首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aging is accompanied by alterations in epigenetic marks that control chromatin states, including histone acetylation and methylation. Enzymes that reversibly affect histone marks associated with active chromatin have recently been found to regulate aging in Caenorhabditis elegans. However, relatively little is known about the importance for aging of histone marks associated with repressed chromatin. Here, we use a targeted RNAi screen in C. elegans to identify four histone demethylases that significantly regulate worm lifespan, UTX‐1, RBR‐2, LSD‐1, and T26A5.5. Interestingly, UTX‐1 belongs to a conserved family of histone demethylases specific for lysine 27 of histone H3 (H3K27me3), a mark associated with repressed chromatin. Both utx‐1 knockdown and heterozygous mutation of utx‐1 extend lifespan and increase the global levels of the H3K27me3 mark in worms. The H3K27me3 mark significantly drops in somatic cells during the normal aging process. UTX‐1 regulates lifespan independently of the presence of the germline, but in a manner that depends on the insulin‐FoxO signaling pathway. These findings identify the H3K27me3 histone demethylase UTX‐1 as a novel regulator of worm lifespan in somatic cells.  相似文献   

2.
Histone demethylation regulates chromatin structure and gene expression, and is catalyzed by various histone demethylases. Trimethylation of histone H3 at lysine 4 (H3K4) is coupled to active gene expression; trimethyl H3K4 is demethylated by Jumonj C (JmjC) domain‐containing demethylases in mammals. Here we report that a plant‐specific JmjC domain‐containing protein known as PKDM7B (At4g20400) demethylates trimethyl H3K4. PKDM7B mediates H3K4 demethylation in a key floral promoter, FLOWERING LOCUS T (FT), and an FT homolog, TWIN SISTER OF FT (TSF), and represses their expression to inhibit the floral transition in Arabidopsis. Our findings suggest that there are at least two distinct sub‐families of JmjC domain‐containing demethylases that demethylate the active trimethyl H3K4 mark in eukaryotic genes, and reveal a plant‐specific JmjC domain enzyme capable of H3K4 demethylation.  相似文献   

3.
4.
5.
The JmjC domain-containing histone demethylases can remove histone lysine methylation and thereby regulate gene expression. The JmjC domain uses iron Fe(II) and α-ketoglutarate (αKG) as cofactors in an oxidative demethylation reaction via hydroxymethyl lysine. We hypothesize that reactive oxygen species will oxidize Fe(II) to Fe(III), thereby attenuating the activity of JmjC domain-containing histone demethylases. To minimize secondary responses from cells, extremely short periods of oxidative stress (3 h) were used to investigate this question. Cells that were exposed to hydrogen peroxide (H2O2) for 3 h exhibited increases in several histone methylation marks including H3K4me3 and decreases of histone acetylation marks including H3K9ac and H4K8ac; preincubation with ascorbate attenuated these changes. The oxidative stress level was measured by generation of 2′,7′-dichlorofluorescein, GSH/GSSG ratio, and protein carbonyl content. A cell-free system indicated that H2O2 inhibited histone demethylase activity where increased Fe(II) rescued this inhibition. TET protein showed a decreased activity under oxidative stress. Cells exposed to a low-dose and long-term (3 weeks) oxidative stress also showed increased global levels of H3K4me3 and H3K27me3. However, these global methylation changes did not persist after washout. The cells exposed to short-term oxidative stress also appeared to have higher activity of class I/II histone deacetylase (HDAC) but not class III HDAC. In conclusion, we have found that oxidative stress transiently alters the epigenetic program process through modulating the activity of enzymes responsible for demethylation and deacetylation of histones.  相似文献   

6.
7.
The development of primordial germ cells (PGCs) undergoes epigenetic modifications. The study of histone methylation in regulating PGCs is beneficial to understand the development and differentiation mechanism of germ stem cells. Notably, it provides a theoretical basis for directed induction and mass acquisition in vitro. However, little is known about the regulation of PGC formation by histone methylation. Here, we found the high enrichment of H3K4me2 in the blastoderm, genital ridges, and testis. Chromatin immunoprecipitation sequencing was performed and the results revealed that genomic H3K4me2 is dynamic in embryonic stem cells, PGCs, and spermatogonial stem cells. This trend was consistent with the H3K4me2 enrichment in the gene promoter region. Additionally, narrow region triggered PGC‐related genes (Bmp4, Wnt5a, and Tcf7l2) and signaling pathways (Wnt and transforming growth factor‐β). After knocking down histone methylase Mll2 in vitro and vivo, the level of H3K4me2 decreased, inhibiting Cvh and Blimp1 expression, then repressing the formation of PGCs. Taken together, our study revealed the whole genome map of H3K4me2 in the formation of PGCs, contributing to improve the epigenetic study in PGC formation and providing materials for bird gene editing and rescue of endangered birds.  相似文献   

