首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contribution of propionate to glucose synthesis in sheep   总被引:7,自引:7,他引:0       下载免费PDF全文
1. The production rate of propionate in the rumen and the entry rate of glucose into the body pool of glucose in sheep were measured by isotope-dilution methods. Propionate production rates were measured by using a continuous infusion of specifically labelled [(14)C]propionate. Glucose entry rates were estimated by using either a primed infusion or a continuous infusion of [U-(14)C]glucose. 2. The specific radioactivity of plasma glucose was constant between 4 and 9hr. after the commencement of intravenous infusion of [U-(14)C]glucose and between 1 and 3hr. when a primed infusion was used. 3. Infusion of [(14)C]propionate intraruminally resulted in a fairly constant specific radioactivity of rumen propionate between about 4 and 9hr. and of plasma glucose between 6 and 9hr. after the commencement of the infusion. Comparison of the mean specific radioactivities of glucose and propionate during these periods allowed estimates to be made of the contribution of propionate to glucose synthesis. 4. Comparisons of the specific radioactivities of plasma glucose and rumen propionate during intraruminal infusions of one of [1-(14)C]-, [2-(14)C]-, [3-(14)C]- and [U-(14)C]-propionate indicated considerable exchange of C-1 of propionate on conversion into glucose. The incorporation of C-2 and C-3 of propionate into glucose and lactate indicated that 54% of both the glucose and lactate synthesized arose from propionate carbon. 5. No differences were found for glucose entry rates measured either by a primed infusion or by a continuous infusion. The mean entry rate (+/-s.e.m.) of glucose estimated by using a continuous infusion into sheep was 0.33+/-0.03 (4) m-mole/min. and by using a primed infusion was 0.32+/-0.01 (4) m-mole/min. The mean propionate production rate was 1.24+/-0.03 (8) m-moles/min. The conversion of propionate into glucose was 0.36 m-mole/min., indicating that 32% of the propionate produced in the rumen is used for glucose synthesis. 6. It was indicated that a considerable amount of the propionate converted into glucose was first converted into lactate.  相似文献   

2.
The kinetics of glucose transport in human red blood cells   总被引:5,自引:0,他引:5  
A quenched-flow apparatus and a newly developed automated syringe system have been used to measure initial rates of D-[14C]glucose transport into human red blood cells at temperatures ranging from 0 degrees to 53 degrees C. The Haldane relationship is found to be obeyed satisfactorily at both 0 and 20 degrees C, but Arrhenius plots of maximum D-[14C]glucose transport rates are non-linear under conditions of both equilibrium exchange and zero trans influx. Fitting of the data by non-linear regression to the conventional model for glucose transport gives values at 0 degrees C of 0.726 +/- 0.0498 s-1 and 12.1 +/- 0.98 s-1 for the rate constants governing outward and inward movements of the unloaded carrier molecule and 90.3 +/- 3.47 s-1 and 1113 +/- 494 s-1 for outward and inward movements of the carrier-glucose complex. Activation energies for these four rate constants are respectively 173 +/- 3.10, 127 +/- 4.78, 88.0 +/- 6.17 and 31.7 +/- 5.11 kJ X mol-1. These parameters indicate that at low temperatures the marked asymmetry of the transport mechanism arises mainly from the high proportion of inward-facing carriers and carrier-glucose complexes, and that there is a relatively small difference between the affinities of the carrier for glucose in the inward and outward-facing conformations. At high (physiological) temperatures the carrier is fairly evenly distributed between outward- and inward-facing conformations and the affinity for glucose is about 2.5-times greater outside than inside.  相似文献   

