首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progressive attrition of telomeres triggers DNA damage response (DDR) and limits the regenerative capacity of adult stem cells during mammalian aging. Intriguingly, telomere integrity is not only determined by telomere length but also by the epigenetic status of telomeric/sub‐telomeric regions. However, the functional interplay between DDR induced by telomere shortening and epigenetic modifications in aging remains unclear. Here, we show that deletion of Gadd45a improves the maintenance and function of intestinal stem cells (ISCs) and prolongs lifespan of telomerase‐deficient mice (G3Terc?/?). Mechanistically, Gadd45a facilitates the generation of a permissive chromatin state for DDR signaling by inducing base excision repair‐dependent demethylation of CpG islands specifically at sub‐telomeric regions of short telomeres. Deletion of Gadd45a promotes chromatin compaction in sub‐telomeric regions and attenuates DDR initiation at short telomeres of G3Terc?/? ISCs. Treatment with a small molecule inhibitor of base excision repair reduces DDR and improves the maintenance and function of G3Terc?/? ISCs. Taken together, our study proposes a therapeutic approach to enhance stem cell function and prolong lifespan by targeting epigenetic modifiers.  相似文献   

2.
RAP1 is one of the components of shelterin, the capping complex at chromosome ends or telomeres, although its role in telomere length maintenance and protection has remained elusive. RAP1 also binds subtelomeric repeats and along chromosome arms, where it regulates gene expression and has been shown to function in metabolism control. Telomerase is the enzyme that elongates telomeres, and its deficiency causes a premature aging in humans and mice. We describe an unanticipated genetic interaction between RAP1 and telomerase. While RAP1 deficiency alone does not impact on mouse survival, mice lacking both RAP1 and telomerase show a progressively decreased survival with increasing mouse generations compared to telomerase single mutants. Telomere shortening is more pronounced in Rap1?/? Terc?/? doubly deficient mice than in the single‐mutant Terc?/? counterparts, leading to an earlier onset of telomere‐induced DNA damage and degenerative pathologies. Telomerase deficiency abolishes obesity and liver steatohepatitis provoked by RAP1 deficiency. Using genomewide ChIP sequencing, we find that progressive telomere shortening owing to telomerase deficiency leads to re‐localization of RAP1 from telomeres and subtelomeric regions to extratelomeric sites in a genomewide manner. These findings suggest that although in the presence of sufficient telomere reserve RAP1 is not a key factor for telomere maintenance and protection, it plays a crucial role in the context of telomerase deficiency, thus in agreement with its evolutionary conservation as a telomere component from yeast to humans.  相似文献   

3.
4.
5.
Aging is associated with progressive telomere shortening, resulting in the formation of dysfunctional telomeres that compromise tissue proliferation. However, dysfunctional telomeres can limit tumorigenesis by activating p53‐dependent cellular senescence and apoptosis. While activation of both senescence and apoptosis is required for repress tumor formation, it is not clear which pathway is the major tumor suppressive pathway in vivo. In this study, we generated Eμ‐myc; Pot1b ?/? mouse to directly compare tumor formation under conditions in which either p53‐dependent apoptosis or senescence is activated by telomeres devoid of the shelterin component Pot1b. We found that activation of p53‐dependent apoptosis plays a more critical role in suppressing lymphoma formation than p53‐dependent senescence. In addition, we found that telomeres in Pot1b?/?; p53?/? mice activate an ATR‐Chk1‐dependent DNA damage response to initiate a robust p53‐independent, p73‐dependent apoptotic pathway that limited stem cell proliferation but suppressed B‐cell lymphomagenesis. Our results demonstrate that in mouse models, both p53‐dependent and p53‐independent apoptosis are important to suppressing tumor formation.  相似文献   

