首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. The existence of approximately 90 antigenically distinct capsular serotypes has greatly complicated the development of an effective pneumococcal vaccine. Virulence-associated proteins common and conserved among all capsular types now represent the best strategy to combat pneumococcal infections. PiuA and PiaA are the lipoprotein components of two pneumococcal iron ABC transporters and are required for full virulence in mouse models of infection. Here we describe a study of the distribution and genetic diversity of PiuA and PiaA within typical and atypical S. pneumoniae, Streptococcus oralis, and Streptococcus mitis strains. The genes encoding both PiuA and PiaA were present in all typical pneumococci tested, (covering 20 and 27 serotypes, respectively). The piuA gene was highly conserved within the typical pneumococci (0.3% nucleotide divergence), but was also present in "atypical" pneumococci and the closely related species S. mitis and S. oralis, showing up to 10.4% nucleotide divergence and 7.5% amino acid divergence from the typical pneumococcal alleles. Conversely, the piaA gene was found to be specific to typical pneumococci, 100% conserved, and absent from the oral streptococci, including isolates of S. mitis known to possess pneumolysin and autolysin. These are desirable qualities for a vaccine candidate and as a diagnostic tool for S. pneumoniae.  相似文献   

2.
The gene for pneumolysin, the thiol-activated toxin from Streptococcus pneumoniae, has been expressed in Escherichia coli. The recombinant protein has been purified using a rapid, high yield, purification procedure and has been shown to be identical with respect to N-terminal amino-acid sequence, specific activity, effect on human polymorphonuclear phagocytes and effect on human complement to the native toxin purified from the pneumococcus. This provides a large enough source of material to begin investigation of pneumolysin as a candidate for inclusion in a pneumococcal vaccine.  相似文献   

3.
Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1β. This IL-1β production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1β production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system.  相似文献   

4.
An internal fragment of the ddl gene, encoding the cytoplasmic enzyme D-alanyl-D-alanine ligase, was sequenced from 566 isolates of Streptococcus pneumoniae and single isolates of Streptococcus mitis and Streptococcus oralis. The 52 alleles found among the S. pneumoniae isolates fell into two groups. Group A alleles were very uniform in sequence and were present in both penicillin-susceptible and penicillin-resistant pneumococci. Group B alleles were much more diverse and were found only in penicillin-resistant isolates. The Streptococcus oralis and Streptococcus mitis alleles were less diverged from group A alleles than some of the group B pneumococcal alleles, suggesting that the latter alleles contain interspecies recombinational replacements. The ddl gene was located 783 bp downstream of the penicillin-binding protein 2b gene (pbp2b). Sequencing of the pbp2b-recR-ddl-murF region of three penicillin-resistant pneumococci that had diverged ddl alleles showed that the whole region from pbp2b to ddl (or beyond) was highly diverged (about 8%) compared with the sequences from three penicillin-susceptible isolates. The high levels of diversity in the group B ddl alleles from penicillin-resistant isolates were ascribed to a hitchhiking effect whereby interspecies recombinational exchanges at pbp2b, selected by penicillin usage, often extend into, or through, the ddl gene. The data allow the average size of the interspecies recombinational replacements to be estimated at about 6 kb.  相似文献   