3.
Pentobarbital acts as a mixed inhibitor of net D-glucose exit, as monitored photometrically from human red cells. At 30 degrees C the Ki of pentobarbital for inhibition of Vmax of zero-trans net glucose exit is 2.16+/-0.14 mM; the affinity of the external site of the transporter for D-glucose is also reduced to 50% of control by 1. 66+/-0.06 mM pentobarbital. Pentobarbital reduces the temperature coefficient of D-glucose binding to the external site. Pentobarbital (4 mM) reduces the enthalpy of D-glucose interaction from 49.3+/-9.6 to 16.24+/-5.50 kJ/mol (P<0.05). Pentobarbital (8 mM) increases the activation energy of glucose exit from control 54.7+/-2.5 kJ/mol to 114+/-13 kJ/mol (P<0.01). Pentobarbital reduces the rate of L-sorbose exit from human red cells, in the temperature range 45 degrees C-30 degrees C (P<0.001). On cooling from 45 degrees C to 30 degrees C, in the presence of pentobarbital (4 mM), the Ki (sorbose, glucose) decreases from 30.6+/-7.8 mM to 14+/-1.9 mM; whereas in control cells, Ki (sorbose, glucose) increases from 6.8+/-1.3 mM at 45 degrees C to 23.4+/-4.5 mM at 30 degrees C (P<0.002). Thus, the glucose inhibition of sorbose exit is changed from an endothermic process (enthalpy change=+60.6+/-14.7 kJ/mol) to an exothermic process (enthalpy change=-43+/-6.2 7 kJ/mol) by pentobarbital (4 mM) (P<0.005). These findings indicate that pentobarbital acts by preventing glucose-induced conformational changes in glucose transporters by binding to 'non-catalytic' sites in the transporter.  相似文献   

4.
Initial rates of glucose entry into isolated bovine mammary epithelial cells display moderate degrees of asymmetry and cooperative interactions between export and import sites. The present study examined the hypothesis that these kinetic features are due to compartmentalization of intracellular glucose. Net uptake of 3-O-methyl-d-[1-(3)H]glucose (3-OMG) by isolated bovine mammary epithelial cells was measured at 37 degrees C. The time course of 3-OMG net uptake was better fitted by a double-exponential equation than by a single- or triple-exponential equation. Compartmental analysis of the time course curve suggested that translocated 3-OMG is distributed into two compartments with fractional volumes of 32.6 +/- 5.7% and 67.4 +/- 5.7%, respectively. The results support the view that glucose transport in bovine mammary epithelial cells is a multistep process consisting of two serial steps: fast, carrier-mediated, symmetric translocation of sugar across the cell plasma membrane into a small compartment and subsequent slow exchange of posttranslocated sugar between two intracellular compartments. A three-compartment model of this system successfully simulated the observed time course of 3-OMG net uptake and the observed dependence of unidirectional entry rates on intra- and extracellular 3-OMG concentrations. Simulations indicated that backflux of radiolabeled sugar from the small compartment to extracellular space during 15 s of incubation gives rise to the apparent asymmetry, trans-stimulation, and cooperativity of mammary glucose transport kinetics. The fixed-site carrier model overestimated the rate of glucose accumulation in cells, and its features can be accounted for by the compartmentalization of intracellular sugar.  相似文献   

5.
The utilization of blood glycerol and glucose as precursors for intramuscular triglyceride synthesis was examined in rats using an intravenous infusion of [2-(14)C]glycerol and [6-(3)H]glucose or [6-(14)C]glucose. In 24-h fasted rats, more glycerol than glucose was incorporated into intramuscular triglyceride glycerol in soleus (69 +/- 23 versus 4 +/- 1 nmol/micromol triglyceride/h, respectively, p = 0.02 glycerol versus glucose) and in gastrocnemius (25 +/- 5 versus 9 +/- 2 nmol/micromol triglyceride/h, respectively, p = 0.02). Blood glucose was utilized more than blood glycerol for triglyceride glycerol synthesis in quadriceps. In fed rats, the blood glycerol incorporation rates (4 +/- 2, 8 +/- 3, and 9 +/- 3 nmol/micromol triglyceride/h) were similar (p > 0.3) to those of glucose (5 +/- 2, 8 +/- 2, and 5 +/- 2 nmol/micromol triglyceride/h for quadriceps, gastrocnemius, and soleus muscle, respectively). Glucose incorporation into intramuscular triglycerides was less with [6-(3)H]glucose than with [6-(14)C]glucose, suggesting an indirect pathway for glucose carbon entry into muscle triglyceride. The isotopic equilibrium between plasma and intramuscular free glycerol ([U-(13)C]glycerol) was complete in quadriceps and gastrocnemius, but not soleus, within 2 h after beginning the tracer infusion. We conclude that blood glycerol is a direct and important precursor for muscle triglyceride synthesis in rats, confirming the presence of functionally important amounts of glycerol kinase in skeletal muscle.  相似文献   

