首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Peripheral myelin protein 22 (PMP 22) is a component of compact myelin in the peripheral nervous system. The amount of PMP 22 in myelin is tightly regulated, and PMP 22 over or under‐expression cause Charcot‐Marie‐Tooth 1A (CMT 1A) and Hereditary Neuropathy with Pressure Palsies (HNPP ). Despite the importance of PMP 22 , its function remains largely unknown. It was reported that PMP 22 interacts with the β4 subunit of the laminin receptor α6β4 integrin, suggesting that α6β4 integrin and laminins may contribute to the pathogenesis of CMT 1A or HNPP . Here we asked if the lack of α6β4 integrin in Schwann cells influences myelin stability in the HNPP mouse model. Our data indicate that PMP 22 and β4 integrin may not interact directly in myelinating Schwann cells, however, ablating β4 integrin delays the formation of tomacula, a characteristic feature of HNPP . In contrast, ablation of integrin β4 worsens nerve conduction velocities and non‐compact myelin organization in HNPP animals. This study demonstrates that indirect interactions between an extracellular matrix receptor and a myelin protein influence the stability and function of myelinated fibers.

  相似文献   

2.
3.
4.
5.
6.
Terpenes are important compounds in plant trophic interactions. A meta‐analysis of GC‐MS data from a diverse range of apple (Malus × domestica) genotypes revealed that apple fruit produces a range of terpene volatiles, with the predominant terpene being the acyclic branched sesquiterpene (E,E)‐α‐farnesene. Four quantitative trait loci (QTLs) for α‐farnesene production in ripe fruit were identified in a segregating ‘Royal Gala’ (RG) × ‘Granny Smith’ (GS) population with one major QTL on linkage group 10 co‐locating with the MdAFS1 (α‐farnesene synthase‐1) gene. Three of the four QTLs were derived from the GS parent, which was consistent with GC‐MS analysis of headspace and solvent‐extracted terpenes showing that cold‐treated GS apples produced higher levels of (E,E)‐α‐farnesene than RG. Transgenic RG fruit downregulated for MdAFS1 expression produced significantly lower levels of (E,E)‐α‐farnesene. To evaluate the role of (E,E)‐α‐farnesene in fungal pathogenesis, MdAFS1 RNA interference transgenic fruit and RG controls were inoculated with three important apple post‐harvest pathogens [Colletotrichum acutatum, Penicillium expansum and Neofabraea alba (synonym Phlyctema vagabunda)]. From results obtained over four seasons, we demonstrate that reduced (E,E)‐α‐farnesene is associated with decreased disease initiation rates of all three pathogens. In each case, the infection rate was significantly reduced 7 days post‐inoculation, although the size of successful lesions was comparable with infections on control fruit. These results indicate that (E,E)‐α‐farnesene production is likely to be an important factor involved in fungal pathogenesis in apple fruit.  相似文献   

7.
Biosynthesis of asymmetric carotenoids such as α‐carotene and lutein in plants and green algae involves the two enzymes lycopene β‐cyclase (LCYB) and lycopene ε‐cyclase (LCYE). The two cyclases are closely related and probably resulted from an ancient gene duplication. While in most plants investigated so far the two cyclases are encoded by separate genes, prasinophyte algae of the order Mamiellales contain a single gene encoding a fusion protein comprised of LCYB, LCYE and a C‐terminal light‐harvesting complex (LHC) domain. Here we show that the lycopene cyclase fusion protein from Ostreococcus lucimarinus catalyzed the simultaneous formation of α‐carotene and β‐carotene when heterologously expressed in Escherichia coli. The stoichiometry of the two products in E. coli could be altered by gradual truncation of the C‐terminus, suggesting that the LHC domain may be involved in modulating the relative activities of the two cyclase domains in the algae. Partial deletions of the linker region between the cyclase domains or replacement of one or both cyclase domains with the corresponding cyclases from the green alga Chlamydomonas reinhardtii resulted in pronounced shifts of the α‐carotene‐to‐β‐carotene ratio, indicating that both the relative activities of the cyclase domains and the overall structure of the fusion protein have a strong impact on the product stoichiometry. The possibility to tune the product ratio of the lycopene cyclase fusion protein from Mamiellales renders it useful for the biotechnological production of the asymmetric carotenoids α‐carotene or lutein in bacteria or fungi.  相似文献   