5.
6.
The choline-binding protein LytB, an N-acetylglucosaminidase of Streptococcus pneumoniae, is the key enzyme for daughter cell separation and is believed to play a critical pathogenic role, facilitating bacterial spreading during infection. Because of these peculiarities LytB is a putative vaccine target. To determine the extent of LytB polymorphism, the lytB alleles from seven typical, clinical pneumococcal isolates of various serotypes and from 13 additional streptococci of the mitis group (12 atypical pneumococci and the Streptococcus mitis type strain) were sequenced. Sequence alignment showed that the main differences among alleles were differences in the number of repeats (range, 12 to 18) characteristic of choline-binding proteins. These differences were located in the region corresponding to repeats 11 to 17. Typical pneumococcal strains contained either 14, 16, or 18 repeats, whereas all of the atypical isolates except strains 1283 and 782 (which had 14 and 16 repeats, respectively) and the S. mitis type strain had only 12 repeats; atypical isolate 10546 turned out to be a DeltalytB mutant. We also found that there are two major types of alternating repeats in lytB, which encode 21 and 23 amino acids. Choline-binding proteins are linked to the choline-containing cell wall substrate through choline residues at the interface of two consecutive choline-binding repeats that create a choline-binding site. The observation that all strains contained an even number of repeats suggests that the duplication events that gave rise to the choline-binding repeats of LytB involved two repeats simultaneously, an observation that is in keeping with previous crystallographic data. Typical pneumococcal isolates usually grew as diplococci, indicating that an active LytB enzyme was present. In contrast, most atypical isolates formed long chains of cells that did not disperse after addition of purified LytB, suggesting that in these strains chains were produced through mechanisms unrelated to LytB.  相似文献   

7.
Streptococcus pneumoniae is a major bacterial respiratory pathogen. Current licensed pneumococcal polysaccharide and polysaccharide–protein conjugate vaccines are administered by an intramuscular injection. In order to develop a new-generation vaccine that can be administered in a needle-free mucosal manner, we have constructed early 1 and 3 gene regions (E1/E3) deleted, replication-defective adenoviral vectors encoding pneumococcal surface antigen A (PsaA), the N-fragment of pneumococcal surface protein A (N-PspA), and the detoxified mutant pneumolysin (PdB) from S. pneumoniae strain D39. Intranasal vaccination with the three adenoviral vectors (Ad/PsaA, Ad/N-PspA, and Ad/PdB) in mice resulted in robust antigen-specific serum immunoglobulin G responses, as demonstrated by an enzyme-linked immunosorbent assay. In addition, nasal mucosal vaccination with the combination of the three adenoviral vectors conferred protection against S. pneumoniae strain D39 colonization in mouse lungs. Taken together, these data demonstrate the feasibility of developing a mucosal vaccine against S. pneumoniae using recombinant adenoviruses for antigen delivery.  相似文献   

8.

Background  

The risk of mortality from pneumonia caused by Streptococcus pneumoniae is increased in patients with cirrhosis. However, the specific pneumococcal virulence factors and host immune defects responsible for this finding have not been clearly established. This study used a cirrhotic rat model of pneumococcal pneumonia to identify defect(s) in innate pulmonary defenses in the cirrhotic host and to determine the impact of the pneumococcal toxin pneumolysin on these defenses in the setting of severe cirrhosis.  相似文献   

9.
Two new temperate bacteriophages exhibiting a Myoviridae (phiB6) and a Siphoviridae (phiHER) morphology have been isolated from Streptococcus mitis strains B6 and HER 1055, respectively, and partially characterized. The lytic phage genes were overexpressed in Escherichia coli, and their encoded proteins were purified. The lytAHER and lytAB6 genes are very similar (87% identity) and appeared to belong to the group of the so-called typical LytA amidases (atypical LytA displays a characteristic two-amino-acid deletion signature). although they exhibited several differential biochemical properties with respect to the pneumococcal LytA, e.g., they were inhibited in vitro by sodium deoxycholate and showed a more acidic pH for optimal activity. However, and in sharp contrast with the pneumococcal LytA, a short dialysis of LytAHER or LytAB6 resulted in reversible deconversion to the low-activity state (E-form) of the fully active phage amidases (C-form). Comparison of the amino acid sequences of LytAHER and LytAB6 with that of the pneumococcal amidase suggested that Val317 might be responsible for at least some of the peculiar properties of S. mitis phage enzymes. Site-directed mutagenesis that changed Val317 in the pneumococcal LytA amidase to a Thr residue (characteristic of LytAB6 and LytAHER) produced a fully active pneumococcal enzyme that differs from the parental one only in that the mutant amidase can reversibly recover the low-activity E-form upon dialysis. This is the first report showing that a single amino acid residue is involved in the conversion process of the major S. pneumoniae autolysin. Our results also showed that some lysogenic S. mitis strains possess a lytA-like gene, something that was previously thought to be exclusive to Streptococcus pneumoniae. Moreover, the newly discovered phage lysins constitute a missing link between the typical and atypical pneumococcal amidases known previously.  相似文献   