6.
D-Glucose entry into erythrocytes from adult grey-headed flying fox fruit bats (Pteropus poliocephalus) was rapid and showed saturation at high substrate concentrations. Kinetic parameters were estimated from the concentration dependence of initial rates of zero-trans D-glucose entry at 5.5 degrees C as Michaelis constant (K(m)) 1. 64+/-0.56 mM, and maximal velocity (V(max)) 1162+/-152 micromol.l. cell water(-1).min(-1). D-Glucose entry was inhibited by cytochalasin B; mass law analysis of D-glucose-displaceable cytochalasin B binding gave values of K(d) 37.1+/-5.0 nM and B(max) 361.2+/-9.1 pmol/mg membrane protein. Entry of 2-deoxy-D-glucose, and 3-O-methyl-D-glucose, into P. poliocephalus red cells was rapid, entry of D-fructose was very slow. Glucose transporter polypeptides were identified on immunoblots as a band M(r) 47000-54000 and their identity confirmed by D-glucose-sensitive photolabeling of membranes with [3H]-cytochalasin B. Peptide-N-glycanase F digestion of both human and bat erythrocyte membranes generated GLUT-1-derived bands M(r) 37000. Trypsin digestion of human and fruit bat erythrocyte membranes generated fragmentation patterns consistent with similar GLUT-1 polypeptide structures in both species. Erythrocytes from adult Australian ghost bats (Macroderma gigas), a carnivorous microchiropteran bat, also expressed high levels of GLUT-1.  相似文献   

7.
Plasmodium lophurae-infected red blood cells utilized considerably greater quantities of glucose than did uninfected duckling red cells. Kinetic analysis of glucose transport showed: (A). Below a concentration of 2 mM in the medium the uptake process followed Michaelis-Menten kinetics (carrier-mediated facilitated diffusion) whereas at concentrations greater than this simple diffusion became the main mode of entry. (B). The apparent transport constants, Kt, for normal and infected cells were similar. However there was an 8-fold increase in the maximal velocity, Vmax, for infected cells. (C). “Free” malaria parasites had a significantly lower Kt and a higher Vmax than did normal or infected red cells. Entry and exit studies with the nonmetabolizable sugar analog, 3-0-methyl glucose, demonstrated that the enhanced rate of uptake by infected cells involved an increase in the simple diffusion component and the degree of enhancement was correlated with the size of the intracellular parasite. Competition experiments suggested that in the malaria-infected cell one locus is involved in the carrier-mediated transport of glucose, mannose and galactose whereas another locus transports fructose and/or glycerol. These results indicate that the enhanced entry of glucose into the malaria-infected red cell is a consequence of factors other than increased glucose catabolism by the host-parasite complex, and the host cell's capacity to take up greater quantities of sugar directly involves the growing intracellular plasmodium.  相似文献   

8.
Changes in splanchnic metabolism in pigs were assessed after meals containing slowly or rapidly digested starch. The pigs were fed a mixed meal containing a "slow" native (n = 5) or a "rapid" pregelatinized (n = 5) cornstarch naturally enriched with [(13)C]glucose. Absorption of [(13)C]glucose was monitored by the arteriovenous difference technique, and infusion of D-[6, 6-(2)H(2)]glucose in the jugular vein was used to calculate the systemic appearance of [(13)C]glucose. Arteriovenous balance data obtained during a 12-h study period showed that the fraction of ingested glucose equivalent appearing as glucose in the portal vein was 49.7 +/- 7.2% for the slow starch and 48.2 +/- 7.5% for the rapid starch (P = 0.86). These values, corrected for the gut extraction of circulating [(13)C]glucose, became 66.4 +/- 5.6 and 65. 3 +/- 5.6%, respectively (P = 0.35). Isotope dilution data indicated that systemic appearance of exogenous [(13)C]glucose represented 62. 9 +/- 7.6 and 67.4 +/- 3.0% of the oral load for slow and rapid starch, respectively (P = 0.68). Arterial glucose utilization by the gut increased from 7.3 +/- 0.9 micromol x kg(-1) x min(-1) before the meal to 8.5 +/- 1.6 micromol x kg(-1) x min(-1) during absorption, independently of the nature of the starch. Thus splanchnic glucose metabolism was unaffected by the nature of starch ingested.  相似文献   