8.
9.
Cognitive function declines with age throughout the animal kingdom, and increasing evidence shows that disruption of the proteasome system contributes to this deterioration. The proteasome has important roles in multiple aspects of the nervous system, including synapse function and plasticity, as well as preventing cell death and senescence. Previous studies have shown neuronal proteasome depletion and inhibition can result in neurodegeneration and cognitive deficits, but it is unclear if this pathway is a driver of neurodegeneration and cognitive decline in aging. We report that overexpression of the proteasome β5 subunit enhances proteasome assembly and function. Significantly, we go on to show that neuronal‐specific proteasome augmentation slows age‐related declines in measures of learning, memory, and circadian rhythmicity. Surprisingly, neuronal‐specific augmentation of proteasome function also produces a robust increase of lifespan in Drosophila melanogaster. Our findings appear specific to the nervous system; ubiquitous proteasome overexpression increases oxidative stress resistance but does not impact lifespan and is detrimental to some healthspan measures. These findings demonstrate a key role of the proteasome system in brain aging.  相似文献   

10.
  • We recently discovered that β‐aminobutyric acid (BABA), a molecule known for its ability to prime defences in plants, is a natural plant metabolite. However, the role played by endogenous BABA in plants is currently unknown. In this study we investigated the systemic accumulation of BABA during pathogen infection, levels of BABA during plant growth and development and analysed mutants possibly involved in BABA transport or regulation.
  • BABA was quantified by LC‐MS using an improved method adapted from a previously published protocol. Systemic accumulation of BABA was determined by analysing non‐infected leaves and roots after localised infections with Plectosphaerella cucumerina or Pseudomonas syringae pv. tomato (Pst) DC3000 avrRpt2. The levels of BABA were also quantified in different plant tissues and organs during normal plant growth, and in leaves during senescence. Mutants affecting amino acid transport (aap6, aap3, prot1 and gat1), γ‐aminobutyric acid levels (pop2) and senescence/defence (cpr5‐2) were analysed.
  • BABA was found to accumulate only locally after bacterial or fungal infection, with no detectable increase in non‐infected systemic plant parts. In leaves, BABA content increased during natural and induced senescence. Reproductive organs had the highest levels of BABA, and the mutant cpr5‐2 produced constitutively high levels of BABA.
  • Synthetic BABA is highly mobile in the receiving plant, whereas endogenous BABA appears to be produced and accumulated locally in a tissue‐specific way. We discuss a possible role for BABA in age‐related resistance and propose a comprehensive model for endogenous and synthetic BABA.
  相似文献   

11.
Characterization of the molecular signaling pathways underlying protein synthesis‐dependent forms of synaptic plasticity, such as late long‐term potentiation (L‐LTP ), can provide insights not only into memory expression/maintenance under physiological conditions but also potential mechanisms associated with the pathogenesis of memory disorders. Here, we report in mice that L‐LTP failure induced by the mammalian (mechanistic) target of rapamycin complex 1 (mTORC 1) inhibitor rapamycin is reversed by brain‐specific genetic deletion of PKR ‐like ER kinase, PERK (PERK KO ), a kinase for eukaryotic initiation factor 2α (eIF 2α). In contrast, genetic removal of general control non‐derepressible‐2, GCN 2 (GCN 2 KO ), another eIF 2α kinase, or treatment of hippocampal slices with the PERK inhibitor GSK 2606414, does not rescue rapamycin‐induced L‐LTP failure, suggesting mechanisms independent of eIF 2α phosphorylation. Moreover, we demonstrate that phosphorylation of eukaryotic elongation factor 2 (eEF 2) is significantly decreased in PERK KO mice but unaltered in GCN 2 KO mice or slices treated with the PERK inhibitor. Reduction in eEF 2 phosphorylation results in increased general protein synthesis, and thus could contribute to the mTORC 1‐independent L‐LTP in PERK KO mice. We further performed experiments on mutant mice with genetic removal of eEF 2K (eEF 2K KO ), the only known kinase for eEF 2, and found that L‐LTP in eEF 2K KO mice is insensitive to rapamycin. These data, for the first time, connect reduction in PERK activity with the regulation of translation elongation in enabling L‐LTP independent of mTORC 1. Thus, our findings indicate previously unrecognized levels of complexity in the regulation of protein synthesis‐dependent synaptic plasticity.