10.
11.
We performed suppression subtractive hybridization to identify genomic differences between Streptococcus mitis and Streptococcus pneumoniae. Based on the pheA gene, a primer set specific to S. mitis detection was found in 18 out of 103 S. mitis-specific clones. Our findings would be useful for discrimination of S. mitis from other closely related cocci in the oral environment.  相似文献   

12.
Streptococcus pneumoniae is a member of the Mitis group of streptococci which, according to 16S rRNA-sequence based phylogenetic reconstruction, includes 12 species. While other species of this group are considered prototypes of commensal bacteria, S. pneumoniae is among the most frequent microbial killers worldwide. Population genetic analysis of 118 strains, supported by demonstration of a distinct cell wall carbohydrate structure and competence pheromone sequence signature, shows that S. pneumoniae is one of several hundred evolutionary lineages forming a cluster separate from Streptococcus oralis and Streptococcus infantis. The remaining lineages of this distinct cluster are commensals previously collectively referred to as Streptococcus mitis and each represent separate species by traditional taxonomic standard. Virulence genes including the operon for capsule polysaccharide synthesis and genes encoding IgA1 protease, pneumolysin, and autolysin were randomly distributed among S. mitis lineages. Estimates of the evolutionary age of the lineages, the identical location of remnants of virulence genes in the genomes of commensal strains, the pattern of genome reductions, and the proportion of unique genes and their origin support the model that the entire cluster of S. pneumoniae, S. pseudopneumoniae, and S. mitis lineages evolved from pneumococcus-like bacteria presumably pathogenic to the common immediate ancestor of hominoids. During their adaptation to a commensal life style, most of the lineages gradually lost the majority of genes determining virulence and became genetically distinct due to sexual isolation in their respective hosts.  相似文献   

13.
Streptococcus pneumoniae is a major cause of pneumonia, sepsis and meningitis. The pore-forming toxin pneumolysin is a key virulence factor of S. pneumoniae, which can be sensed by the NLRP3 inflammasome. Among the over 90 serotypes, serotype 1 pneumococci (particularly MLST306) have emerged across the globe as a major cause of invasive disease. The cause for its particularity is, however, incompletely understood. We therefore examined pneumococcal infection in human cells and a human lung organ culture system mimicking infection of the lower respiratory tract. We demonstrate that different pneumococcal serotypes differentially activate inflammasome-dependent IL-1β production in human lung tissue and cells. Whereas serotype 2, 3, 6B, 9N pneumococci expressing fully haemolytic pneumolysins activate NLRP3 inflammasome-dependent responses, serotype 1 and 8 strains expressing non-haemolytic toxins are poor activators of IL-1β production. Accordingly, purified haemolytic pneumolysin but not serotype 1-associated non-haemolytic toxin activates strong IL-1β production in human lungs. Our data suggest that the evasion of inflammasome-dependent innate immune responses by serotype 1 pneumococci might contribute to their ability to cause invasive diseases in humans.  相似文献   

14.
The pneumococcal choline-containing teichoic acids are targeted by choline-binding proteins (CBPs), major surface components implicated in the interaction with host cells and bacterial cell physiology. CBPs also occur in closely related commensal species, Streptococcus oralis and Streptococcus mitis , and many strains of these species contain choline in their cell wall. Physiologically relevant CBPs including cell wall lytic enzymes are highly conserved between Streptococcus pneumoniae and S. mitis . In contrast, the virulence-associated CBPs, CbpA, PspA and PcpA, are S. pneumoniae specific and are thus relevant for the characteristic properties of this species.  相似文献   