9.
The effects of raised hydraulic pressure on D-glucose exit from human red cells at 25 degrees C were determined using light scattering measurements in a sealed pressurized spectrofluorimeter cuvette. The reduction in the rates of glucose exit with raised pressure provides an index of the activation volume, deltaV++ (delta ln k/deltaP)(T) = -deltaV++/RT. Raised pressure decreased the rate constant of glucose exit from 0.077 +/- 0.003 s(-1) to 0.050 +/- 0.002 s(-1) (n = 5, P < 0.003). The Ki for glucose binding to the external site was 2.7 +/- 0.4 mm (0.1 MPa) and was reduced to 1.45 +/- 0.15 mm (40 MPa), (P < 0.01, Student's t test). Maltose had a biphasic effect on deltaV++. At [maltose] <250 microM, deltaV++ of glucose exit increased above that with [maltose = 0 mM], at >1 mm maltose, deltaV++ was reduced below that with [maltose = 0 mM]. Pentobarbital (2 mM) decreased the deltaV++ of net glucose exit into glucose-free solution from 30 +/- 5 ml mol(-1) (control) to 2 +/- 0.5 ml mol(-1) (P < 0.01). Raised pressure had a negligible effect on L-sorbose exit. These findings suggest that stable hydrated and liganded forms of GLUT with lower affinity towards glucose permit higher glucose mobilities across the transporter and are modelled equally well with one-alternating or a two-fixed-site kinetic models.  相似文献   

10.
Purified rat liver lysosomes ('tritosomes') were prepared from rats injected with Triton WR-1339. 2. The water space of tritosomes, measured by using [3H]water and [14C]sucrose, was 2.15 +/- 0.72 microliter/mg of protein (mean +/- S.E.M., n = 12). 3. Tritosomes, when compared with a crude preparation of normal lysosomes by an indirect method of study, showed sugar specificity but decreased stereospecificity of sugar uptake. 4. At 125 mM the relative rates of net uptake of D-[14C]ribose, D-[14C]- or D-[3H]glucose and 2-deoxy-D-[3H]glucose were the same as that inferred from the indirect study. 5. The entry of D-[3H]glucose into tritosomes showed concentration-dependence suggestive of saturation, with a Km of 48 +/- 18 mM (4). 6. D- and L-glucose, D-ribose, 2-deoxy-D-glucose and D-mannose competed with D-[14C]glucose or D-[14C]ribose for uptake. 7. Cytochalasin B inhibited D-[3H]glucose uptake. 8. Uptake of 1 mM-L-[14C]glucose was slower than for 1 mM-D-[14C]glucose. 9. It is concluded that a facilitated-diffusion transport system is present in purified rat liver lysosomes.  相似文献   

11.
The anomeric specificity of D-glucose metabolism in intact hepatocytes remains a matter of debate. This issue was further investigated in the present study, which is based on the quantification of the alpha- and beta-anomers of the 13C-enriched isotopomers of D-glucose generated by rat liver cells exposed to either D-[1-13C] fructose or D-[2-13C] fructose in the presence of D2O. The D-[1-13C]glucose/D-[6-13C]glucose paired ratios found in the cells exposed to D-[1-13C] fructose and the D-[2-13C]glucose/D-[5-13C]glucose paired ratios found in the cells exposed to D-[2-13C] fructose yielded a paired beta/alpha ratio averaging (mean +/- S.E.M.) 79.3 +/- 6.1%. In the case of the isotopomers of D-glucose formed by gluconeogenesis, the D-[2-13C]glucose/D-[5-13C]glucose and D-[3-13C]glucose/D-[4-13C]glucose paired ratios found in cells exposed to D-[1-13C] fructose, as well as the D-[1-13C]glucose/D-[6-13C]glucose and D-[3-13C]glucose/D-[4-13C]glucose paired ratios found in cells exposed to D-[2-13C]fructose, yielded an alpha/beta paired ratio averaging 75.0 +/- 5.8%. Last, in the cells exposed to D-[2-13C]fructose, the beta/alpha ratio for the C2-deuterated isotopomers of D-[2-13C]glucose represented 78.9 +/- 3.7% of that for the C5-deuterated isotopomers of D-[5-13C]glucose. The three values representative of the anomeric specificity of D-glucose production by liver cells were not significantly different from one another, with an overall mean value of 76.9 +/- 3.6%. These findings unambiguously document that the anomeric specificity of phosphoglucoisomerase is operative in intact hepatocytes, resulting in a preferential output of the alpha-anomer of 13C-enriched D-glucose under the present experimental conditions.  相似文献   

