首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Back ground

Stress-induced phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2α), involved in translation, promotes cell suicide or survival. Since multiple signaling pathways are implicated in cell death, the present study has analyzed the importance of PKC activation in the stress-induced eIF2α phosphorylation, caspase activation and cell death in the ovarian cells of Spodoptera frugiperda (Sf9) and in their extracts.

Methods

Cell death is analyzed by flow cytometry. Caspase activation is measured by Ac-DEVD-AFC hydrolysis and also by the cleavage of purified recombinant PERK, an endoplasmic reticulum-resident eIF2α kinase. Status of eIF2α phosphorylation and cytochrome c levels are analyzed by western blots.

Results

PMA, an activator of PKC, does not promote cell death or affect eIF2α phosphorylation. However, PMA enhances late stages of UV-irradiation or cycloheximide-induced caspase activation, eIF2α phosphorylation and apoptosis in Sf9 cells. PMA also enhances cytochrome c-induced caspase activation and eIF2α phosphorylation in cell extracts. These changes are mitigated more efficiently by caspase inhibitor, z-VAD-fmk, than by calphostin, an inhibitor of PKC. In contrast, tunicamycin-induced eIF2α phosphorylation that does not lead to caspase activation or cell death is unaffected by PMA, z-VAD-fmk or by calphostin.

Conclusions

While caspase activation is a cause and consequence of eIF2α phosphorylation, PKC activation that follows caspase activation further enhances caspase activation, eIF2α phosphorylation, and cell death in Sf9 cells.

General significance

Caspases can activate multiple signaling pathways to enhance cell death.  相似文献   

2.
The down-regulation of α-adrenoceptor-mediated signaling casacade has been implicated in obesity but the underlying mechanism remains largely unknown. The present study investigated whether inositol 1,4,5-trisphosphate (IP3) receptor and protein kinase C (PKC) were involved in the reduction of α1-adrenoceptor agonist phenylephrine-evoked contraction in aortae of high fat diet-induced obese (DIO) mice. C57BL/6 mice were fed with a rodent diet containing 45 kcal% fat for 16 weeks to induce obesity. Isolated mouse aortae were suspended in myograph for isometric force measurement. Protein phosphorylations and expressions were determined by Western blotting. In C57BL/6 mouse aortae, phenylephrine-induced contraction was partially inhibited by either IP3 receptor antagonist heparin or PKC inhibitor GFX, and the combined treatment with heparin and GFX abolished the contraction. Phenylephrine-induced contraction was significantly less in the aortae of DIO mice than those of control mice; only GFX but not heparin attenuated the contraction, indicating a diminishing role of IP3 receptor in DIO mice. Western blotting showed the reduced expression and phosphorylation of IP3 receptor and the down-regulated expression of PKC, PKCβ, PKCδ, and PKCζ in DIO mouse aortae. Importantly, PKCδ was more likely to maintain phenylephrine-mediated contraction in DIO mouse aortae because that (1) PKCδ inhibitor rottlerin but not PKCα and PKCβ inhibitor Gö6976, PKCβ inhibitor hispidin, or PKCζ pseudosubstrate inhibitor attenuated the contraction; and (2) PKCδ phosphorylation was increased but phosphorylations of PKCα, PKCβ, and PKCζ were reduced in DIO mouse aortae. The present study thus provides additional insights into the cellular mechanisms responsible for vascular dysfunction in obesity.  相似文献   

3.
4.
Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs’ therapeutic efficiency in HI and the promotion of the cells’ directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future.  相似文献   