8.
Oxidative damage is thought to be a major cause in development of pathologies and aging. However, quantification of oxidative damage is methodologically difficult. Here, we present a robust liquid chromatography–tandem mass spectrometry (LC‐MS/MS) approach for accurate, sensitive, and linear in vivo quantification of endogenous oxidative damage in the nematode Caenorhabditis elegans, based on F3‐isoprostanes. F3‐isoprostanes are prostaglandin‐like markers of oxidative damage derived from lipid peroxidation by Reactive Oxygen Species (ROS). Oxidative damage was quantified in whole animals and in multiple cellular compartments, including mitochondria and peroxisomes. Mutants of the mitochondrial electron transport proteins mev‐1 and clk‐1 showed increased oxidative damage levels. Furthermore, analysis of Superoxide Dismutase (sod) and Catalase (ctl) mutants uncovered that oxidative damage levels cannot be inferred from the phenotype of resistance to pro‐oxidants alone and revealed high oxidative damage in a small group of chemosensory neurons. Longitudinal analysis of aging nematodes revealed that oxidative damage increased specifically with postreproductive age. Remarkably, aging of the stress‐resistant and long‐lived daf‐2 insulin/IGF‐1 receptor mutant involved distinct daf‐16‐dependent phases of oxidative damage including a temporal increase at young adulthood. These observations are consistent with a hormetic response to ROS.  相似文献   

9.
10.
All cells rely on highly conserved protein folding and clearance pathways to detect and resolve protein damage and to maintain protein homeostasis (proteostasis). Because age is associated with an imbalance in proteostasis, there is a need to understand how protein folding is regulated in a multicellular organism that undergoes aging. We have observed that the ability of Caenorhabditis elegans to maintain proteostasis declines sharply following the onset of oocyte biomass production, suggesting that a restricted protein folding capacity may be linked to the onset of reproduction. To test this hypothesis, we monitored the effects of different sterile mutations on the maintenance of proteostasis in the soma of C. elegans. We found that germline stem cell (GSC) arrest rescued protein quality control, resulting in maintenance of robust proteostasis in different somatic tissues of adult animals. We further demonstrated that GSC‐dependent modulation of proteostasis requires several different signaling pathways, including hsf‐1 and daf‐16/kri‐1/tcer‐1, daf‐12, daf‐9, daf‐36, nhr‐80, and pha‐4 that differentially modulate somatic quality control functions, such that each signaling pathway affects different aspects of proteostasis and cannot functionally complement the other pathways. We propose that the effect of GSCs on the collapse of proteostasis at the transition to adulthood is due to a switch mechanism that links GSC status with maintenance of somatic proteostasis via regulation of the expression and function of different quality control machineries and cellular stress responses that progressively lead to a decline in the maintenance of proteostasis in adulthood, thereby linking reproduction to the maintenance of the soma.  相似文献   

11.
Dietary restriction (DR) robustly delays the aging process in all animals tested so far. DR slows aging by negatively regulating the target of rapamycin (TOR) and S6 kinase (S6K) signaling pathway and thus inhibiting translation. Translation inhibition in C. elegans is known to activate the innate immune signal ZIP‐2. Here, we show that ZIP‐2 is activated in response to DR and in feeding‐defective eat‐2 mutants. Importantly, ZIP‐2 contributes to the improvements in longevity and healthy aging, including mitochondrial integrity and physical ability, mediated by DR in C. elegans. We further show that ZIP‐2 is activated upon inhibition of TOR/S6K signaling. However, DR‐mediated activation of ZIP‐2 does not require the TOR/S6K effector PHA‐4/FOXA. Furthermore, zip‐2 was not activated or required for longevity in daf‐2 mutants, which mimic a low nutrition status. Thus, DR appears to activate ZIP‐2 independently of PHA‐4/FOXA and DAF‐2. The link between DR, aging, and immune activation provides practical insight into the DR‐induced benefits on health span and longevity.  相似文献   

12.
13.
14.
The HUB2 gene encoding histone H2B monoubiquitination E3 ligase is involved in seed dormancy, flowering timing, defence response and salt stress regulation in Arabidopsis thaliana. In this study, we used the cauliflower mosaic virus (CaMV) 35S promoter to drive AtHUB2 overexpression in cotton and found that it can significantly improve the agricultural traits of transgenic cotton plants under drought stress conditions, including increasing the fruit branch number, boll number, and boll‐setting rate and decreasing the boll abscission rate. In addition, survival and soluble sugar, proline and leaf relative water contents were increased in transgenic cotton plants after drought stress treatment. In contrast, RNAi knockdown of GhHUB2 genes reduced the drought resistance of transgenic cotton plants. AtHUB2 overexpression increased the global H2B monoubiquitination (H2Bub1) level through a direct interaction with GhH2B1 and up‐regulated the expression of drought‐related genes in transgenic cotton plants. Furthermore, we found a significant increase in H3K4me3 at the DREB locus in transgenic cotton, although no change in H3K4me3 was identified at the global level. These results demonstrated that AtHUB2 overexpression changed H2Bub1 and H3K4me3 levels at the GhDREB chromatin locus, leading the GhDREB gene to respond quickly to drought stress to improve transgenic cotton drought resistance, but had no influence on transgenic cotton development under normal growth conditions. Our findings also provide a useful route for breeding drought‐resistant transgenic plants.  相似文献   