6.
Oxidative stress and telomere attrition are considered the driving factors of aging. As oxidative damage to telomeric DNA favors the erosion of chromosome ends and, in turn, telomere shortening increases the sensitivity to pro‐oxidants, these two factors may trigger a detrimental vicious cycle. To check whether limiting oxidative stress slows down telomere shortening and related progeria, we have investigated the effect of p66SHC deletion, which has been shown to reduce oxidative stress and mitochondrial apoptosis, on late‐generation TERC (telomerase RNA component)‐deficient mice having short telomeres and reduced lifespan. Double mutant (TERC?/? p66SHC?/?) mice were generated, and their telomere length, fertility, and lifespan investigated in different generations. Results revealed that p66SHC deletion partially rescues sterility and weight loss, as well as organ atrophy, of TERC‐deficient mice, but not their short lifespan and telomere erosion. Therefore, our data suggest that p66SHC‐mediated oxidative stress and telomere shortening synergize in some tissues (including testes) to accelerate aging; however, early mortality of late‐generation mice seems to be independent of any link between p66SHC‐mediated oxidative stress and telomere attrition.  相似文献   

7.
Reconstitution of telomerase activity is proposed as a potential gene therapy to prevent, or rescue, age-related diseases produced by critical telomere shortening. However, it is not known whether or not short telomeres are irreversibly damaged. We addressed this by re-introducing telomerase in late generation telomerase-deficient mice, Terc–/–, which have short telomeres and show severe proliferative defects. For this, we have crossed these mice with Terc+/– mice and analyzed telomere length, chromosomal instability and premature aging of the progeny. The Terc–/– progeny had one set of chromosomes with normal telomeres, whereas the other set remained with critically short telomeres; these mice presented chromosomal instability and premature aging. In contrast, Terc+/– progeny showed all chromosomes with detectable telomeres, and did not show chromosomal instability or premature aging. These results prove that critically short telomeres can be rescued by telomerase, and become fully functional, thus rescuing premature aging. This has important implications for the future design of telomerase-based gene therapy of age-related diseases.  相似文献   

8.
In advanced age, increases in oxidative stress and inflammation impair endothelial function, which contributes to the development of cardiovascular disease (CVD). One plausible source of this oxidative stress and inflammation is an increase in the abundance of senescent endothelial cells. Cellular senescence is a cell cycle arrest that occurs in response to various damaging stimuli. In the present study, we tested the hypothesis that advanced age results in endothelial cell telomere dysfunction that induces senescence. In both human and mouse endothelial cells, advanced age resulted in an increased abundance of dysfunctional telomeres, characterized by activation of DNA damage signaling at telomeric DNA. To test whether this results in senescence, we selectively reduced the telomere shelterin protein telomere repeat binding factor 2 (Trf2) from endothelial cells of young mice. Trf2 reduction increased endothelial cell telomere dysfunction and resulted in cellular senescence. Furthermore, induction of endothelial cell telomere dysfunction increased inflammatory signaling and oxidative stress, resulting in impairments in endothelial function. Finally, we demonstrate that endothelial cell telomere dysfunction-induced senescence impairs glucose tolerance. This likely occurs through increases in inflammatory signaling in the liver and adipose tissue, as well as reductions in microvascular density and vasodilation to metabolic stimuli. Cumulatively, the findings of the present study identify age-related telomere dysfunction as a mechanism that leads to endothelial cell senescence. Furthermore, these data provide compelling evidence that senescent endothelial cells contribute to age-related increases in oxidative stress and inflammation that impair arterial and metabolic function.  相似文献   

9.
Androgen receptor (AR) plays a role in maintaining telomere stability in prostate cancer cells, as AR inactivation induces telomere dysfunction within 3 h. Since telomere dysfunction in other systems is known to activate ATM (ataxia telangiectasia mutated)-mediated DNA damage response (DDR) signaling pathways, we investigated the role of ATM-mediated DDR signaling in AR-inactivated prostate cancer cells. Indeed, the induction of telomere dysfunction in cells treated with AR-antagonists (Casodex or MDV3100) or AR-siRNA was associated with a dramatic increase in phosphorylation (activation) of ATM and its downstream effector Chk2 and the presenceof phosphorylated ATM at telomeres, indicating activation of DDR signaling at telomeres. Moreover, Casodex washout led to the reversal of telomere dysfunction, indicating repair of damaged telomeres. ATM inhibitor blocked ATM phosphorylation, induced PARP cleavage, abrogated cell cycle checkpoint activation and attenuated the formation of γH2AX foci at telomeres in AR-inactivated cells, suggesting that ATM inhibitor induces apoptosis in AR-inactivated cells by blocking the repair of damaged DNA at telomeres. Finally, colony formation assay revealed a dramatic decrease in the survival of cells co-treated with Casodex and ATM inhibitor as compared with those treated with either Casodex or ATM inhibitor alone. These observations indicate that inhibitors of DDR signaling pathways may offer a unique opportunity to enhance the potency of AR-targeted therapies for the treatment of androgen-sensitive as well as castration-resistant prostate cancer.  相似文献   

