), cytochalasin B (I50 0.5 microM), and forskolin (I50 10 microM). No protection was observed with L-glucose (600 mM). Endo-beta-galactosidase digestion of [125I] IAPS-forskolin-labeled ghosts and purified transporter resulted in a dramatic sharpening of the specifically radiolabeled transporter to 40 kDa. Trypsinization of [125I]IAPS-forskolin-labeled ghosts and purified transporter reduced the specifically radiolabeled transporter to a sharp peak at 18 kDa. [125I]IAPS-forskolin will be a useful tool to study the structural aspects of the glucose transporter.  相似文献   

12.
The effect of gossypol acetic acid, a potent male sterilent was studied on LDH from goat liver (LDH-A4), heart (LDH-B4) and testis (LDH-C4) in vitro. All the preparations of LDH were inhibited by gossypol when the reaction was carried out in pyruvate-lactate (direct) or lactate to pyruvate (reverse) directions. The IC50 of gossypol for the pyruvate oxidation by LDH isozymes varied between 16 and 42 microM in presence of 0.27 mM pyruvate and 0.15 mM NADH at 25 degrees C and pH 7.4 whereas for the lactate oxidation, IC50 was 125 microM in a system containing 3.3 mM lactic acid and 1.8 mM NAD at 25 degrees C and pH 9.0. Reciprocal plots due to Lineweaver-Burk showed that these isozymes are inhibited in a non-competitive manner with respect to pyruvate and lactate, and in a competitive fashion when NAD and NADH were varied as substrates. Ki values of LDH-A4, -B4 and -C4 isozymes in presence of gossypol were 20, 34 and 29 microM against pyruvate; 33, 43 and 45 microM against NADH; 85, 85 and 125 microM against lactate and 94, 108 and 83 microM against NAD respectively.  相似文献   

13.
The aim of the present study was to investigate the effect of several effectors on angiotensin II (A-II) receptors and steroidogenic responsiveness in cultured bovine fasciculata cells. Treatment of adrenal cells for 24 h with A-II (0.1 microM), corticotropin (1 nM), phorbol ester (PMA 0.1 microM), calcium ionophore A23187 (0.1 microM) and cyclic 8-bromoAMP (1 mM) produced a loss of A-II receptors whereas the A-II antagonist [Sar1-Ala8]A-II (0.1 microM) led to a small but significant increase. The extent of the down-regulation of receptors following maximal concentrations of A-II was greater than that produced by the other agents. The effects of A-II were dose-dependent with a ID50 of 3 nM. Since cycloheximide and actinomycin blocked the down-regulation of receptors, it seems likely that the effectors lead to the synthesis of certain proteins which inhibit the recycling of internalized receptors. Pretreatment of adrenal cells with A-II induced both homologous (90% decrease) and heterologous (corticotropin 83, PMA and ionophore 76% decrease) steroidogenic desensitization. However, the cAMP response to corticotropin of A-II-pretreated cells was higher (P less than 0.001) than for control cells. Pretreatment with PMA and A23187 also resulted in both homologous and heterologous steroidogenic refractoriness but to a lesser degree than that induced by A-II. In contrast, corticotropin-pretreated cells responded normally to further stimulation with corticotropin or A-II. Similarly pretreatment of bovine adrenal glomerulosa cells with A-II (1 nM and 0.1 microM) and corticotropin (1 nM) also induced A-II receptor loss and steroidogenic refractoriness. The present findings indicate that, in contrast to the results reported in vivo in the rat, where A-II leads to up-regulation of its own receptors on glomerulosa cells and increases steroidogenic responsiveness, this peptide results in both down-regulation and desensitization in cultured bovine fasciculata and glomerulosa cells. Our results also emphasize the absence of correlation between A-II receptor loss and steroidogenic responsiveness.  相似文献   