15.
Histone methylation is a major component in numerous processes such as determination of flowering time, which is fine‐tuned by multiple genetic pathways that integrate both endogenous and environmental signals. Previous studies identified SET DOMAIN GROUP 26 (SDG26) as a histone methyltransferase involved in the activation of flowering, as loss of function of SDG26 caused a late‐flowering phenotype in Arabidopsis thaliana. However, the SDG26 function and the underlying molecular mechanism remain largely unknown. In this study, we undertook a genetic analysis by combining the sdg26 mutant with mutants of other histone methylation enzymes, including the methyltransferase mutants Arabidopsis trithorax1 (atx1), sdg25 and curly leaf (clf), as well as the demethylase double mutant lsd1‐like1 lsd1‐like2 (ldl1 ldl2). We found that the early‐flowering mutants sdg25, atx1 and clf interact antagonistically with the late‐flowering mutant sdg26, whereas the late‐flowering mutant ldl1 ldl2 interacts synergistically with sdg26. Based on microarray analysis, we observed weak overlaps in the genes that were differentially expressed between sdg26 and the other mutants. Our analyses of the chromatin of flowering genes revealed that the SDG26 protein binds at the key flowering integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1/AGAMOUS‐LIKE 20 (SOC1/AGL20), and is required for histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 36 trimethylation (H3K36me3) at this locus. Together, our results indicate that SDG26 promotes flowering time through a distinctive genetic pathway, and that loss of function of SDG26 causes a decrease in H3K4me3 and H3K36me3 at its target gene SOC1, leading to repression of this gene and the late‐flowering phenotype.  相似文献   

16.
Jumonji C (JmjC) domain proteins are histone lysine demethylases that require ferrous iron and alpha-ketoglutarate (or α-KG) as cofactors in the oxidative demethylation reaction. In plants, α-KG is produced by isocitrate dehydrogenases (ICDHs) in different metabolic pathways. It remains unclear whether fluctuation of α-KG levels affects JmjC demethylase activity and epigenetic regulation of plant gene expression. In this work, we studied the impact of loss of function of the cytosolic ICDH (cICDH) gene on the function of histone demethylases in Arabidopsis thaliana. Loss of cICDH resulted in increases of overall histone H3 lysine 4 trimethylation (H3K4me3) and enhanced mutation defects of the H3K4me3 demethylase gene JMJ14. Genetic analysis suggested that the cICDH mutation may affect the activity of other demethylases, including JMJ15 and JMJ18 that function redundantly with JMJ14 in the plant thermosensory response. Furthermore, we show that mutation of JMJ14 affected both the gene activation and repression programs of the plant thermosensory response and that JMJ14 and JMJ15 repressed a set of genes that are likely to play negative roles in the process. The results provide evidence that histone H3K4 demethylases are involved in the plant response to elevated ambient temperature.

Histone H3K4me3 demethylases JMJ14, JMJ15, and JMJ18 function redundantly in the plant thermosensory response, which is affected by mutation of the cytosolic isocitrate dehydrogenase gene.  相似文献   

17.
18.
Epigenetic modifications are critical determinants of cellular and developmental states. Epigenetic changes, such as decreased H3K27me3 histone methylation on insulin/IGF1 genes, have been previously shown to modulate lifespan through gene expression regulation. However, global epigenetic changes during aging and their biological functions, if any, remain elusive. Here, we examined the histone modification H3K4 dimethylation (H3K4me2) in the prefrontal cortex of individual rhesus macaques at different ages by chromatin immunoprecipitation, followed by deep sequencing (ChIP‐seq) at the whole genome level. Through integrative analysis of the ChIP‐seq profiles with gene expression data, we found that H3K4me2 increased at promoters and enhancers globally during postnatal development and aging, and those that correspond to gene expression changes in cis are enriched for stress responses, such as the DNA damage response. This suggests that metabolic and environmental stresses experienced by an organism are associated with the progressive opening of chromatin. In support of this, we also observed increased expression of two H3K4 methyltransferases, SETD7 and DPY30, in aged macaque brain.  相似文献   

19.
Herpes simplex virus 1 (HSV-1) genomes are associated with the repressive heterochromatic marks H3K9me2/me3 and H3K27me3 during latency. Previous studies have demonstrated that inhibitors of H3K9me2/me3 histone demethylases reduce the ability of HSV-1 to reactivate from latency. Here we demonstrate that GSK-J4, a specific inhibitor of the H3K27me3 histone demethylases UTX and JMJD3, inhibits HSV-1 reactivation from sensory neurons in vitro. These results indicate that removal of the H3K27me3 mark plays a key role in HSV-1 reactivation.  相似文献   

20.
Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single‐copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination‐poor region is preferentially marked by a heterochromatin‐typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin‐typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号