首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thaxtomin A is the main phytotoxin produced by Streptomyces scabies, a causal agent of potato scab. Thaxtomin A is a yellow compound composed of 4-nitroindol-3-yl-containing 2,5-dioxopiperazine. A collection of nonpathogenic streptomycetes isolated from potato tubers and microorganisms recovered from a thaxtomin A solution were examined for the ability to grow in the presence of thaxtomin A as a sole carbon or nitrogen source. Three bacterial isolates and two fungal isolates grew in thaxtomin A-containing media. Growth of these organisms resulted in decreases in the optical densities at 400 nm of culture supernatants and in 10% reductions in the thaxtomin A concentration. The fungal isolates were identified as a Penicillium sp. isolate and a Trichoderma sp. isolate. One bacterial isolate was associated with the species Ralstonia pickettii, and the two other bacterial isolates were identified as Streptomyces sp. strains. The sequences of the 16S rRNA genes were determined in order to compare thaxtomin A-utilizing actinomycetes to the pathogenic organism S. scabies and other Streptomyces species. The nucleotide sequences of the γ variable regions of the 16S ribosomal DNA of both thaxtomin A-utilizing actinomycetes were identical to the sequence of Streptomyces mirabilis ATCC 27447. When inoculated onto potato tubers, the three thaxtomin A-utilizing bacteria protected growing plants against common scab, but the fungal isolates did not have any protective effect.  相似文献   

2.
Streptomyces scabies causes potato common scab disease, which reduces the quality and market value of affected tubers. The predominant pathogenicity determinant produced by S. scabies is the thaxtomin A phytotoxin, which is essential for common scab disease development. Production of thaxtomin A involves the nonribosomal peptide synthetases (NRPSs) TxtA and TxtB, both of which contain an adenylation (A-) domain for selecting and activating the appropriate amino acid during thaxtomin biosynthesis. The genome of S. scabies 87.22 contains three small MbtH-like protein (MLP)-coding genes, one of which (txtH) is present in the thaxtomin biosynthesis gene cluster. MLP family members are typically required for the proper folding of NRPS A-domains and/or stimulating their activities. This study investigated the importance of TxtH during thaxtomin biosynthesis in S. scabies. Biochemical studies showed that TxtH is required for promoting the soluble expression of both the TxtA and TxtB A-domains in Escherichia coli, and amino acid residues essential for this activity were identified. Deletion of txtH in S. scabies significantly reduced thaxtomin A production, and deletion of one of the two additional MLP homologues in S. scabies completely abolished production. Engineered expression of all three S. scabies MLPs could restore thaxtomin A production in a triple MLP-deficient strain, while engineered expression of MLPs from other Streptomyces spp. could not. Furthermore, the constructed MLP mutants were reduced in virulence compared to wild-type S. scabies. The results of our study confirm that TxtH plays a key role in thaxtomin A biosynthesis and plant pathogenicity in S. scabies.  相似文献   

3.
4.
A total of nine isolates of streptomycetes were isolated from scab lesions on potato tubers. Five of nine isolates were pathogenic on potato minitubers. Four of the pathogenic isolates produced thaxtomin A (ThxA) in infected tuber tissues. The lesion surface areas inducing ThxA were highest in treatment of the minitubers with an extract of OMB inoculated with S-66 and S-67, intermediate with that inoculated with S-64 and lowest with S-63. The pathogenic isolates were identified by gray aerial mycelia, melanin pigment productivity, the type of spore chain morphology and carbon utilization asS. scabies strains S-63, S-64 and S-68, andS. acidiscabies strains S-66 and S-67. Strains S-63 and S-64 produced 0.65 and 1.60 mg ThxA per L of OMB, respectively, strains S-66 and S-67 producing similar amounts,viz. 2.36 and 2.10 mg/L, respectively. The optimal temperature for production (by both species) was 28 °C. Production of ThxA byS. scabies strain S-64 andS. acidiscabies strain S-66 was suppressed at least 50-fold at 0.5 and 0.3 % of glucose, respectively. Fructose enhanced the production by both species.  相似文献   

