首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Lactic‐acid bacteria are widely recognized beneficial host associated groups of the microbiota of humans and animals. Some lactic‐acid bacteria have the ability to extend the lifespan of the model animals. The mechanisms behind the probiotic effects of bacteria are not entirely understood. Recently, we reported the benefit effects of Lactobacillus gasseriSBT2055 (LG2055) on animal and human health, such as preventing influenza A virus, and augmentation of IgA production. Therefore, it was preconceived that LG2055 has the beneficial effects on longevity and/or aging. We examined the effects of LG2055 on lifespan and aging of Caenorhabditis elegans and analyzed the mechanism of prolongevity. Our results demonstrated that LG2055 has the beneficial effects on longevity and anti‐aging of C. elegans. Feeding with LG2055 upregulated the expression of the skn‐1 gene and the target genes of SKN‐1, encoding the antioxidant proteins enhancing antioxidant defense responses. We found that feeding with LG2055 directly activated SKN‐1 activity via p38 MAPK pathway signaling. The oxidative stress response is elicited by mitochondrial dysfunction in aging, and we examined the influence of LG2055 feeding on the membrane potential of mitochondria. Here, the amounts of mitochondria were significantly increased by LG2055 feeding in comparison with the control. Our result suggests that feeding with LG2055 is effective to the extend lifespan in C. elegans by a strengthening of the resistance to oxidative stress and by stimulating the innate immune response signaling including p38MAPK signaling pathway and others.  相似文献   

7.
Oxidative damage is thought to be a major cause in development of pathologies and aging. However, quantification of oxidative damage is methodologically difficult. Here, we present a robust liquid chromatography–tandem mass spectrometry (LC‐MS/MS) approach for accurate, sensitive, and linear in vivo quantification of endogenous oxidative damage in the nematode Caenorhabditis elegans, based on F3‐isoprostanes. F3‐isoprostanes are prostaglandin‐like markers of oxidative damage derived from lipid peroxidation by Reactive Oxygen Species (ROS). Oxidative damage was quantified in whole animals and in multiple cellular compartments, including mitochondria and peroxisomes. Mutants of the mitochondrial electron transport proteins mev‐1 and clk‐1 showed increased oxidative damage levels. Furthermore, analysis of Superoxide Dismutase (sod) and Catalase (ctl) mutants uncovered that oxidative damage levels cannot be inferred from the phenotype of resistance to pro‐oxidants alone and revealed high oxidative damage in a small group of chemosensory neurons. Longitudinal analysis of aging nematodes revealed that oxidative damage increased specifically with postreproductive age. Remarkably, aging of the stress‐resistant and long‐lived daf‐2 insulin/IGF‐1 receptor mutant involved distinct daf‐16‐dependent phases of oxidative damage including a temporal increase at young adulthood. These observations are consistent with a hormetic response to ROS.  相似文献   

8.
9.
10.
Crown rust (Puccinia coronata Corda f.sp. avenae) can devastate oats (Avena sativa). Oxidative stress is part of the resistance mechanism in several pathosystems, but in the oat–crown rust system, it is unclear, especially regarding partial resistance. We evaluated the effects of P. coronata on oxidative stress in oat cultivars: URS 21 (partially resistant), Leggett (race‐specific resistant), URS22 and Clintland 64 (susceptibles). Seedlings and plants were inoculated with P. coronata uredospores. Cultivars were assessed for antioxidant enzyme activity and the reactive oxygen species (ROS) hydrogen peroxide and superoxide. Due to the importance of the partial resistance of URS21, this cultivar and URS 22 were also appraised for total phenolics and the relative expression of oxidative stress genes. Postinoculation, Leggett and URS 21 showed no increased peroxide levels. The susceptible cultivars increased ROS and ascorbate peroxidase activity. Clintland 64 increased also catalase activity, whereas URS 22 increased glutathione reductase and the expression of genes encoding antioxidant enzymes. URS 21 showed almost no antioxidant enzyme induction. Shortly after inoculation, URS 21 showed increased expression of genes encoding lipoxygenase and peroxidase. Cultivars URS 21 and Leggett accumulated cell wall fluorescent compounds, phenolics being detected in the former. Oxidative stress appears not to cause the hypersensitive response in this pathosystem, but late ROS accumulation did occur in the susceptible cultivars. Cultivar URS 21 may, differently from other known mechanism to date, reduce ROS accumulation by increasing the level of phenolics, resulting in later pathogen and cell death, showing non‐specific resistance to races of the pathogen also at seedling stage.  相似文献   