15.
During mucosal colonization, epithelial cells are concurrently exposed to numerous microbial species. Epithelial cytokine production is an early component of innate immunity and contributes to mucosal defence. We have previously demonstrated a synergistic response of respiratory epithelial cells to costimulation by two human pathogens, Streptococcus pneumoniae and Haemophilus influenzae. Here we define a molecular mechanism for the synergistic activation of epithelial signalling during polymicrobial colonization. H. influenzae peptidoglycan synergizes with the pore-forming toxin pneumolysin from S. pneumoniae. Radiolabelled peptidoglycan enters epithelial cells more efficiently in the presence of pneumolysin, consistent with peptidoglycan gaining access to the cytoplasm via toxin pores. Other pore-forming toxins (including anthrolysin O from Bacillus anthracis and Staphylococcus aureus alpha-toxin) can substitute for pneumolysin in the generation of synergistic responses. Consistent with a requirement for pore formation, S. pneumoniae expressing pneumolysin but not an isogenic mutant expressing a non-pore-forming toxoid prime epithelial responses. Nod1, a host cytoplasmic peptidoglycan-recognition molecule, is crucial to the epithelial response. Taken together, these findings demonstrate a role for cytosolic recognition of peptidoglycan in the setting of polymicrobial epithelial stimulation. We conclude that combinations of extracellular organisms can activate innate immune pathways previously considered to be reserved for the detection of intracellular microorganisms.  相似文献   

16.
Streptococcus pneumoniae meningitis causes brain damage through inflammation-related pathways whose identity and mechanisms of action are yet unclear. We previously identified caspase-1, which activates precursor IL-1 type cytokines, as a central mediator of inflammation in pneumococcal meningitis. In this study, we demonstrate that lack of the inflammasome components ASC or NLRP3 that are centrally involved in caspase-1 activation decreases scores of clinical and histological disease severity as well as brain inflammation in murine pneumococcal meningitis. Using specific inhibitors (anakinra and rIL-18-binding protein), we further show that ASC- and NLRP3-dependent pathologic alterations are solely related to secretion of both IL-1β and IL-18. Moreover, using differentiated human THP-1 cells, we demonstrate that the pneumococcal pore-forming toxin pneumolysin is a key inducer of IL-1β expression and inflammasome activation upon pneumococcal challenge. The latter depends on the release of ATP, lysosomal destabilization (but not disruption), and cathepsin B activation. The in vivo importance of this pathway is supported by our observation that the lack of pneumolysin and cathepsin B inhibition is associated with a better clinical course and less brain inflammation in murine pneumococcal meningitis. Collectively, our study indicates a central role of the NLRP3 inflammasome in the pathology of pneumococcal meningitis. Thus, interference with inflammasome activation might be a promising target for adjunctive therapy of this disease.  相似文献   

17.
Streptococcus pneumoniae colonizes the nasopharynx in up to 40% of healthy subjects, and is a leading cause of middle ear infections (otitis media), meningitis and pneumonia. Pneumococci adhere to glycosidic receptors on epithelial cells and to immobilized fibronectin, but the bacterial adhesins mediating these reactions are largely uncharacterized. In this report we describe a novel pneumococcal protein PavA, which binds fibronectin and is associated with pneumococcal adhesion and virulence. The pavA gene, present in 64 independent isolates of S. pneumoniae tested, encodes a 551 amino acid residue polypeptide with 67% identical amino acid sequence to Fbp54 protein in Streptococcus pyogenes. PavA localized to the pneumococcal cell outer surface, as demonstrated by immunoelectron microscopy, despite lack of conventional secretory or cell-surface anchorage signals within the primary sequence. Full-length recombinant PavA polypeptide bound to immobilized human fibronectin in preference to fluid-phase fibronectin, in a heparin-sensitive interaction, and blocked binding of wild-type pneumococcal cells to fibronectin. However, a C-terminally truncated PavA' polypeptide (362 aa residues) failed to bind fibronectin or block pneumococcal cell adhesion. Expression of pavA in Enterococcus faecalis JH2-2 conferred > sixfold increased cell adhesion levels to fibronectin over control JH2-2 cells. Isogenic mutants of S. pneumoniae, either abrogated in PavA expression or producing a 42 kDa C-terminally truncated protein, showed up to 50% reduced binding to immobilized fibronectin. Inactivation of pavA had no effects on growth rate, cell morphology, cell-surface physico-chemical properties, production of pneumolysin, autolysin, or surface proteins PspA and PsaA. Isogenic pavA mutants of encapsulated S. pneumoniae D39 were approximately 104-fold attenuated in virulence in the mouse sepsis model. These results provide evidence that PavA fibronectin-binding protein plays a direct role in the pathogenesis of pneumococcal infections.  相似文献   