10.
Telomere maintenance is essential for the long-term proliferation of human pluripotent stem cells, while their telomere length set point determines the proliferative capacity of their differentiated progeny. The shelterin protein TPP1 is required for telomere stability and elongation, but its role in establishing a telomere length set point remains elusive. Here, we characterize the contribution of the shorter isoform of TPP1 (TPP1S) and the amino acid L104 outside the TEL patch, TPP1’s telomerase interaction domain, to telomere length control. We demonstrate that cells deficient for TPP1S (TPP1S knockout [KO]), as well as the complete TPP1 KO cell lines, undergo telomere shortening. However, TPP1S KO cells are able to stabilize short telomeres, while TPP1 KO cells die. We compare these phenotypes with those of TPP1L104A/L104A mutant cells, which have short and stable telomeres similar to the TPP1S KO. In contrast to TPP1S KO cells, TPP1L104A/L104A cells respond to increased telomerase levels and maintain protected telomeres. However, TPP1L104A/L104A shows altered sensitivity to expression changes of shelterin proteins suggesting the mutation causes a defect in telomere length feedback regulation. Together this highlights TPP1L104A/L104A as the first shelterin mutant engineered at the endogenous locus of human stem cells with an altered telomere length set point.  相似文献   

11.
Progressive telomere attrition or deficiency of the protective shelterin complex elicits a DNA damage response as a result of a cell''s inability to distinguish dysfunctional telomeric ends from DNA double-strand breaks. SNMIB/Apollo is a shelterin-associated protein and a member of the SMN1/PSO2 nuclease family that localizes to telomeres through its interaction with TRF2. Here, we generated SNMIB/Apollo knockout mouse embryo fibroblasts (MEFs) to probe the function of SNMIB/Apollo at mammalian telomeres. SNMIB/Apollo null MEFs exhibit an increased incidence of G2 chromatid-type fusions involving telomeres created by leading-strand DNA synthesis, reflective of a failure to protect these telomeres after DNA replication. Mutations within SNMIB/Apollo''s conserved nuclease domain failed to suppress this phenotype, suggesting that its nuclease activity is required to protect leading-strand telomeres. SNMIB/Apollo−/−ATM−/− MEFs display robust telomere fusions when Trf2 is depleted, indicating that ATM is dispensable for repair of uncapped telomeres in this setting. Our data implicate the 5′–3′ exonuclease function of SNM1B/Apollo in the generation of 3′ single-stranded overhangs at newly replicated leading-strand telomeres to protect them from engaging the non-homologous end-joining pathway.  相似文献   

12.
Guo X  Deng Y  Lin Y  Cosme-Blanco W  Chan S  He H  Yuan G  Brown EJ  Chang S 《The EMBO journal》2007,26(22):4709-4719
The POT1 (protection of telomeres) protein binds the single-stranded G-rich overhang and is essential for both telomere end protection and telomere length regulation. Telomeric binding of POT1 is enhanced by its interaction with TPP1. In this study, we demonstrate that mouse Tpp1 confers telomere end protection by recruiting Pot1a and Pot1b to telomeres. Knockdown of Tpp1 elicits a p53-dependent growth arrest and an ATM-dependent DNA damage response at telomeres. In contrast to depletion of Trf2, which activates ATM, removal of Pot1a and Pot1b from telomeres initiates an ATR-dependent DNA damage response (DDR). Finally, we show that telomere dysfunction as a result of Tpp1 depletion promotes chromosomal instability and tumorigenesis in the absence of an ATM-dependent DDR. Our results uncover a novel ATR-dependent DDR at telomeres that is normally shielded by POT1 binding to the single-stranded G-overhang. In addition, our results suggest that loss of ATM can cooperate with dysfunctional telomeres to promote cellular transformation and tumor formation in vivo.  相似文献   