5.
Plastid genetic engineering represents an attractive system for the production of foreign proteins in plants. Although high expression levels can be achieved in leaf chloroplasts, the results for non‐photosynthetic plastids are generally discouraging. Here, we report the expression of two thioredoxin genes (trx f and trx m) from the potato plastid genome to study transgene expression in amyloplasts. As expected, the highest transgene expression was detected in the leaf (up to 4.2% of TSP). The Trx protein content in the tuber was approximately two to three orders of magnitude lower than in the leaf. However, we demonstrate that a simple post‐harvest light treatment of microtubers developed in vitro or soil‐grown tubers induces up to 55 times higher accumulation of the recombinant protein in just seven to ten days. After the applied treatment, the Trx f levels in microtubers and soil‐grown tubers increased to 0.14% and 0.11% of TSP, respectively. Moreover, tubers stored for eight months maintained the capacity of increasing the foreign protein levels after the light treatment. Post‐harvest cold induction (up to five times) at 4°C was also detected in microtubers. We conclude that plastid transformation and post‐harvest light treatment could be an interesting approach for the production of foreign proteins in potato.  相似文献   

6.
7.
A glasshouse experiment was conducted to study the responses to Streptomyces scabies and S. turgidiscabies in potato cultivars Bellona, Matilda and Sabina (Solanum tuberosum). Potatoes were grown in a peat‐sand mixture inoculated with one of the two strains of either S. scabies or S. turgidiscabies. Logit models were used to analyse the data on disease incidence and severity, whereas the data on emergence and yield were tested by analysis of variance. S. turgidiscabies, a recently described potato pathogen in Finland, possessed a high ability to cause superficial, raised and pitted lesions on all three cultivars tested. Symptoms induced by S. turgidiscabies were similar to those of S. scabies, regardless of the cultivar, which suggests that the two causal organisms of common scab cannot be distinguished based on symptoms. Infection by S. turgidiscabies and S. scabies delayed emergence, had the tendency to decrease the yield, and increased the proportion of small tubers in the yield, regardless of the potato cultivar. Differences in the levels of resistance to common scab were evident between potato cultivars, since cvs. Matilda and Bellona showed higher disease incidence and more severe scab symptoms than cv. Sabina.  相似文献   

8.
9.
Streptomyces scabiei is the predominant causal agent of common scab of potato in North America. The virulence of common scab-causing streptomycetes relies on their capacity to synthesize thaxtomins. In this study, the effects of S. scabiei infection and of thaxtomin A, the main toxin produced by S. scabiei, were tested for the elicitation of plant defense molecules in the model plants tobacco (Nicotiana tabacum) and Arabidopsis thaliana. Tobacco leaves infected with spores of S. scabiei strain EF-35 or infiltrated with purified thaxtomin A produced a blue fluorescent compound that was not detected in leaves infiltrated with spores of a S. scabiei mutant deficient in thaxtomin A biosynthesis. Thin layer chromatography and high performance liquid chromatography identified this fluorescent compound as scopoletin, a plant defense phytoalexin. Arabidopsis seedlings grown in liquid medium also excreted scopoletin as a reaction to S. scabiei and thaxtomin A. The effects of the presence of scopoletin on S. scabiei were also investigated. The phytoalexin scopoletin caused a slight reduction of bacterial growth and a severe decrease of thaxtomin A production. Scopoletin was shown to inhibit thaxtomin A production by repression of a gene involved in the toxin biosynthesis.  相似文献   

10.
Coronafacoyl phytotoxins are secondary metabolites that are produced by various phytopathogenic bacteria, including several pathovars of the Gram‐negative bacterium Pseudomonas syringae as well as the Gram‐positive potato scab pathogen Streptomyces scabies. The phytotoxins are composed of the polyketide coronafacic acid (CFA) linked via an amide bond to amino acids or amino acid derivatives, and their biosynthesis involves the cfa and cfa‐like gene clusters that are found in P. syringae and S. scabies, respectively. The S. scabies cfa‐like gene cluster was previously reported to contain several genes that are absent from the P. syringae cfa gene cluster, including one (oxr) encoding a putative F420—dependent oxidoreductase, and another (sdr) encoding a predicted short‐chain dehydrogenase/reductase. Using gene deletion analysis, we demonstrated that both oxr and sdr are required for normal production of the S. scabies coronafacoyl phytotoxins, and structural analysis of metabolites that accumulated in the Δsdr mutant cultures revealed that Sdr is directly involved in the biosynthesis of the CFA moiety. Our results suggest that S. scabies and P. syringae use distinct biosynthetic pathways for producing coronafacoyl phytotoxins, which are important mediators of host‐pathogen interactions in various plant pathosystems.  相似文献   