5.
6.
7.
The α-subunit of eukaryotic initiation factor 2 (eIF2α) is a key translation regulator that plays an important role in cellular stress responses. In the present study, we investigated how eIF2α phosphorylation can be regulated by a tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10) and how such regulation is used by PTEN-deficient hepatocytes to adapt and cope with oxidative stress. We found that eIF2α was hyperphosphorylated when Pten was deleted, and this process was AKT dependent. Consistent with this finding, we found that the Pten-null cells developed resistance to oxidative glutamate and H(2)O(2)-induced cellular toxicity. We showed that the messenger level of CReP (constitutive repressor of eIF2α phosphorylation), a constitutive phosphatase of eIF2α, was downregulated in Pten-null hepatocytes, providing a possible mechanism through which PTEN/AKT pathway regulates eIF2α phosphorylation. Ectopic expression of CReP restored the sensitivity of the Pten mutant hepatocytes to oxidative stress, confirming the functional significance of the downregulated CReP and upregulated phospho-eIF2α in the resistance of Pten mutant hepatocytes to cellular stress. In summary, our study suggested a novel role of PTEN in regulating stress response through modulating the CReP/eIF2α pathway.  相似文献   

8.
To test the hypothesis that abnormal prostaglandin reactivity may be a characteristic of essential hypertension, cardiovascular responses to prostaglandin F (PGF) were measured in young spontaneously hypertensive (SHR) and Wistar normotensive rats (NR). PGF(1 sec injection; 50 l/100 g.; .05, .5, 5, 50 g salt/kg) was injected retrograde into the femoral artery. Maximum changes were measured with respect to: 1) four different diameter categories of cremaster muscle arterioles, 2) mean arterial pressure (MAP), 3) pulse pressure (PP) and 4) heart rate. PGF at 5 and 50 g/kg significantly increased NR and SHR blood pressure. SHR MAP increased significantly more than NR MAP with the 50 g dose (P <. 001). PGF increased NR PP at the 50 g/kg dose and increased SHR PP at the .5, 5 and 50 g/kg dose. SHR PP response was significantly greater than that of the NR with the .5, 5 and 50 g/kg dose (P < .05, .01, .001 respectively). The mean SHR arteriolar constriction was greater than that of NR with the 50 g dose. The only change in heart rate was a 3% decrease from control in both NR and SHR during the pressor response to 50 g/kg. These results show an increased cardiovascular reactivity to PGF in SHR and may further suggest prostaglandin involvement in hypertensive disease.  相似文献   

9.
Metabolic syndrome (MBS), a cluster of metabolic abnormalities and visceral fat accumulation, increases cardiovascular risks in postmenopausal women. In addition to visceral fat, perivascular adipose tissue has been recently found to play an important role in vascular pathophysiology. Hence, the present study investigates the effects of estrogen on both intra-abdominal fat (visceral fat) and periaortic fat (perivascular fat) accumulation as well as hypoxia in ovariectomized female rats. Female rats were divided into sham operation, ovariectomy and ovariectomy with 17β-estradiol supplementation groups. Twelve weeks later, we found that estrogen improved MBS via reducing body weight gain, the weight of periaortic and intra-abdominal fat, hepatic triglyceride, and total serum cholesterol levels. Estrogen also increased insulin sensitivity through restoring glucose and serum leptin levels. For periaortic fat, western blot showed estrogen inhibited hypoxia by reducing the levels of VEGF and HIF-1α, which is consistent with the results from immunohistochemical staining. The correlation analysis indicated that perivascular fat had a positive correlation with body weight, intra-abdominal fat or serum total cholesterol, but a negative correlation with insulin sensitivity index. For intra-abdominal fat, real-time fluorescent RT-PCR showed estrogen improved fat dysfunction via reducing the levels of relative leptin, MCP-1 but increasing adiponectin mRNA. Estrogen reduced the levels of VEGF and HIF-1α to inhibit hypoxia but restored the levels of PPARγ and Srebp-1c, which are important for lipid capacity function of intra-abdominal fat. These results demonstrated estrogen improved MBS through down-regulating VEGF and HIF-1α to inhibit hypoxia of periaortic and intra-abdominal fat in ovariectomized female rats.  相似文献   