13.
Telomere shortening limits the proliferation of primary human fibroblasts by the induction of senescence, which is mediated by ataxia telangiectasia mutated‐dependent activation of p53. Here, we show that CHK2 deletion impairs the induction of senescence in mouse and human fibroblasts. By contrast, CHK2 deletion did not improve the stem‐cell function, organ maintenance and lifespan of telomere dysfunctional mice and did not prevent the induction of p53/p21, apoptosis and cell‐cycle arrest in telomere dysfunctional progenitor cells. Together, these results indicate that CHK2 mediates the induction of senescence in fibroblasts, but is dispensable for the induction of telomere dysfunction checkpoints at the stem and progenitor cell level in vivo.  相似文献   

14.
TRF2 is a component of shelterin, the protein complex that protects the ends of mammalian chromosomes. TRF2 is essential for telomere capping owing to its roles in suppressing an ATM-dependent DNA damage response (DDR) at chromosome ends and inhibiting end-to-end chromosome fusions. Mice deficient for TRF2 are early embryonic lethal. However, the role of TRF2 in later stages of development and in the adult organism remains largely unaddressed, with the exception of liver, where TRF2 was found to be dispensable for maintaining tissue function. Here, we study the impact of TRF2 conditional deletion in stratified epithelia by generating the TRF2∆/∆-K5-Cre mouse model, which targets TRF2 deletion to the skin from embryonic day E11.5. In marked contrast to TRF2 deletion in the liver, TRF2∆/∆-K5-Cre mice show lethality in utero reaching 100% lethality perinataly. At the molecular and cellular level, TRF2 deletion provokes induction of an acute DDR at telomeres, leading to activation of p53 signaling pathways and to programed cell death since the time of Cre expression at E11.5. Unexpectedly, neither inhibition of the NHEJ pathway by abrogation of 53BP1 nor inhibition of DDR by p53 deficiency rescued these severe phenotypes. Instead, TRF2 deletion provokes an extensive epidermal cell death accompanied by severe inflammation already at E16.5 embryos, which are independent of p53. These results are in contrast with conditional deletion of TRF1 and TPP1 in the skin, where p53 deficiency rescued the associated skin phenotypes, highlighting the comparatively more essential role of TRF2 in skin homeostasis.  相似文献   

15.
Microglia are a proliferative population of resident brain macrophages that under physiological conditions self‐renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced innate immune response also referred to as ‘priming’. To date, it remains unknown whether telomere shortening affects the proliferative capacity and induces priming of microglia. We addressed this issue using early (first‐generation G1 mTerc?/?)‐ and late‐generation (third‐generation G3 and G4 mTerc?/?) telomerase‐deficient mice, which carry a homozygous deletion for the telomerase RNA component gene (mTerc). Late‐generation mTerc?/? microglia show telomere shortening and decreased proliferation efficiency. Under physiological conditions, gene expression and functionality of G3 mTerc?/? microglia are comparable with microglia derived from G1 mTerc?/? mice despite changes in morphology. However, after intraperitoneal injection of bacterial lipopolysaccharide (LPS), G3 mTerc?/? microglia mice show an enhanced pro‐inflammatory response. Nevertheless, this enhanced inflammatory response was not accompanied by an increased expression of genes known to be associated with age‐associated microglia priming. The increased inflammatory response in microglia correlates closely with increased peripheral inflammation, a loss of blood–brain barrier integrity, and infiltration of immune cells in the brain parenchyma in this mouse model of telomere shortening.  相似文献   

16.
Mammalian telomeres are formed by tandem repeats of the TTAGGG sequence bound by a specialized six‐protein complex known as shelterin, which has fundamental roles in the regulation of telomere length and telomere capping. In the past, the study of mice genetically modified for telomerase components has been instrumental to demonstrate the role of telomere length in cancer and aging. Recent studies using genetically modified mice for shelterin proteins have highlighted an equally important role of telomere‐bound proteins in cancer and aging, even in the presence of proficient telomerase activity and normal telomere length. In this review, we will focus on recent findings, suggesting a role of shelterin components in cancer and aging.  相似文献   