12.
The main metabolic properties of human red blood cells (RBC) overloaded with glucose catabolizing enzymes such as hexokinase and glucose oxidase were evaluated. Human erythrocytes loaded with human hexokinase metabolized 3.1 +/- 0.2 mumol/h/ml RBC of glucose, an amount double that consumed by normal and unloaded cells (1.46 +/- 0.16 mumol/h/ml RBC), while glucose oxidase-loaded erythrocytes consumed up to 5.5 +/- 0.5 mumol/h/ml RBC of glucose but with a time-dependent increase in methemoglobin formation due to the H2O2 produced in the glucose oxidase reaction. This methemoglobin production was greatly reduced while glucose consumption was increased (8.1 +/- 0.4 mumol/h/ml RBC) by coentrapment of hexokinase and glucose oxidase. Similar results were obtained in mouse red blood cells, although the role of hexokinase was less pronounced due to a higher basal level of this enzyme. When administered to diabetic mice the hexokinase/glucose oxidase-overloaded erythrocytes had a circulating half-life of 5 days and were able to regulate blood glucose at near physiological levels. A single intraperitoneal administration of 500 microliters of enzyme-loaded cells maintained a near-normal blood glucose concentration for 7 +/- 1 days, while repeated administrations at 10-day intervals were effective in the regulation of blood glucose levels for several weeks. These results suggest that enzyme-loaded erythrocytes can behave as circulating bioreactors and can provide a new way to reduce abnormally elevated blood glucose.  相似文献   

13.
Some of the requirements for survival of human red blood cells were studied in vitro at 25 and 37 degrees C for 1--2 weeks. During the first week at 25 degrees C in Krebs-Ringer bicarbonate medium with glucose, the cells at 2--5% hematocrit (HCT) maintained normal K+, Na+, and water contents with negligible hemolysis. After six days ion gradients decreased, preceded by decline of ATP. With adenosine, ATP was maintained for 1--2 weeks. Sustained in vitro survival of human red blood cells at 25 or 37 degrees C requires constant pHo and sufficient substrates to support a glycolytic carbon flux as well as a nitrogen flux via nucleotide turnover. In Earle's salts buffered with HEPES and supplemented with glucose, Eagle's essential vitamins, albumin, and antibiotics, suspensions at 0.1% HCT exhibited constant pH at 7.39 +/- 0.03 for at least two weeks at 37 degrees C. With glucose alone, ATP declined steadily to negligible levels despite constant pHo, but 0.1 mM adenine supported ATP for one week. Also, several amino acids partially prevented the decline of reduced glutathione during the first week at 37 degrees C. These results and current knowledge of red cell metabolism suggest a new defined medium for experiments requiring long term incubations, and extend the characterization of human red cell in vitro survival to a time period not previously studied.  相似文献   