10.
Methylglyoxal is a ubiquitous 2-oxoaldehyde derived from glycolysis. Previously, we have reported that methylglyoxal attenuates the rate of overall protein synthesis in Saccharomyces cerevisiae through phosphorylation of the α subunit of translation initiation factor 2 (eIF2α) in a Gcn2-dependent manner. Phosphorylation of eIF2α impedes the formation of a translation initiation complex, and subsequently, overall protein synthesis is reduced. Uncharged tRNA plays an important role in the activation of Gcn2, although we found that MG treatment did not elevate the levels of uncharged tRNA. Rapamycin, a potent inhibitor of TOR kinase, is known to induce phosphorylation of eIF2α without affecting the levels of uncharged tRNA. We determined the correlation between methylglyoxal and TOR kinase activity and found that phosphorylation of eIF2α by methylglyoxal occurred independently of the target of rapamycin (TOR) pathway.  相似文献   

11.
12.
13.
14.
15.
The 26S proteasome is an ATP-dependent proteolytic complex found in all eukaryotes, archaebacteria, and some eubacteria. Inhibition of the 26S proteasome causes pleiotropic effects in cells, including cellular apoptosis, a fact that has led to the use of the 26S proteasome inhibitor, bortezomib, for treatment of the multiple myeloma cancer. We previously showed that in addition to the effects of proteolysis, inhibition of the 26S proteasome causes a rapid decrease in the protein synthesis rate due to phosphorylating alfa subunit of the eukaryotic translation initiation factor 2 (eIF2α) by the heme-regulated inhibitor kinase (HRI). In order to test whether inhibition of the 26S proteasome causes the same effect in cancer cells, we have investigated the influence of two commonly used proteasome inhibitors, bortezomib and MG132, on the phosphorylation status of eIF2α in B16F10 melanoma and 4T1 breast cancer cells. It was found that both of the inhibitors caused rapid phosphorylation of eIF2α. Taking into account that the Hsp70 is a critical component needed for the HRI activation and enzymatic activity, we have tested a possible participation of this protein in the eIF2α phosphorylation event. However, treatment of the cells with two structurally different Hsp70 inhibitors, quercetin and KNK437, in the presence of the proteasome inhibitors did not affect the eIF2α phosphorylation. In addition, neither protein kinase C (PKC) nor p38 mitogen-activated protein kinase (MAPK) was required for the proteasome inhibitor-induced eIF2α phosphorylation; furthermore, both the PKC inhibitor staurosporine and the p38 MAPK inhibitor SB203580 caused enchanced phosphorylation of eIF2α. Zinc(II) protoporphyrine IX (ZnPP), an inhibitor of the heme-oxygenase-1 (HO-1), which has also been previously reported to be involved in HRI activation, also failed to prevent the induction of eIF2α phosphorylation in the presence of the proteasome inhibitor bortezomib or MG132.  相似文献   

16.
Celiac disease is an autoimmune enteropathy caused by a permanent intolerance to gliadins. In this study the effects of two gliadin-derived peptides (PA2, PQPQLPYPQPQLP and PA9, QLQPFPQPQLPY) on TNFα production by intestinal epithelial cells (Caco-2) and whether these effects were related to protein kinase A (PKA) and/or -C (PKC) activities have been evaluated. Caco-2 cell cultures were challenged with several sets of gliadin peptides solutions (0.25 mg/mL), with/without different activators of PKA or PKC, bradykinin (Brdkn) and pyrrolidine dithiocarbamate (PDTC). The gliadin-derived peptides assayed represent the two major immunodominant epitopes of the peptide 33-mer of α-gliadin (56–88) (LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF). Both peptides induced the TNFα production triggering the inflammatory cell responses, the PA2 being more effective. The addition of the peptides in the presence of dibutyril cyclic AMP (cAMP), Brdkn or PDTC, inhibited the TNFα production. The PKC-activator phorbol 12-myristate 13-diacetate additionally increased the PA2- and PA9-induced TNFα production. These results link the gliadin-derived peptides induced TNFα production through cAMP-dependent PKA activation, where ion channels controlling calcium influx into cells could play a protective role, and requires NF-κB activation.  相似文献   