17.
In this study, we examine the telomeric functions of the mammalian Mre11 complex by using hypomorphic Mre11 and Nbs1 mutants (Mre11ATLD1/ATLD1 and Nbs1ΔB/ΔB, respectively). No telomere shortening was observed in Mre11ATLD1/ATLD1 cells after extensive passage through culture, and the rate of telomere shortening in telomerase-deficient (TertΔ/Δ) Mre11ATLD1/ATLD1 cells was the same as that in TertΔ/Δ alone. Although telomeres from late-passage Mre11ATLD1/ATLD1 TertΔ/Δ cells were as short as those from TertΔ/Δ, the incidence of telomere fusions was reduced. This effect on fusions was also evident upon acute telomere dysfunction in Mre11ATLD1/ATLD1 and Nbs1ΔB/ΔB cells rendered Trf2 deficient by cre-mediated TRF2 inactivation than in wild-type cells. The residual fusions formed in Mre11 complex mutant cells exhibited a strong tendency toward chromatid fusions, with an almost complete bias for fusion of telomeres replicated by the leading strand. Finally, the response to acute telomere dysfunction was strongly impaired by Mre11 complex hypomorphism, as the formation of telomere dysfunction-induced DNA damage foci was reduced in both cre-infected Mre11ATLD1/ATLD1 Trf2F/Δ and Nbs1ΔB/ΔB Trf2F/F cells. These data indicate that the Mre11 complex influences the cellular response to telomere dysfunction, reminiscent of its influence on the response to interstitial DNA breaks, and suggest that it may promote telomeric DNA end processing during DNA replication.The Mre11 complex (in mammals, Mre11, Rad50, and Nbs1) plays a central role in the cellular response to DNA double-strand breaks (DSBs). The Mre11 complex acts as a DSB sensor, promoting the activation of ATM-dependent DNA damage signaling pathways, DNA repair, and apoptosis. In addition, the complex plays a direct role in recombinational DNA repair, influencing both homologous recombination and nonhomologous end joining (NHEJ) (39). The Mre11 complex''s diverse functions in the DNA damage response are likely predicated on its physical association with chromatin. In this regard, one of the least-understood roles of the Mre11 complex in mammals is its association with telomeres.In mammals, telomeric DNA consists of double-stranded TTAGGG repeats ending in a single-stranded 3′ G overhang, and an array of telomere binding proteins called the shelterin complex that function to prevent telomeres from being recognized as DNA breaks (33). DNA of the overhang invades the double-stranded telomeric repeat sequence to form a t-loop structure (14, 32). The formation of the t-loop requires the telomere protection and remodeling proteins that make up the shelterin complex (7), and these may also contribute to telomere length regulation by preventing telomerase access to chromosomal ends.Data regarding the role of the Mre11 complex at the telomere have implicated the Mre11 complex in several aspects of telomere maintenance and function. For example, it has been suggested that the Mre11 complex may promote formation of the 3′ telomeric overhang by influencing 5′-to-3′ resection of newly replicated chromosome ends (6). In Saccharomyces cerevisiae, the Mre11 complex recruits the ATM orthologue, Tel1, which is in turn required to recruit telomerase (12, 45). Consequently, Mre11 complex deficiency results in telomere shortening. In mammals, recruitment of telomerase is thought to be regulated primarily by the telomeric protein components TRF1, TPP1, and POT1 (24, 46, 53). However, telomere shortening has also been noted to occur in cell lines from Nijmegen breakage syndrome (NBS) patients in which a hypomorphic Nbs1 allele is expressed, leading to the suggestion that the Mre11 complex may also promote telomerase function in mammals (36). The Mre11 complex associates with telomeres through its interaction with the shelterin component Trf2, apparently in a cell cycle-dependent manner (47, 54). The significance of this physical association is unclear, as genetic depletion of Rad50, a component of the Mre11 complex, does not phenocopy depletion of Trf2 in most respects (1).To examine the function of the Mre11 complex at mammalian telomeres, we established mouse embryonic fibroblasts (MEFs) derived from a mouse expressing the hypomorphic Mre11ATLD1 allele, crossed to telomerase deficient TertΔ/Δ mice (23, 42), and assessed the rate of telomere shortening. Mre11 complex hypomorphism in MEFs did not affect telomere length, irrespective of telomerase status. In Mre11ATLD1/ATLD1 TertΔ/Δ cells, the fusion of eroded telomeres was reduced compared to TertΔ/Δ cells with telomeres shortened to the same extent, suggesting that the Mre11 complex is involved in the response to critically short telomeres. This interpretation was supported by data obtained using a conditional Trf2 allele to generate acute telomere dysfunction in Mre11ATLD1/ATLD1 and Nbs1ΔB/ΔB cells. Collectively the data support a role for the Mre11 complex in the recognition and signaling of dysfunctional telomeres. The character of fusions arising in cre-infected Mre11ATLD1/ATLD1 Trf2F/Δ and Nbs1ΔB/ΔB Trf2F/F cells further suggests that the Mre11 complex may influence the processing of chromosome ends following DNA replication en route to t-loop formation.  相似文献   