14.
C Isotopomer Analysis of Glutamate by Tandem Mass Spectrometry   总被引:1,自引:0,他引:1  
Tandem mass spectrometry allows a compound to be isolated from the rest of the sample and dissociated into smaller fragments. We show here that fragmentation of glutamate mass isotopomers yields additional mass spectral data that significantly improve the analysis of metabolic fluxes compared to full-scan mass spectrometry. In order to validate the technique, tandem and full-scan mass spectrometry were used along with (13)C NMR to analyze glutamate from rat hearts perfused with three substrate mixtures (5 mM glucose plus 5 mM [2-(13)C]acetate, 5 mM [1-(13)C]glucose plus 5 U/L insulin, and 5 mM glucose plus 1 mM [3-(13)C]pyruvate). Analysis by tandem mass spectrometry showed that the enriched substrate contributed 98 +/- 2, 53 +/- 2, and 84 +/- 7%, respectively, of acetyl-coenzyme A while the rate of anaplerotic substrate entry was 7 +/- 3, 25 +/- 8, and 16 +/- 8%. Similar results were obtained with (13)C NMR data, while values from full-scan data had higher error. We believe that this is the first use of tandem mass spectrometry to determine pathway flux using (13)C-enriched substrates. Although analysis of the citric acid cycle by NMR is simpler (and more intuitive), tandem mass spectrometry has the potential to combine high sensitivity with the high information yield previously available only by NMR.  相似文献   

15.
Transport of alpha- and beta-D-glucose by the intact human red cell   总被引:1,自引:0,他引:1  
A Carruthers  D L Melchior 《Biochemistry》1985,24(15):4244-4250
The kinetics of alpha- and beta-D-glucose mutarotation and the transport of these anomers by intact human red cells were determined at 0.6 and 36.6 degrees C. The mutarotation coefficients for alpha- and beta-D-glucose in cell-free tris(hydroxymethyl)aminomethane medium (pH 7.4) at 0.6 degrees C are (2.25 +/- 0.2) and (1.73 +/- 0.42) X 10(-3) min-1, respectively, and at 36.6 degrees C are (69 +/- 12) and (75 +/- 5) X 10(-3) min-1, respectively. These values are in good agreement with previous estimates. At 0.6 degrees C, the red cell contains no detectable mutarotase activity. Initial rates of sugar uptake were measured by using radiolabeled D-glucose and time courses of uptake by turbidimetry. The time courses of alpha- and beta-D-glucose and an equilibrium mixture of alpha- and beta-D-glucose infinite-cis entry are identical at 0.66 degrees C (n = 41) where negligible mutarotation is observed. The apparent Ki values for inhibition of radiolabeled D-glucose initial uptake by unlabeled alpha- or beta-D-glucose at 0.6 degrees C are identical (1.6 mM). The calculated Vmax parameters for uptake of the radiolabeled anomers at this temperature are also indistinguishable. The time courses of infinite-cis alpha- and beta-D-glucose uptake at 36.66 degrees C are identical (n = 40). While D-glucose mutarotation is more rapid at this temperature, the anomers of D-glucose are not transported differently by the red cell hexose transfer system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
3-O-Methyl-D-glucose transport across the plasma membrane of isolated rat hepatocytes was followed for net entry of the sugar into sugar-free cells (zero trans entry), net exit of sugar into sugar-free medium (zero trans exit) and for unidirectional entry and exit fluxes when cells had been equilibrated with sugar in the extracellular medium (equilibrium exchange entry and exit). These measurements were performed at 20 degrees C and pH 7.4 by the use of simple manual methods. Initial rates of transport showed a Michaelis--Menten dependency on the sugar concentration at the cis side of the membrane over the range of concentrations tested (100 microM to 100 mM). Transport was found to be symmetrical with no evidence of substrate stimulation of transport from the trans side of the membrane. Parameters (mean values +/- S.E.M.) of transport were estimated as Vmax. 86.2 +/- 9.7 mmol/litre of cell water per min and Km 18.1 +/- 5.9 mM for exchange entry, Vmax. 78.8 +/- 5.3 mmol/litre of cell water per min and Km 17.6 +/- 3.5 mM for exchange exit, Vmax. 84.1 +/- 8.4 mmol/litre of cell water per min and Km 16.8 +/- 4.6 mM for zero trans exit.  相似文献   

17.
We have reported previously that glycoglycerolipids derived from the membranes of Acholeplasma laidlawii, 3-O-[2-O-(-D-glucopyranosyl)-6-O-acyl--glucopyranosyl]-1,2-di-O-acyl-sn-glycerols (GAGDGs) bind to human cell lines. In addition, the GAGDGs were found to augment HIV-1 infection in human cell lines. Here we show that GAGDG binds to HIV-1 and facilitates the entry of HIV-1 into cells. The binding ability of GAGDG to HIV-1 was blocked by anti-GAGDG serum. Binding assay with synthetic GAGDGs and related compounds showed that the presence of branching form of acyl chains at the C14 or C16 position, glucose, and the acyl chain binding to the glucose were critical for efficient binding. GAGDG efficiently augmented the entry of HIV-1 into cells in a single-cycle replication assay. These results indicate that GAGDG of A. laidlawii membranes participates in the facilitation of HIV-1 infection.  相似文献   