17.
18.
Long noncoding RNA small nucleolar RNA host gene 1 (lnc-SNHG1) was reported to play an oncogenic role in the progression of cancers. However, the roles of SNHG1 and its molecular mechanism in osteosarcoma (OS) cells are largely unknown. In present study, we found that the expression of SNHG1 was up-regulated in OS tissues and cell lines. OS patients with the high SNHG1 expression were positively correlated with tumor size, TNM stage and lymph node metastasis. In addition, SNHG1 overexpression promoted cell proliferation, cell migration and EMT process in U2OS and MG63 cells and tumor growth in vivo. Furthermore, we also found that miR-577 could act as a ceRNAof SNHG1 in OS cells and the promotion of OS progression induced by lnc-SNHG1 overexpression required the inactivity of miR-577. Besides, we identified that WNT2B acted as a target of miR-577, and WNT2B played the oncogenic role in OS cells by activating Wnt/β-catenin pathway. In short, our study suggested that lnc-SNHG1 could promote OS progression via miR-577 and WNT2B. The lnc-SNHG1/miR-577/WNT2B/Wnt/β-catenin axis regulatory network might provide a potential new therapeutic strategy for OS treatment.  相似文献   

19.
We previously reported that Treponema denticola, a periodontal pathogen, suppressed the expression of human β-defensins (HBDs) and IL-8 in human gingival epithelial cells. To clarify the receptor(s) involved in the suppression of HBD-2, immortalized gingival epithelial (HOK-16B) cells were infected with live or heat-killed T. denticola for 24 h, and the expression of HBD-2 was examined by real-time RT-PCR. Live T. denticola, but not heat-killed bacteria, suppressed the expression of HBD-2 about 40%. Time courses of suppression revealed that T. denticola suppressed HBD-2 expression only at late time points, which was accompanied with the suppression of TNFα production. Neutralization of TNFα with an antibody abrogated the suppressive effect of T. denticola on HBD-2. Accordingly, heat-killed T. denticola did not suppress TNFα production. Knock-down of toll-like receptor (TLR) 2 via RNA interference reversed the suppressive effect of T. denticola on the expression of HBD-3, but not on the production of TNFα. Collectively, T. denticola suppresses the expression of HBD-2 in gingival epithelial cells by inhibiting the TLR2 axis and TNFα production, which may contribute to the pathogenesis of periodontitis by T. denticola.  相似文献   

20.
Sorts of abnormal state, obesity and inflammation are involved in a number of serious disease occurring and both of them became important research topics among molecular biologists. UCP-2 and TNF-α respectively reflecting obese and inflammatory status have often been used to evaluate the effects of independent variable, such as exercise, on them. Because exercise has shown its potent control on obesity and inflammation, it is necessary to determine if exercise is working via same bioindices. The purpose of this study was to determine the effects of different treadmill exercise intensities on UCP-2 of brown adipose tissue and TNF-α of soleus muscle during 8 weeks in Zucker rat. Zucker rats were divided into four groups (n = 7 in each group): control group, low intensity exercise group, moderate intensity exercise group and high intensity exercise group. Zucker rats of the exercise groups were made to run on a motorized treadmill for 30 minutes once a day during 8 weeks. Rats were sacrificed 24 hours after the last bout of exercise. Blood glucose in Zucker rats were measured by Gluco-Card Ⅱ. Brown adipose tissue were extracted to analyze the level of UCP-2 and TNF-α, respectively. UCP-2 and TNF-α were analyzed using the Western Blotting technique. Statistical techniques for data analysis were repeated measure ANOVA and one way ANOVA to determine the difference between groups, and for post hoc test was Duncan'' test. The 5% level of significance was utilized as the critical level for acceptance of hypotheses for the study. The following results were obtained from this study; UCP-2 protein expression of brown adipose tissue in Zucker rats were increased significantly following exercise of the low and moderate intensities compared to those of control group after 8 weeks. It was shown that TNF-α protein expression of soleus muscle in Zucker rats were decreased significantly following exercise of the low and moderate intensities compared to those of control group after 8 weeks. But no significant differences in levels of fasting glucose were shown between groups. The present data suggested that low and moderate intensities treadmill exercise may improve glycometabolism control and fat oxidation by up-regulating UCP-2 expression. In addition, we found low and moderate intensities reduce damages on skeletal muscle by down-regulation the TNF-α in Zucker rats. Thus, the low and moderate intensity exercise are appropriate for anti-obesity and inflammatory effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号