首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Begomoviruses (genus Begomovirus, family Geminiviridae) have emerged as important plant pathogens in tropical and subtropical regions worldwide. Although these viruses were reported during the 1970s in Costa Rica, they are still poorly known. Therefore, the objective of this study was to analyse the diversity and distribution of begomoviruses in commercial tomato and sweet pepper fields from different agricultural production systems of the major growing regions of Costa Rica. A total of 651 plants were randomly sampled from greenhouses and open field crops during 2011 and 2012 in three different geographical locations. The bipartite begomoviruses Tomato yellow mottle virus, Tomato leaf curl Sinaloa virus and Pepper golden mosaic virus, and the monopartite begomovirus Tomato yellow leaf curl virus were detected in the collected samples. The complete genome of isolates from each species was cloned and sequenced. The frequency of detection of these four begomoviruses in the analysed samples ranged from 0 to 9%, the presence, and the prevalent virus varied largely according to the geographical location, the host (tomato and pepper), and the production system (greenhouses or open fields). An association between geographical region and begomovirus species was observed suggesting that in Costa Rica the heterogeneity on climate, topography and agricultural system might influence the distribution of begomovirus species in the country. A broader survey needs to be conducted to confirm it, although these preliminary results may contribute to the management of begomoviruses in Costa Rica.  相似文献   

3.
Yellow mosaic disease (YMD) is one of the most important diseases affecting different leguminous crops and causes significant yield losses in Indian sub‐continent. Eight different bipartite begomovirus species are known to cause YMD in more than 10 leguminous crops. These species are collectively known as legume yellow mosaic viruses (LYMVs), and their full genomes have been characterised except for Dolichos yellow mosaic virus (DoYMV). In this study, full genome of DoYMV isolate (KJ481204 and KJ481205) infecting dolichos has been characterised. The DNA‐A of DoYMV consists of 2761 nucleotides and DNA‐B of 2733 nucleotides with a genome organisation typical of Old World bipartite begomoviruses. Nucleotide identity of DNA‐B (KJ481205) of DoYMV with DNA‐B of other legumoviruses was 57.5–61.0%. Both components contain a nonanucleotide and conserved inverted repeat sequences with the potential to form a stem‐loop. Nucleotide identity of common region of DoYMV was 90.3%, above the threshold nucleotide identity (>85%) for considering a DNA‐B molecule as cognate of DNA‐A of a begomovirus. Four recombination events in DNA‐A and two in DNA‐B of DoYMV isolate were detected. Mungbean yellow mosaic virus, Rhynchosia yellow mosaic virus and Horsegram yellow mosaic virus were identified as probable parents.  相似文献   

4.
We report that several begomoviruses are associated with tomato leaf curl disease in Java, Indonesia. Tomato plants with leaf curl symptoms were collected from Bandung (west Java), Purwokerto (central Java), Magelang (central Java) and Malang (east Java) of Indonesia, the major tomato‐growing areas of the country. Viruses were detected using the polymerase chain reaction (PCR), with universal primers for the genus Begomovirus. PCR‐amplified fragments were cloned and sequenced. Based on sequence comparisons and phylogenetic analyses, the viruses were divided into three groups. With respect to amino acid (aa) identities of the N‐terminal halves of the coat proteins compared in this study, group I was most closely related to Ageratum yellow vein virus (AYVV) (97%), Ageratum yellow vein China virus‐[Hn2] (AYVCNV‐[Hn2]) (96%) and Ageratum yellow vein virus‐[Taiwan] (AYVV‐[Tai]) (95%), and ageratum‐infecting begomovirus from Java (99%). Group II had high sequence identity with a tentative species of tomato leaf curl Java virus (ToLCJAV) (96% aa) for the CP. Group III was most closely related to a proposed species of Pepper yellow leaf curl Indonesia virus (PepYLCIDV) (90% aa identity) by its partial CP sequence.  相似文献   

5.
6.
During 2011, leaf crumpling, yellowing and stunting were observed on soya bean (Glycine max) in Himachal Pradesh, India. PCR‐based detection confirmed the presence of a begomovirus. The viral genome was amplified by rolling circle amplification, cloned and sequenced. The complete nucleotide sequence of DNA‐A showed highest nucleotide identity to an isolate of Ageratum enation virus infecting a weed Ageratum conyzoides. In addition, a DNA molecule was found which shared 95% nucleotide identity with an alphasatellite infecting ageratum. Neither beta satellite nor DNA‐B was detected in the infected samples.  相似文献   