11.
Cold-induced sweetening (CIS) is a crucial factor influencing the processing quality of potato tubers. To better understand the molecular events of potato CIS and different CIS-sensitivity among various potato species, a suppression subtractive hybridization library and cDNA microarray gene filters were developed. A total of 188 genes were found to be differentially expressed (DE) in Solanum berthaultii (ber) upon cold stimulation. These functional genes were mostly related to cell rescue, defense and virulence, metabolism, energy and protein fate, included in various processes of plant defense against abiotic stresses. Four expression patterns of these DE genes were profiled by qRT-PCR using the cold-stored tubers of both CIS-resistant (ber) and CIS-sensitive (E-potato 3, a variety of S. tuberosum) potatoes. The expression pattern and abundance of many DE genes encoding proteins involved in metabolism were different in these two potato tubers, especially genes associated with amylolysis, sucrose decomposition and glycolysis pathways, indicating distinct regulatory mechanisms between ber and E3 in response to cold stress, which may be crucial for potato CIS. Further investigation of these cold-regulated genes will deepen our understanding of the regulatory mechanisms of potato CIS and direct approaches for the genetic improvement of potato processing quality.  相似文献   

12.
A total of nine isolates of streptomycetes were isolated from scab lesions on potato tubers. Five out of them were pathogenic on potato minitubers and four of the pathogenic isolates produced thaxtomin A in infected tubers tissues. The lesion surface areas induced by thaxtomin A were highest in treatment of the minitubers with extract of OMB inoculated with S-6 and S-7, intermediate with that inoculated with S-4 and lowest with S-3. The pathogenic isolates were identified by their colour of aerial mycelia, melanin pigment productivity (+ or -), the type of spore chains morphology and carbon utilization as either S. scabies strains S-3, S-4 and S-8, or S. acidiscabies strains S-6 and S-7. S-3 and S-4 produced 0.65 and 1.60 micrograms thaxtomin A per milliliter of OMB, respectively, whereas S-6 and S-7 produced similar amounts of thaxtomin A, 2.36 and 2.10 micrograms per ml of OMB, respectively. The optimal temperature for production of thaxtomin A by S. scabies and S. acidiscabies was 28 degrees C. Production of thaxtomin A by S. scabies strain S-4 and S. acidiscabies strain S-6 was suppressed at least 50-fold at 0.5 and 0.3% of glucose, respectively. Fructose enhanced the production of thaxtomin A by both S. scabies and S. acidiscabies.  相似文献   

13.
Several Streptomyces species cause plant diseases, including S. scabies, S. acidiscabies and S. turgidiscabies, which produce common scab of potato and similar diseases of root crops. These species produce thaxtomins, dipeptide phytotoxins that are responsible for disease symptoms. Thaxtomins are produced in vivo on diseased potato tissue and in vitro in oat-based culture media, but the regulation of thaxtomin biosynthesis is not understood. S. acidiscabies was grown in a variety of media to assess the impact of medium components on thaxtomin A (ThxA) production. ThxA biosynthesis was not correlated with bacterial biomass, nor was it stimulated by α-solanine or α-chaconine, the two most prevalent potato glycoalkaloids. ThxA production was stimulated by oat bran broth, even after exhaustive extraction, suggesting that specific carbohydrates may influence ThxA biosynthesis. Oat bran contains high levels of xylans and glucans, and both of these carbohydrates, as well as xylans from wheat and tamarind, stimulated ThxA production, but not to the same extent as oat bran. Starches and simple sugars did not induce ThxA production. The data indicate that complex carbohydrates may act as environmental signals to plant pathogenic Streptomyces, allowing production of thaxtomin and enabling bacteria to colonize its host.  相似文献   

14.
Plant pathogenicity is rare in the genus Streptomyces, with only a dozen or so species possessing this trait out of the more than 900 species described. Nevertheless, such species have had a significant impact on agricultural economies throughout the world due to their ability to cause important crop diseases such as potato common scab, which is characterized by lesions that form on the potato tuber surface. All pathogenic species that cause common scab produce a family of phytotoxins called the thaxtomins, which function as cellulose synthesis inhibitors. In addition, the nec1 and tomA genes are conserved in several pathogenic streptomycetes, the former of which is predicted to function in the suppression of plant defense responses. Streptomyces scabies is the oldest plant pathogen described and has a world-wide distribution, whereas species such as S. turgidiscabies and S. acidiscabies are believed to be newly emergent pathogens found in more limited geographical locations. The genome sequence of S. scabies 87-22 was recently completed, and comparative genomic analyses with other sequenced microbial pathogens have revealed the presence of additional genes that may play a role in plant pathogenicity, an idea that is supported by functional analysis of one such putative virulence locus. In addition, the availability of multiple genome sequences for both pathogenic and nonpathogenic streptomycetes has provided an opportunity for comparative genomic analyses to identify the Streptomyces pathogenome. Such genomic analyses will contribute to the fundamental understanding of the mechanisms and evolution of plant pathogenicity and plant-microbe biology within this genus.  相似文献   