14.
Increasing free intracellular Ca (Cai) from less than 0.1 microM to 10 microM by means of A23187 activated Ca-stimulated K transport and inhibited the Na-K pump in resealed human red cell ghosts. These ghosts contained 2 mM ATP, which was maintained by a regenerating system, and arsenazo III to measure Cai. Ca-stimulated K transport was activated 50% at 2-3 microM free Cai and the Na-K pump was inhibited 50% by 5-10 microM free Cai. Free Cai from 1 to 8 microM stimulated K efflux before it inhibited the Na-K pump, dissociating the effect of Ca on the two systems. 3 microM trifluoperazine inhibited Ca-stimulated K efflux and 0.5 mM quinidine reduced Na-K pumping by 50%. In other studies, incubating fresh intact cells in solutions containing Ca and 0.5 microM A23187 caused the cells to lose K heterogeneously. Under the same conditions, increasing A23187 to 10 microM initiated a homogeneous loss of K. In ATP-deficient ghosts containing Cai equilibrated with A23187, K transport was activated at the same free Cai as in the ghosts containing 2 mM ATP. Neither Cao nor the presence of an inward Ca gradient altered the effect of free Cai on the permeability to K. In these ghosts, transmembrane interactions of Na and K influenced the rate of Ca-stimulated K efflux independent of Na- and K-induced changes in free Cai or sensitivity to Cai. At constant free Cai, increasing Ko from 0.1 to 3 mM stimulated K efflux, whereas further increasing Ko inhibited it. Increasing Nai at constant Ki and free Cai markedly decreased the rate of efflux at 2 mM Ko, but had no effect when Ko was greater than or equal to 20 mM. These transmembrane interactions indicate that the mechanism underlying Ca-stimulated K transport is mediated. Since these interactions from either side of the membrane are independent of free Cai, activation of the transport mechanism by Cai must be at a site that is independent of those responsible for the interaction of Na and K. In the presence of A23187, this activating site is half-maximally stimulated by approximately 2 microM free Ca and is not influenced by the concentration of ATP. The partial inhibition of Ca-stimulated K efflux by trifluoperazine in ghosts containing ATP suggests that calmodulin could be involved in the activation of K transport by Cai.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
A saturable blood-to-brain transport system for leptin across the blood-brain barrier (BBB) has been observed in vivo. Since the main component of the non-fenestrated microvessels of the BBB is the endothelial cell, we established an in vitro culture system of these cerebrovascular cells to study leptin transport and to determine whether the self-inhibition of leptin transport characteristic of a saturable system occurs at this level. The results show that 125I-leptin crossed from the luminal to abluminal side of a monolayer of cerebral microvessel cells significantly faster than the albumin and lactalbumin controls. This transport of 125I-leptin across an in vitro BBB was significantly faster than in the opposite direction and was dose-relatedly inhibited by the addition of unlabeled leptin. Thus, the results establish that the saturable transport system for leptin across the BBB occurs at the level of the endothelial cells of the BBB.  相似文献   

16.
In excitable cells, hypoxia inhibits K channels, causes membrane depolarization, and initiates complex adaptive mechanisms. It is unclear whether K channels of alveolar epithelial cells reveal a similar response to hypoxia. A549 cells were exposed to hypoxia during whole cell patch-clamp measurements. Hypoxia reversibly inhibited a voltage-dependent outward current, consistent with a K current, because tetraethylamonium (TEA; 10 mM) abolished this effect; however, iberiotoxin (0.1 microM) does not. In normoxia, TEA and iberiotoxin inhibited whole cell current (-35%), whereas the K-channel inhibitors glibenclamide (1 microM), barium (1 mM), chromanol B293 (10 microM), and 4-aminopyridine (1 mM) were ineffective. (86)Rb uptake was measured to see whether K-channel modulation also affected transport activity. TEA, iberiotoxin, and 4-h hypoxia (1.5% O(2)) inhibited total (86)Rb uptake by 40, 20, and 35%, respectively. Increased extracellular K also inhibited (86)Rb uptake in a dose-dependent way. The K-channel opener 1-ethyl-2-benzimidazolinone (1 mM) increased (86)Rb uptake by 120% in normoxic and hypoxic cells by activation of Na-K pumps (+60%) and Na-K-2Cl cotransport (+170%). However, hypoxic transport inhibition was also seen in the presence of 1-ethyl-2-benzimidazolinone, TEA, and iberiotoxin. These results indicate that hypoxia, membrane depolarization, and K-channel inhibition decrease whole cell membrane currents and transport activity. It appears, therefore, that a hypoxia-induced change in membrane conductance and membrane potential might be a link between hypoxia and alveolar ion transport inhibition.  相似文献   

17.
The histidine-glycine-rich region of the light chain of cleaved high molecular weight kininogen (HK) is thought to be responsible for binding to negatively charged surfaces and initiation of the intrinsic coagulation, fibrinolytic, and kinin-forming systems. However, the specifically required amino acid sequences have not been delineated. An IgG fraction of a monoclonal antibody (MAb) C11C1 to the HK light chain was shown to inhibit by 66% the coagulant activity and by 57% the binding of HK to the anionic surface of kaolin at a concentration of 1.5 microM and 27 microM, respectively. Proteolytic fragments of HK were produced by successive digestion with human plasma kallikrein and factor XIa (FXIa). Those polypeptides that bound tightly (Kd = 0.77 nM) to a C11C1 affinity column were eluted at pH 3.0 and purified by membrane filtration. On 15% SDS polyacrylamide electrophoresis, the approximate M(r) was 7.3 kDa (range 6.2-8.1 kDa). Based on N-terminal sequencing, this polypeptide (1(2)), which extends from the histidine residue 459 to a lysine at position 505, 509, 511, 512, 515, or 520, inhibits by 50% the coagulant activity expressed by HK at a concentration of 22 microM. The synthetic peptide HGLGHGH representing the N-terminal of the 1(2)) fragment was synthesized, tested, and found at 4 mM to inhibit the procoagulant activity of HK 50%. A synthetic heptadecapeptide, HGLGHGHEQQHGLGHGH (residues 459-475) included within the 1(2) fragment, and with the ability to bind zinc, inhibited 50% of the HK coagulant activity at a concentration of 325 microM in the absence and presence of added Zn2+ (30 microM). The specific binding of 125I-HK to a negatively charged surface (kaolin) was inhibited 50% by unlabeled HK (5 microM). HGLGHGH, at a concentration of 7.0 mM, inhibited the binding to kaolin by 50%. The heptadecapeptide inhibited the specific binding of 125I-HK to kaolin by 50%, at a concentration of 2.3 mM, in the absence of Zn2+. In contrast, when Zn2+ was added, the concentration to achieve 50% inhibition decreased to 630 microM, indicating that Zn2+ was required to attain a favorable conformation for binding. Moreover, the 1(2) fragment was found to inhibit 50% of the 125I-HK binding to kaolin at a concentration of 380 microM. These results suggest that residues contained within the 1(2) fragment, notably HGLGHGHEQQHGLGHGH, serves as a primary structural feature for binding to a negatively charged surface.  相似文献   