18.
Streptococcus pneumoniae (pneumococcal) meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage.  相似文献   

19.
Streptococcus pneumoniae (pneumococcus [Pnc]) is a causative agent of many infectious diseases, including pneumonia, septicemia, otitis media, and conjunctivitis. There have been documented conjunctivitis outbreaks in which nontypeable (NT), nonencapsulated Pnc has been identified as the etiological agent. The use of mass spectrometry to comparatively and differentially analyze protein and peptide profiles of whole-cell microorganisms remains somewhat uncharted. In this report, we discuss a comparative proteomic analysis between NT S. pneumoniae conjunctivitis outbreak strains (cPnc) and other known typeable or NT pneumococcal and streptococcal isolates (including Pnc TIGR4 and R6, Streptococcus oralis, Streptococcus mitis, Streptococcus pseudopneumoniae, and Streptococcus pyogenes) and nonstreptococcal isolates (including Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus) as controls. cPnc cells and controls were grown to mid-log phase, harvested, and subsequently treated with a 10% trifluoroacetic acid-sinapinic acid matrix mixture. Protein and peptide fragments of the whole-cell bacterial isolate-matrix combinations ranging in size from 2 to 14 kDa were evaluated by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Additionally Random Forest analytical tools and dendrogramic representations (Genesis) suggested similarities and clustered the isolates into distinct clonal groups, respectively. Also, a peak list of protein and peptide masses was obtained and compared to a known Pnc protein mass library, in which a peptide common and unique to cPnc isolates was tentatively identified. Information gained from this study will lead to the identification and validation of proteins that are commonly and exclusively expressed in cPnc strains which could potentially be used as a biomarker in the rapid diagnosis of pneumococcal conjunctivitis.  相似文献   

20.
Streptococcus pneumoniae is the most frequent cause of bacterial meningitis, leading to permanent neurological damage in 30% and lethal outcome in 25% of patients. The cholesterol-dependent cytolysin pneumolysin is a major virulence factor of S. pneumoniae . It produces rapid cell lysis at higher concentrations or apoptosis at lower concentrations. Here, we show that sublytic amounts of pneumolysin produce rapid bundling and increased acetylation of microtubules (signs of excessive microtubule stabilization) in various types of cells – neuroblastoma cells, fibroblasts and primary astrocytes. The bundling started perinuclearly and extended peripherally towards the membrane. The effect was not connected to pneumolysin's capacity to mediate calcium influx, macropore formation, apoptosis, or RhoA and Rac1 activation. Cellular cholesterol depletion and neutralization of the toxin by pre-incubation with cholesterol completely inhibited the microtubule phenotype. Pharmacological inhibition of Src-family kinases diminished microtubule bundling, suggesting their involvement in the process. The relevance of microtubule stabilization to meningitis was confirmed in an experimental pneumococcal meningitis animal model, where increased acetylation was observed. Live imaging experiments demonstrated a decrease in organelle motility after toxin challenge in a manner comparable to the microtubule-stabilizing agent taxol, thus proposing a possible pathogenic mechanism that might contribute to the CNS damage in pneumococcal meningitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号