18.
Studies in fission yeast have previously identified evolutionarily conserved shelterin and Stn1-Ten1 complexes, and established Rad3ATR/Tel1ATM-dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 as the critical post-translational modification for telomerase recruitment to telomeres. Furthermore, shelterin subunits Poz1, Rap1 and Taz1 have been identified as negative regulators of Thr93 phosphorylation and telomerase recruitment. However, it remained unclear how telomere maintenance is dynamically regulated during the cell cycle. Thus, we investigated how loss of Poz1, Rap1 and Taz1 affects cell cycle regulation of Ccq1 Thr93 phosphorylation and telomere association of telomerase (Trt1TERT), DNA polymerases, Replication Protein A (RPA) complex, Rad3ATR-Rad26ATRIP checkpoint kinase complex, Tel1ATM kinase, shelterin subunits (Tpz1, Ccq1 and Poz1) and Stn1. We further investigated how telomere shortening, caused by trt1Δ or catalytically dead Trt1-D743A, affects cell cycle-regulated telomere association of telomerase and DNA polymerases. These analyses established that fission yeast shelterin maintains telomere length homeostasis by coordinating the differential arrival of leading (Polε) and lagging (Polα) strand DNA polymerases at telomeres to modulate Rad3ATR association, Ccq1 Thr93 phosphorylation and telomerase recruitment.  相似文献   

19.
Telomere protection by mammalian Pot1 requires interaction with Tpp1   总被引:4,自引:0,他引:4  
The shelterin complex at mammalian telomeres contains the single-stranded DNA-binding protein Pot1, which regulates telomere length and protects chromosome ends. Pot1 binds Tpp1, the shelterin component that connects Pot1 to the duplex telomeric DNA-binding proteins Trf1 and Trf2. Control of telomere length requires that Pot1 binds Tpp1 as well as the single-stranded telomeric DNA, but it is not known whether the protective function of Pot1 depends on Tpp1. Alternatively, Pot1 might function similarly to the Pot1-like proteins of budding and fission yeast, which have no known Tpp1-like connection to the duplex telomeric DNA. Using mutant mouse cells with diminished Tpp1 levels, RNA interference directed to mouse Tpp1 and Pot1, and complementation of mouse Pot1 knockout cells with human and mouse Pot1 variants, we show here that Tpp1 is required for the protective function of mammalian Pot1 proteins.  相似文献   

20.
The checkpoint kinases ATM and ATR are redundantly required for maintenance of stable telomeres in diverse organisms, including budding and fission yeasts, Arabidopsis, Drosophila, and mammals. However, the molecular basis for telomere instability in cells lacking ATM and ATR has not yet been elucidated fully in organisms that utilize both the telomere protection complex shelterin and telomerase to maintain telomeres, such as fission yeast and humans. Here, we demonstrate by quantitative chromatin immunoprecipitation (ChIP) assays that simultaneous loss of Tel1ATM and Rad3ATR kinases leads to a defect in recruitment of telomerase to telomeres, reduced binding of the shelterin complex subunits Ccq1 and Tpz1, and increased binding of RPA and homologous recombination repair factors to telomeres. Moreover, we show that interaction between Tpz1-Ccq1 and telomerase, thought to be important for telomerase recruitment to telomeres, is disrupted in tel1Δ rad3Δ cells. Thus, Tel1ATM and Rad3ATR are redundantly required for both protection of telomeres against recombination and promotion of telomerase recruitment. Based on our current findings, we propose the existence of a regulatory loop between Tel1ATM/Rad3ATR kinases and Tpz1-Ccq1 to ensure proper protection and maintenance of telomeres in fission yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号