7.
From Synedrella nodiflora plants with leaf curling, vein swelling and enation symptoms on Samal Island, the Philippines, a begomoviral DNA‐A and its associated alphasatellite molecule were cloned and sequenced. The begomovirus was identified as an isolate of Ageratum yellow vein China virus (AYVCNV) with 91% nucleotide sequence identity to AYVCNV‐[P157] (EU487045), while the alphasatellite molecule was most closely related to tobacco curly shoot alphasatellite‐Y99 (TbCSA‐Y99, AJ579347) with 74.5% nucleotide sequence identity. The satellite molecule has the typical features of alphasatellites, with a single gene in the virion sense, an A‐rich region and a 33‐bp predicted stem‐loop structure. According to the proposed species demarcation threshold of alphasatellites (83% nucleotide sequence identity), the alphasatellite molecule represents a new species, herein named ‘Ageratum yellow vein China alphasatellite’ ( KF785752 ).  相似文献   

8.
Begomoviruses (whitefly‐transmitted, single‐stranded DNA plant viruses) are among the most damaging pathogens causing epidemics in economically important crops worldwide. Besides cultivated plants, many weed and wild hosts act as virus reservoirs where recombination may occur, resulting in new species. The aim of this study was to further characterise the diversity of begomoviruses infecting two major weed genera, Sida and Leonurus. Total DNA was extracted from samples collected in the states of Rio Grande do Sul, Paraná and Mato Grosso do Sul during the years 2009–2011. Viral genomes were enriched by rolling circle amplification (RCA), linearised into unit length genomes using various restriction enzymes, cloned and sequenced. A total of 78 clones were obtained: 37 clones from Sida spp. plants and 41 clones from Leonurus sibiricus plants. Sequence analysis indicated the presence of six bipartite begomovirus species and two alphasatellites. In Sida spp. plants we found Sida micrantha mosaic virus (SiMMV), Euphorbia yellow mosaic virus (EuYMV), and three isolates that represent new species, for which the following names are proposed: Sida chlorotic mottle virus (SiCMoV), Sida bright yellow mosaic virus (SiBYMV) and Sida golden yellow spot virus (SiGYSV), an Old World‐like begomovirus. L. sibiricus plants had a lower diversity of begomoviruses compared to Sida spp., with only Tomato yellow spot virus (ToYSV) and EuYMV (for the first time detected infecting plants of the genus Leonurus) detected. Two satellite DNA molecules were found: Euphorbia yellow mosaic alphasatellite, for the first time detected infecting plants of the genus Sida, and a new alphasatellite associated with ToYSV in L. sibiricus. These results constitute further evidence of the high species diversity of begomoviruses in non‐cultivated hosts, particularly Sida spp.  相似文献   

9.
10.
Begomoviruses were detected in leaf samples of Sauropus androgynus (L.) Merr. plants showing leaf curling with or without yellowing symptoms in Kamphaeng Saen, Nakhon Pathom, Thailand in 2009 and 2010. From eight plants with symptoms, 17 complete begomoviral DNA‐As were amplified by polymerase chain reaction and sequenced. No DNA‐B was detected in any of the plants. All the DNA‐As had the characteristic begomovirus genome organization of six open reading frames, two in the virion‐sense orientation and four in the complementary orientation. Sequence comparison of these virus isolates indicated that one isolate belongs to Tomato leaf curl New Delhi virus, 12 isolates belong to Ageratum yellow vein virus and four isolates belong to a novel species with the tentative name Sauropus leaf curl virus. Five of the eight samples were found to be co‐infected by isolates of two different begomovirus species. Recombination analysis indicated that all but one of the isolates were probably the product of one or more recombination events. The results indicated that S. androgynus plants act as natural hosts as well as potential nurseries for genetic recombination between begomovirus species and strains.  相似文献   