18.
The kinetic parameters of net exit of D-glucose from human red blood cells have been measured after the cells were loaded to 18 mM, 75 mM and 120 mM at 2 degrees C and 75 mM and 120 mM at 20 degrees C. Reducing the temperature, or raising the loading concentration raises the apparent Km for net exit. Deoxygenation also reduces the Km for D-glucose exit from red blood cells loaded initially to 120 mM at 20 degrees C from 32.9 +/- 2.3 mM (13) with oxygenated blood to 20.5 +/- 1.3 mM (17) (P less than 0.01). Deoxygenation increases the ratio Vmax/Km from 5.29 +/- 0.26 min-1 (13) for oxygenated blood to 7.13 +/- 0.29 min-1 (17) for deoxygenated blood (P less than 0.001). The counterflow of D-glucose from solutions containing 1 mM 14C-labelled D-glucose was measured at 2 degrees C and 20 degrees C. Reduction in temperature, reduced the maximal level to which labelled D-glucose was accumulated and altered the course of equilibration of the specific activity of intracellular D-glucose from a single exponential to a more complex form. Raising the internal concentration from 18 mM to 90 mM at 2 degrees C also alters the course of equilibration of labelled D-glucose within the cell to a complex form. The apparent asymmetry of the transport system may be estimated from the intracellular concentrations of labelled and unlabelled sugar at the turning point of the counterflow transient. The estimates of asymmetry obtained from this approach indicate that there is no significant asymmetry at 20 degrees C and at 2 degrees C asymmetry is between 3 and 6. This is at least 20-fold less than predicted from the kinetic parameter asymmetries for net exit and entry. None of the above results fit a kinetic scheme in which the asymmetry of the transport system is controlled by intrinsic differences in the kinetic parameters at the inner and outer membrane surface. These results are consistent with a model for sugar transport in which movement between sugar within bound and free intracellular compartments can become the rate-limiting step in controlling net movement into, or out of the cell.  相似文献   

19.
The marine bacterium Saccharophagus degradans was investigated for the synthesis of polyhydroxyalkanoates (PHAs), using glucose as the sole source of carbon in a two-step batch culture. In the first step the microorganism grew under nutrient balanced conditions; in the second step the cells were cultivated under limitation of nitrogen source. The biopolymer accumulated in S. degradans cells was detected by Nile red staining and FT-IR analysis. From GC-MS analysis, it was found that this strain produced a homopolymer of 3-hydroxybutyric acid. The cellular polymer concentration, its molecular mass, glass transition temperature, melting point and heat of fusion were 17.2+/-2.7% of dry cell weight, 54.2+/-0.6 kDa, 37.4+/-6.0 degrees C, 165.6+/-5.5 degrees C and 59.6+/-2.2 J g(-1), respectively. This work is the first report determining the capacity of S. degradans to synthesize PHAs.  相似文献   

20.
Solute interactions with membrane proteins can be analyzed by biomembrane affinity chromatography (BAC), previously applied to the human red cell glucose transporter. As a novel example, frontal BAC analysis of interactions between the nucleoside transport inhibitor nitrobenzylthioinosine (NBTI) and immobilized reconstituted nucleoside and glucose transporters from human red cells revealed two binding sites, presumably corresponding to the two transporters. The affinities and amounts of sites were determined by use of a double rectangular hyperbolic equation. The Kd value for NBTI binding to the nucleoside transporter in egg phospholipid proteoliposomes was 0.38 +/- 0.08 nM (22 degrees C, I = 0.16, pH 7.4), lower than previously reported for reconstituted systems. The molar ratio between the amounts of nucleoside transporter sites for NBTI and glucose transporter sites for cytochalasin B was 4.5 +/- 0.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号