Read the Editorial Highlight for this article on page 119 . Cover Image for this issue: doi: 10.1111/jnc.14185 .
  相似文献   

12.
13.
Although dietary restriction (DR) is known to extend lifespan across species, from yeast to mammals, the signalling events downstream of food/nutrient perception are not well understood. In Caenorhabditis elegans, DR is typically attained either by using the eat‐2 mutants that have reduced pharyngeal pumping leading to lower food intake or by feeding diluted bacterial food to the worms. In this study, we show that knocking down a mammalian MEKK3‐like kinase gene, mekk‐3 in C. elegans, initiates a process similar to DR without compromising food intake. This DR‐like state results in upregulation of beta‐oxidation genes through the nuclear hormone receptor NHR‐49, a HNF‐4 homolog, resulting in depletion of stored fat. This metabolic shift leads to low levels of reactive oxygen species (ROS), potent oxidizing agents that damage macromolecules. Increased beta‐oxidation, in turn, induces the phase I and II xenobiotic detoxification genes, through PHA‐4/FOXA, NHR‐8 and aryl hydrocarbon receptor AHR‐1, possibly to purge lipophilic endotoxins generated during fatty acid catabolism. The coupling of a metabolic shift with endotoxin detoxification results in extreme longevity following mekk‐3 knock‐down. Thus, MEKK‐3 may function as an important nutrient sensor and signalling component within the organism that controls metabolism. Knocking down mekk‐3 may signal an imminent nutrient crisis that results in initiation of a DR‐like state, even when food is plentiful.  相似文献   

14.
LIGHT recruits and activates naive T cells in the islets at the onset of diabetes. IFN‐γ secreted by activated T lymphocytes is involved in beta cell apoptosis. However, whether LIGHT sensitizes IFNγ‐induced beta cells destruction remains unclear. In this study, we used the murine beta cell line MIN6 and primary islet cells as models for investigating the underlying cellular mechanisms involved in LIGHT/IFNγ – induced pancreatic beta cell destruction. LIGHT and IFN‐γ synergistically reduced MIN6 and primary islet cells viability; decreased cell viability was due to apoptosis, as demonstrated by a significant increase in Annexin V+ cell percentage, detected by flow cytometry. In addition to marked increases in cytochrome c release and NF‐κB activation, the combination of LIGHT and IFN‐γ caused an obvious decrease in expression of the anti‐apoptotic proteins Bcl‐2 and Bcl‐xL, but an increase in expression of the pro‐apoptotic proteins Bak and Bax in MIN6 cells. Accordingly, LIGHT deficiency led to a decrease in NF‐κB activation and Bak expression, and peri‐insulitis in non‐obese diabetes mice. Inhibition of NF‐κB activation with the specific NF‐κB inhibitor, PDTC (pyrrolidine dithiocarbamate), reversed Bcl‐xL down‐regulation and Bax up‐regulation, and led to a significant increase in LIGHT‐ and IFN‐γ‐treated cell viability. Moreover, cleaved caspase‐9, ‐3, and PARP (poly (ADP‐ribose) polymerase) were observed after LIGHT and IFN‐γ treatment. Pretreatment with caspase inhibitors remarkably attenuated LIGHT‐ and IFNγ‐induced cell apoptosis. Taken together, our results indicate that LIGHT signalling pathway combined with IFN‐γ induces beta cells apoptosis via an NF‐κB/Bcl2‐dependent mitochondrial pathway.  相似文献   