11.
Kidney bean (Phaseolus vulgaris) plants exhibiting foliar yellow mosaic symptoms and some leaf crumpling were identified in the Al Batinah region of Oman. Rolling circle amplification and polymerase chain reaction identified a bipartite begomovirus (family Geminiviridae) and a betasatellite in association with the symptomatic plants. Analysis of full‐length sequences showed the virus to be Mungbean yellow mosaic Indian virus (MYMIV) and the betasatellite Tomato leaf curl betasatellite (ToLCB). This is the first identification of a legume‐adapted begomovirus in Oman and the first identification of MYMIV in association with the betasatellite ToLCB. The isolate of MYMIV from Oman shows the greatest levels of sequence identity to isolates occurring in South Asia and South‐East Asia, suggesting that the virus has only recently been introduced. The significance of these findings is discussed.  相似文献   

12.
Thirty-five nematode species belonging to 19 genera were extracted from 432 soil and root samples collected in 19 districts in six provinces in the North Central Coast, Central Highlands and Phu Quoc Island. Based on our study, the predominant nematode species associated with black pepper plants in Vietnam is Meloidogyne incognita: almost every soil and root sample examined during our study was infected with this root-knot nematode species. No difference in frequency of occurrence of M. incognita among the three agro-ecological regions surveyed was observed. However, the root population density of M. incognita in black pepper plants was on average about five times higher in the North Central Coast and Central Highlands than in Phu Quoc Island. Large differences in root population density of M. incognita on black pepper plants were observed in different districts within the same agro-ecological region. Black pepper roots infected with M. incognita showed the same type of galls as described in the literature. The percentage of root galling averaged about 40% in all the three agro-ecological regions. The percentage of black pepper plants with yellow leaves was on average about 20–25% in the North Central Coast and Central Highlands, which was somewhat higher compared to Phu Quoc Island (16.9%). Large differences in percentage of black pepper plants with yellow leaves were observed in different districts within the same agro-ecological region. The same type of yellow leaves as described in the literature for black pepper plants infected with Meloidogyne species was observed in our study. In general, a positive relationship between the soil and root population densities of M. incognita on black pepper plants and percentage of plants with yellow leaves was observed. However, in one district (Quang Tri) a relatively low nematode population density was associated with a high percentage of plants with yellow leaves. Five nematode species were recorded for the first time on black pepper plants in Vietnam. Our study reconfirms previous reports that Radopholus similis does not occur in Vietnam.  相似文献   

13.
Z. F. He    M. J. Mao    H. Yu    X. M. Wang    H. P. Li 《Journal of Phytopathology》2008,156(7-8):496-498
In 2005, Eclipta prostrata plants exhibiting yellow vein symptoms were observed in Guangzhou, Guangdong province, China. A virus isolate G8 was cloned from a symptomatic plant. The complete nucleotide sequence of G8 DNA-A was determined to be 2745 nucleotides, which had typical characteristics of Begomovirus genome organization. The comparison of complete nucleotide sequence of DNA-A showed that isolate G8 shared the highest sequence identity with Alternanthera yellow vein virus (AlYVV) isolates G38 and Hn51 at 95.9% and 94.3%, respectively. These results show that G8 infecting E. prostrata in Guangdong is a strain of AlYVV.  相似文献   

14.
During autumn, an extensive survey was conducted in pepper (Capsicum annum L.) in intensive cultivation areas of four provinces in southeastern Turkey (Adana, Kahramanmara?, Mersin and ?anl?urfa) in order to identify the causal agent (s) of phytoplasma‐like symptoms (chlorosis, little‐leaf, short internodes and stunting). DNA amplification by PCR and RFLP analysis using EcoRI restriction enzyme confirmed the presence of phytoplasmas in ?anl?urfa and Mersin, and consequently their possible association with the symptoms. Sequencing and phylogenetic analysis revealed that the isolate from ?anl?urfa had 99% sequence identity with “Candidatus Phytoplasma trifolii” (16SrVI) and is a member of the clover proliferation group (16SrVI‐A). Additionally, the isolate from Mersin had 96% sequence identity with “Candidatus Phytoplasma asteris” (16SrI). Importantly, gene sequence of the Mersin isolate shared <97.5% similarity to previously discovered “Ca. Phytoplasma” species. Consequently, the phytoplasma detected from Mersin could represent a new “Ca. Phytoplasma” species and to our knowledge, this is the first report of asteris‐like phytoplasmas infecting pepper in Turkey.  相似文献   