15.
A set of 9676 probes was designed for the most harmful bacterial pathogens of potato and tested in a microarray format. Gene‐specific probes could be designed for all genes of Pectobacterium atrosepticum, c. 50% of the genes of Streptomyces scabies and c. 30% of the genes of Clavibacter michiganensis ssp. sepedonicus utilizing the whole‐genome sequence information available. For Streptomyces turgidiscabies, 226 probes were designed according to the sequences of a pathogenicity island containing important virulence genes. In addition, probes were designed for the virulence‐associated nip (necrosis‐inducing protein) genes of P. atrosepticum, P. carotovorum and Dickeya dadantii and for the intergenic spacer (IGS) sequences of the 16S–23S rRNA gene region. Ralstonia solanacearum was not included in the study, because it is a quarantine organism and is not presently found in Finland, but a few probes were also designed for this species. The probes contained on average 40 target‐specific nucleotides and were synthesized on the array in situ, organized as eight sub‐arrays with an identical set of probes which could be used for hybridization with different samples. All bacteria were readily distinguished using a single channel system for signal detection. Nearly all of the c. 1000 probes designed for C. michiganensis ssp. sepedonicus, c. 50% and 40% of the c. 4000 probes designed for the genes of S. scabies and P. atrosepticum, respectively, and over 100 probes for S. turgidiscabies showed significant signals only with the respective species. P. atrosepticum, P. carotovorum and Dickeya strains were all detected with 110 common probes. By contrast, the strains of these species were found to differ in their signal profiles. Probes targeting the IGS region and nip genes could be used to place strains of Dickeya to two groups, which correlated with differences in virulence. Taken together, the approach of using a custom‐designed, genome‐wide microarray provided a robust means for distinguishing the bacterial pathogens of potato.  相似文献   

16.
17.
Plastid genome transformation offers an attractive methodology for transgene expression in plants, but for potato, only expression of gfp transgene (besides the selective gene aadA) has been published. We report here successful expression of β-glucuronidase in transplastomic Solanum tuberosum (var. Desiree) plants, with accumulation levels for the recombinant protein of up to 41% of total soluble protein in mature leaves. To our knowledge, this is the highest expression level reported for a heterologous protein in S. tuberosum. Accumulation of the recombinant protein in soil-grown minitubers was very low, as described in previous reports. Interestingly, microtubers developed in vitro showed higher accumulation of β-glucuronidase. As light exposure during their development could be the trigger for this high accumulation, we analyzed the effect of light on β-glucuronidase accumulation in transplastomic tubers. Exposure to light for 8 days increased β-glucuronidase accumulation in soil-grown tubers, acting as a light-inducible expression system for recombinant protein accumulation in tuber plastids. In this paper we show that plastid transformation in potato allows the highest recombinant protein accumulation in foliar tissue described so far for this food crop. We also demonstrate that in tubers high accumulation is possible and depends on light exposure. Because tubers have many advantages as protein storage organs, these results could lead to new recombinant protein production schemes based on potato.  相似文献   

18.
The effect of gamma irradiation on potato microtuber production in vitro   总被引:3,自引:0,他引:3  
The effects of low doses of gamma irradiation and potato (Solanum tuberosum L.) cultivar on the production of microtubers in vitro were investigated. Nodal segments from virus free explants of three potato cultivars (cv.) were placed on tuberization inducing medium and irradiated with 4 doses of gamma radiation (2.5, 5, 10, 15 Gy). Cv. Diamant produced the highest number of microtubers followed by Draga and Spunta. Irradiation of the explants with 2.5 Gy of gamma radiation led to a significant increase in the number of microtubers (38% increase over the control). Average weight of microtubers was not significantly influenced by low doses of gamma irradiation. Draga microtubers were the largest followed by Diamant and Spunta. Microtubers resembled mature tubers in shape (Spunta was oval and Draga and Diamant were spherical). Size of microtubers was crucial for sprouting in vivo. It is suggested that only microtubers larger than 5 mm in diameter (250 mg) be used to produce minitubers in vivo. Since 2.5 Gy is a low irradiation dose, it can be used to enhance tuberization in vitro without fear of genetic changes in the used cultivars. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号