11.
NDG‐4 is a predicted transmembrane acyltransferase protein that acts in the distribution of lipophilic factors. Consequently, ndg‐4 mutants lay eggs with a pale appearance due to lack of yolk, and they are resistant to sterility caused by dietary supplementation with the long‐chain omega‐6 polyunsaturated fatty acid dihommogamma‐linolenic acid (DGLA). Two other proteins, NRF‐5 and NRF‐6, a homolog of a mammalian secreted lipid binding protein and a NDG‐4 homolog, respectively, have previously been shown to function in the same lipid transport pathway. Here, we report that mutation of the NDG‐4 protein results in increased organismal stress resistance and lifespan. When NDG‐4 function and insulin/IGF‐1 signaling are reduced simultaneously, maximum lifespan is increased almost fivefold. Thus, longevity conferred by mutation of ndg‐4 is partially overlapping with insulin signaling. The nuclear hormone receptor NHR‐80 (HNF4 homolog) is required for longevity in germline less animals. We find that NHR‐80 is also required for longevity of ndg‐4 mutants. Moreover, we find that nrf‐5 and nrf‐6 mutants also have extended lifespan and increased stress resistance, suggesting that altered lipid transport and metabolism play key roles in determining lifespan.  相似文献   

12.
13.
Recent evidence indicates that oxidative stress and genetic factors play an important role in the pathogenesis of vitiligo. SNPs in miRNAs involved in oxidative stress could potentially influence the development of vitiligo. In this case–control study, we investigated the association of a functional SNP of rs11614913 in miR‐196a‐2 with risk of vitiligo. A significantly lower risk of vitiligo was associated with the rs11614913 miR‐196a‐2 CC genotype (adjusted OR, 0.77; CI, 0.60–0.98). In addition, TYRP1 gene expression was considerably down‐regulated by the rs11614913 C allele in miR‐196a‐2, which lowered the levels of intracellular reactive oxygen species (ROS) and reduced the proportion of early apoptosis in human melanocytes in response to H2O2 treatment. Our data suggest that the rs11614913 C allele in miR‐196a‐2 confers potential protection against oxidative effects on human melanocytes through the modulation of the target gene, TYRP1, which may account for the decreased risk of vitiligo in this study population.  相似文献   

14.
Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map‐based cloning revealed that the rth5 gene encodes a monocot‐specific NADPH oxidase. RNA‐Seq, in situ hybridization and qRT‐PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild‐type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA‐Seq analysis of 6‐day‐old rth5 versus wild‐type primary roots revealed significant over‐representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups ‘response to oxidative stress’ and ‘cellulose biosynthesis’ were most prominently represented.  相似文献   

15.
16.
17.
18.
19.
Low temperature is an environmental factor that affects plant growth and development and plant–pathogen interactions. How temperature regulates plant defense responses is not well understood. In this study, we characterized chilling‐sensitive mutant 1 (chs1), and functionally analyzed the role of the CHS1 gene in plant responses to chilling stress. The chs1 mutant displayed a chilling‐sensitive phenotype, and also displayed defense‐associated phenotypes, including extensive cell death, the accumulation of hydrogen peroxide and salicylic acid, and an increased expression of PR genes: these phenotypes indicated that the mutation in chs1 activates the defense responses under chilling stress. A map‐based cloning analysis revealed that CHS1 encodes a TIR‐NB‐type protein. The chilling sensitivity of chs1 was fully rescued by pad4 and eds1, but not by ndr1. The overexpression of the TIR and NB domains can suppress the chs1–conferred phenotypes. Interestingly, the stability of the CHS1 protein was positively regulated by low temperatures independently of the 26S proteasome pathway. This study revealed the role of a TIR‐NB‐type gene in plant growth and cell death under chilling stress, and suggests that temperature modulates the stability of the TIR‐NB protein in Arabidopsis.  相似文献   

20.
To sense and defend against oxidative stress, cells depend on signal transduction cascades involving redox‐sensitive proteins. We previously identified SUMO (small ubiquitin‐related modifier) enzymes as downstream effectors of reactive oxygen species (ROS). Hydrogen peroxide transiently inactivates SUMO E1 and E2 enzymes by inducing a disulfide bond between their catalytic cysteines. How important their oxidation is in light of many other redox‐regulated proteins has however been unclear. To selectively disrupt this redox switch, we identified a catalytically fully active SUMO E2 enzyme variant (Ubc9 D100A) with strongly reduced propensity to maintain a disulfide with the E1 enzyme in vitro and in cells. Replacement of Ubc9 by this variant impairs cell survival both under acute and mild chronic oxidative stresses. Intriguingly, Ubc9 D100A cells fail to maintain activity of the ATM–Chk2 DNA damage response pathway that is induced by hydrogen peroxide. In line with this, these cells are also more sensitive to the ROS‐producing chemotherapeutic drugs etoposide/Vp16 and Ara‐C. These findings reveal that SUMO E1~E2 oxidation is an essential redox switch in oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号