15.
In glasshouse tests, infective sap from plants infected with 17 different isolates of Tomato spotted wilt virus (TSWV) from four Australian states was inoculated to three Capsicum chinense accessions (PI 152225, PI 159236 and C00943) carrying single genes that confer hypersensitive resistance to TSWV. The normal response to inoculation was development of necrotic (hypersensitive) local lesions in inoculated leaves without systemic invasion, but 3/1386 infected plants also developed systemic susceptible reactions in addition to hypersensitive ones. Similarly when two isolates were inoculated to C. chinense backcross progeny plants, 1/72 developed systemic susceptible reactions in addition to localised hypersensitive ones. Using cultures from the four plants with susceptible reactions and following three to five further cycles of serial subculture in TSWV‐resistant C. chinense plants, four isolates were obtained that gave systemic susceptible type reactions in the three TSWV‐resistant accessions, and in TSWV‐resistant cultivated pepper (C. annuum). When three of these isolates were inoculated to tomato (Lycopersicon esculentum) breeding lines with single gene resistance to TSWV, resistance was not overcome. Similarly, none of the four isolates overcame partial resistance to TSWV in Lactuca virosa. When TSWV isolates were inoculated to tomato breeding lines carrying partial resistance from L. chilense, systemic infection developed which was sometimes followed by ‘recovery’. After four successive cycles of serial passage in susceptible cultivated pepper of a mixed culture of a resistance‐breaking isolate with the non resistance‐breaking isolate from which it came, the resistance‐breaking isolate remained competitive as both were still found. However, when the same resistance‐ breaking isolate was cultured alone, evidence of partial reversion to wild‐type behaviour was eventually obtained after five but not four cycles of long term serial subculture in susceptible pepper, as by then the culture had become a mixture of both types of strain. This work suggests that resistance‐breaking strains of TSWV that overcome single gene hypersensitive resistance in pepper are relatively stable. The findings have important implications for situations where resistant pepper cultivars are deployed widely in the field without taking other control measures as part of an integrated TSWV management strategy.  相似文献   

16.
Recent studies identified three begomoviruses infecting soybean and bean crops in northwestern (NW) Argentina, bean golden mosaic virus (BGMV), a virus with high capsid protein identity with Sida mottle virus (SiMoV) and a possible new viral species (isolate A). Analysis of complete DNA‐A sequences confirmed that isolate A represents a new viral species for which the authors propose the name soybean blistering mosaic virus (SbBMV), whereas the SiMoV‐like virus is actually an isolate of tomato yellow spot virus (ToYSV). Molecular hybridisation‐based detection of the three begomoviruses was accomplished using a general probe obtained by mixing full‐length DNA‐A clones of the three begomoviruses and specific probes comprising part of the common region of each viral genome. These probes were used to test samples collected in NW Argentina from 2004 through 2007. Fifty‐three percent of the bean samples were infected with BGMV, 11.5% with ToYSV and 9% with SbBMV. For soybean samples, 33% were infected with SbBMV and 18% with ToYSV. BGMV was not detected in soybean. ToYSV was also detected in the wild species Abutilon theophrasti.  相似文献   

17.
Tomato yellow leaf curl disease (TYLCD) is one of the most devastating viral diseases affecting tomato crops in tropical, subtropical and temperate regions of the world. Here, we focus on the interactions through recombination between the different begomovirus species causing TYLCD, provide an overview of the interactions with the cellular genes involved in viral replication, and highlight recent progress on the relationships between these viruses and their vector, the whitefly Bemisia tabaci. Taxonomy: The tomato yellow leaf curl virus‐like viruses (TYLCVs) are a complex of begomoviruses (family Geminiviridae, genus Begomovirus) including 10 accepted species: Tomato yellow leaf curl Axarquia virus (TYLCAxV), Tomato yellow leaf curl China virus (TYLCCNV), Tomato yellow leaf curl Guangdong virus (TYLCGuV), Tomato yellow leaf curl Indonesia virus (TYLCIDV), Tomato yellow leaf curl Kanchanaburi virus (TYLVKaV), Tomato yellow leaf curl Malaga virus (TYLCMalV), Tomato yellow leaf curl Mali virus (TYLCMLV), Tomato yellow leaf curl Sardinia virus (TYLCSV), Tomato yellow leaf curl Thailand virus (TYLCTHV), Tomato yellow leaf curl Vietnam virus (TYLCVNV) and Tomato yellow leaf curl virus(TYLCV). We follow the species demarcation criteria of the International Committee on Taxonomy of Viruses (ICTV), the most important of which is an 89% nucleotide identity threshold between full‐length DNA‐A component nucleotide sequences for begomovirus species. Strains of a species are defined by a 93% nucleotide identity threshold. Host range: The primary host of TYLCVs is tomato (Solanum lycopersicum), but they can also naturally infect other crops [common bean (Phaseolus vulgaris), sweet pepper (Capsicum annuum), chilli pepper (C. chinense) and tobacco (Nicotiana tabacum)], a number of ornamentals [petunia (Petunia×hybrida) and lisianthus (Eustoma grandiflora)], as well as common weeds (Solanum nigrum and Datura stramonium). TYLCVs also infect the experimental host Nicotiana benthamiana. Disease symptoms: Infected tomato plants are stunted or dwarfed, with leaflets rolled upwards and inwards; young leaves are slightly chlorotic; in recently infected plants, fruits might not be produced or, if produced, are small and unmarketable. In common bean, some TYLCVs produce the bean leaf crumple disease, with thickening, epinasty, crumpling, blade reduction and upward curling of leaves, as well as abnormal shoot proliferation and internode reduction; the very small leaves result in a bushy appearance.  相似文献   