18.
The transport of cGMP out of cells is energy requiring and has characteristics compatible with an ATP-energised anion pump. In the present study a model with inside-out vesicles from human erythrocytes was employed for further characterisation of the cGMP transporter. The uptake of leukotriene C(4) (LTC(4)), a substrate for multidrug resistance protein (MRP), was concentration-dependently inhibited by the leukotriene antagonist MK571 (IC(50)=110+/-20 nM), but cGMP was unable to inhibit LTC(4) uptake. Oxidised glutathione (GSSG) and glutathione S-conjugates caused a concentration-dependent inhibition of [(3)H]cGMP uptake with IC(50) of 2200+/-700 microM for GSSG, 410+/-210 microM for S-(p-nitrobenzyl)glutathione and 37+/-16 microM for S-decylglutathione, respectively. Antioxidants such as reduced glutathione and dithiothreitol did not influence transport for concentrations up to 100 microM, but both inhibited cGMP uptake with approx. 25% at 1 mM. The cGMP pump was sensitive to temperature without activity below 20 degrees C. The transport of cGMP was dependent on pH with maximal activity between pH 8.0 and 8.5. Calcium caused a concentration-dependent inhibition with IC(50) of 43+/-12 microM. Magnesium gave a marked activation in the range between 1 and 20 mM with maximum effect at 10 mM. The other divalent cations, Mn(2+) and Co(2+), were unable to substitute Mg(2+), but caused some activation at 1 mM. EDTA and EGTA stimulated cGMP transport concentration-dependently with 50% and 100% above control at 100 microM, respectively. The present study shows that the cGMP pump has properties compatible with an organic anion transport ATPase, without affinity for the MRP substrate LTC(4). However, the blockade of the cGMP transporter by glutathione S-conjugates suggests it is one of several GS-X pumps.  相似文献   

19.
5-[125I]Iodo-2'-deoxyuridine (IdUrd) has been shown to serve as a permeant for the nucleoside transport system of human erythrocytes and to be matabolically inert in these cells. Linear initial velocities were obtained at 20 degrees C for 125IdUrd transport, yielding a Km of 73 +/- 18 microM (n = 6). Low-affinity inhibitors of 125IdUrd transport, such as adenosine (Ki = 32 +/- 2 microM, n = 2), could be characterized by Michaelis-Menten kinetics. However, high-affinity inhibitors, such as 6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, caused nonlinear initial velocities when added to the cells simultaneously with 125IdUrd. Conditions were defined (viz., 20-min pretreatment of cells with test compound followed by 5.0-min incubation with 1.0 microM 125IdUrd, all at 20 degrees C) whereby high-affinity inhibitors of IdUrd transport can be identified and evaluated according to their 50% inhibitory concentrations. The use of 125IdUrd as permeant greatly expedites the testing of compounds as inhibitors of nucleoside transport by allowing the cell pellets generated in these assays to be monitored directly in a gamma spectrometer, thereby circumventing the solubilization and decolorization of cell pellets required by assays that use 3H- or 14C-labeled nucleoside permeants.  相似文献   

20.
The effect of apigenin, isolated from Apium graveolens, on the contraction of rat thoracic aorta was studied. Apigenin inhibited the contraction of aortic rings caused by cumulative concentrations of calcium (0.03-3 mM) in high potassium (60 mM) medium, with an IC50 of about 48 microM. After pretreatment it also inhibited norepinephrine (NE, 3 microM)-induced phasic and tonic contraction in a concentration (35-140 microM)-dependent manner with an IC50 of 63 microM. At the plateau of NE-induced tonic contraction, addition of apigenin caused relaxation. This relaxing effect of apigenin was not antagonized by indomethacin (20 microM) or methylene blue (50 microM), and still existed in endothelial denuded rat aorta or in the presence of nifedipine (2-100 microM). Neither cAMP nor cGMP levels were changed by apigenin. Both the formation of inositol monophosphate caused by NE and the phasic contraction induced by caffeine in the Ca(2+)-free solution were unaffected by apigenin. 45Ca2+ influx caused by either NE or K+ was inhibited by apigenin concentration-dependently. It is concluded that apigenin relaxes rat thoracic aorta mainly by suppressing the Ca2+ influx through both voltage- and receptor-operated calcium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号