15.
16.
  • Ethylene and nitric oxide (NO) act as endogenous regulators during leaf senescence. Levels of ethylene or its precursor 1‐aminocyclopropane‐1‐carboxylate acid (ACC) depend on the activity of ACC synthases (ACS), and NO production is controlled by NO‐associated 1 (NOA1). However, the integration mechanisms of ACS and NOA1 activity still need to be explored during leaf senescence.
  • Here, using experimental techniques, such as physiological and molecular detection, liquid chromatography‐tandem mass spectrometry and fluorescence measurement, we investigated the relevant mechanisms.
  • Our observations showed that the loss‐of‐function acs1‐1 mutant ameliorated age‐ or dark‐induced leaf senescence syndrome, such as yellowing and loss of chlorophyll, that acs1‐1 reduced ACC accumulation mainly in mature leaves and that acs1‐1‐promoted NOA1 expression and NO accumulation mainly in juvenile leaves, when compared with the wild type (WT). But the leaf senescence promoted by the NO‐deficient noa1 mutant was not involved in ACS1 expression. There was a similar sharp reduction of ACS1 and NOA1 expression with the increase in WT leaf age, and this inflection point appeared in mature leaves and coincided with the onset of leaf senescence.
  • These findings suggest that NOA1‐dependent NO accumulation blocked the ACS1‐induced onset of leaf senescence, and that ACS1 activity corresponds to the onset of leaf senescence in Arabidopsis.
  相似文献   

17.
18.
19.
Plant cell wall modification is a critical component in stress responses. Endo‐1,4‐β‐glucanases (EGs) take part in cell wall editing processes, e.g. elongation, ripening and abscission. Here we studied the infection response of Solanum lycopersicum and Arabidopsis thaliana with impaired EGs. Transgenic TomCel1 and TomCel2 tomato antisense plants challenged with Pseudomonas syringae showed higher susceptibility, callose priming and increased jasmonic acid pathway marker gene expression. These two EGs could be resistance factors and may act as negative regulators of callose deposition, probably by interfering with the defence‐signalling network. A study of a set of Arabidopsis EG T‐DNA insertion mutants challenged with P. syringae and Botrytis cinerea revealed that the lack of other EGs interferes with infection phenotype, callose deposition, expression of signalling pathway marker genes and hormonal balance. We conclude that a lack of EGs could alter plant response to pathogens by modifying the properties of the cell wall and/or interfering with signalling pathways, contributing to generate the appropriate signalling outcomes. Analysis of microarray data demonstrates that EGs are differentially expressed upon many different plant–pathogen challenges, hormone treatments and many abiotic stresses. We found some Arabidopsis EG mutants with increased tolerance to osmotic and salt stress. Our results show that impairing EGs can alter plant–pathogen interactions and may contribute to appropriate signalling outcomes in many different biotic and abiotic plant stress responses.  相似文献   

20.
Heterodimeric integrin adhesion receptors regulate cell migration, survival and differentiation in metazoa by communicating signals bi‐directionally across the plasma membrane. Protein engineering and mutagenesis studies have suggested that the dissociation of a complex formed by the single‐pass transmembrane (TM) segments of the α and β subunits is central to these signalling events. Here, we report the structure of the integrin αIIbβ3 TM complex, structure‐based site‐directed mutagenesis and lipid embedding estimates to reveal the structural event that underlies the transition from associated to dissociated states, that is, TM signalling. The complex is stabilized by glycine‐packing mediated TM helix crossing within the extracellular membrane leaflet, and by unique hydrophobic and electrostatic bridges in the intracellular leaflet that mediate an unusual, asymmetric association of the 24‐ and 29‐residue αIIb and β3 TM helices. The structurally unique, highly conserved integrin αIIbβ3 TM complex rationalizes bi‐directional signalling and represents the first structure of a heterodimeric TM receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号