18.
The full‐length genome of a Tunisian isolate of Tomato yellow leaf curl Sardinia virus (TYLCSV) was engineered and submitted to sequence analysis. The Tunisian isolate has 99% sequence identity with TYLCSV‐Sicilian (Sic), results thus providing further evidence for the inclusion of this isolate in the TYLCSV‐Sic group. A 1.7‐mer construct of the virus was obtained and efficiently agroinfiltrated into tomato and tobacco plants to induce symptoms indistinguishable from those of natural infection.  相似文献   

19.
Symptomless nature of Piper yellow mottle virus (PYMoV) infection in three varieties of black pepper (Piper nigrum) (Panniyur 1, Panniyur 5 and Panchami) and a wild species of Piper (Piper colubrinum) was confirmed by polymerase chain reaction (PCR) using PYMoV specific primers. The virus could be transmitted from these PYMoV-infected symptomless plants onto symptom producing black pepper cv. Karimunda through mealybug vector, Ferrisia virgata and by graft transmission. About 20–50% seedlings showed typical symptoms of the PYMoV at 30 days after mealybug inoculations while it was 75–94% at 90 days after inoculation. PCR test of the inoculated seedlings confirmed the presence of PYMoV in 50–64%, 76–100% and 80–100% of plants in 30, 60 and 90 days after inoculation, respectively. Similarly, 50–66%, 91–100% and 100% of graft-transmitted plants showed typical symptoms of the disease at 30, 60 and 90 days after grafting. PCR test of the graft-transmitted plants showed 100% PYMoV infection at 60 days after grafting. The results clearly demonstrated the existence of PYMoV-infected symptomless plants that can act as source for secondary spread of the virus in the field.  相似文献   

20.
Chilli (Capsicum annum L.) is well known as ‘wonder spice’. This is a very valuable cash crop grown as a vegetable globally. Chilli leaf curl disease is a major threat and global concern for the cultivation of Chilli by farmers and growers. In this work, the molecular diagnosis, genetic diversity, phylogenetic relationship, and begomovirus association with Chilli leaf curl disease have been discussed. The infected leaves were randomly harvested from the Chilli field, at Jeddah, Saudi Arabia. A group of begomovirus vector, whiteflies were also observed on the Chilli crop and infected weeds growing in the neighboring field. The begomovirus was confirmed by coat protein gene specific primer, dot blot hybridization, sequencing and sequence analysis. The full coat protein gene was found to have 774 nucleotides. The nucleotide sequences analysis shared the highest identity with Tomato yellow leaf curl virus reported earlier infecting tomato from Saudi Arabia, and the lowest identity was observed with Tomato yellow leaf curl virus Oman isolate. The overall sequence identity ranged from more than ninety percent among the analyzed sequences. The phylogenetic relationship analysis formed the major three clusters and showed the closed clustering with Tomato yellow leaf curl virus isolates. The natural spread of the Tomato yellow leaf curl virus on the Chilli crop from other crops poses an important and serious threat to Chili cultivation in the Kingdom of Saudi Arabia. Based on the literature review and current evidence, this is the first report of leaf curl disease of Chilli from Saudi Arabia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号