首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to investigate the protective effects and underlying mechanisms of cistanche on sevoflurane‐induced aged cognitive dysfunction rat model. Aged (24 months) male SD rats were randomly assigned to four groups: control group, sevoflurane group, control + cistanche and sevoflurane + cistanche group. Subsequently, inflammatory cytokine levels were measured by ELISA, and the cognitive dysfunction of rats was evaluated by water maze test, open‐field test and the fear conditioning test. Three days following anaesthesia, the rats were killed and hippocampus was harvested for the analysis of relative biomolecules. The oxidative stress level was indicated as nitrite and MDA concentration, along with the SOD and CAT activity. Finally, PPAR‐γ antagonist was used to explore the mechanism of cistanche in vivo. The results showed that after inhaling the sevoflurane, 24‐ but not 3‐month‐old male SD rats developed obvious cognitive impairments in the behaviour test 3 days after anaesthesia. Intraperitoneal injection of cistanche at the dose of 50 mg/kg for 3 consecutive days before anaesthesia alleviated the sevoflurane‐induced elevation of neuroinflammation levels and significantly attenuated the hippocampus‐dependent memory impairments in 24‐month‐old rats. Cistanche also reduced the oxidative stress by decreasing nitrite and MDA while increasing the SOD and CAT activity. Moreover, such treatment also inhibited the activation of microglia. In addition, we demonstrated that PPAR‐γ inhibition conversely alleviated cistanche‐induced protective effect. Taken together, we demonstrated that cistanche can exert antioxidant, anti‐inflammatory, anti‐apoptosis and anti‐activation of microglia effects on the development of sevoflurane‐induced cognitive dysfunction by activating PPAR‐γ signalling.  相似文献   

2.
Peroxisome proliferator‐activated receptors (PPARs) play a major role in metabolism and inflammatory control. Exercise can modulate PPAR expression in skeletal muscle, adipose tissue, and macrophages. Little is known about the effects of PPAR‐α in metabolic profile and cytokine secretion after acute exercise in macrophages. In this context, the aim of this study was to understand the influence of PPAR‐α on exercise‐mediated immune metabolic parameters in peritoneal macrophages. Mice C57BL/6 (WT) and PPAR‐α knockout (KO) were examined in non‐exercising control (n = 4) or 24 hours after acute moderate exercise (n = 8). Metabolic parameters (glucose, non‐esterified fatty acids, total cholesterol [TC], and triacylglycerol [TG]) were assessed in serum. Cytokine concentrations (IL‐1β, IL‐6, IL‐10, TNF‐α, and MCP‐1) were measured from peritoneal macrophages cultured or not with LPS (2.5 μg/mL) and Rosiglitazone (1 μM). Exercised KO mice exhibited low glucose concentration and higher TC and TG in serum. At baseline, no difference in cytokine production between the genotypes was observed. However, IL‐1β was significantly higher in KO mice after LPS stimulus. IL‐6 and IL‐1β had increased concentrations in KO compared with WT, even after exercise. MCP‐1 was not restored in exercised KO LPS group. Rosiglitazone was not able to reduce proinflammatory cytokine production in KO mice at baseline level or associated with exercise. Acute exercise did not alter mRNA expression in WT mice. Conclusion: PPAR‐α seems to be needed for metabolic glucose homeostasis and anti‐inflammatory effect of acute exercise. Its absence may induce over‐expression of pro‐inflammatory cytokines in LPS stimulus. Moreover, moderate exercise or PPAR‐γ agonist did not reverse this response.  相似文献   

3.
Aims: Optimal production conditions of conjugated γ‐linolenic acid (CGLA) from γ‐linolenic acid using washed cells of Lactobacillus plantarum AKU 1009a as catalysts were investigated. Methods and Results: Washed cells of Lact. plantarum AKU 1009a exhibiting a high level of CGLA productivity were obtained by cultivation in a nutrient medium supplemented with 0·03% (w/v) α‐linolenic acid as an inducer. Under the optimal reaction conditions with 13 mg ml?1γ‐linolenic acid as a substrate in 5 ‐ml reaction volume, the washed cells [32% (wet cells, w/v) corresponding to 46 mg ml?1 dry cells] as the catalysts produced 8·8 mg CGLA per millilitre reaction mixture (68% molar yield) in 27 h. The produced CGLA was a mixture of two isomers, i.e., cis‐6,cis‐9,trans‐11‐octadecatrienoic acid (CGLA1, 40% of total CGLA) and cis‐6,trans‐9,trans‐11‐octadecatrienoic acid (CGLA2, 60% of total CGLA), and accounted for 66% of total fatty acid obtained. The CGLA produced was obtained as free fatty acids adsorbed mostly on the surface of the cells of Lact. plantarum AKU1009a. Conclusion: The practical process of CGLA production from γ‐linolenic acid using washed cells of Lact. plantarum AKU 1009a was successfully established. Significance and Impact of the Study: We presented the first example of microbial production of CGLA. CGLA produced by the process is valuable for evaluating their physiological and nutritional effects, and chemical characteristics.  相似文献   

4.
Aging is associated with vascular endothelial dysfunction, reduced exercise tolerance, and impaired whole‐body glucose metabolism. Interleukin‐37 (IL‐37), an anti‐inflammatory cytokine of the interleukin‐1 family, exerts salutary physiological effects in young mice independent of its inflammation‐suppressing properties. Here, we assess the efficacy of IL‐37 treatment for improving physiological function in older age. Old mice (26–28 months) received daily intraperitoneal injections of recombinant human IL‐37 (recIL‐37; 1 µg/200 ml PBS) or vehicle (200 ml PBS) for 10–14 days. Vascular endothelial function (ex vivo carotid artery dilation to increasing doses of acetylcholine, ACh) was enhanced in recIL‐37 vs. vehicle‐treated mice via increased nitric oxide (NO) bioavailability (all p < .05); this effect was accompanied by enhanced ACh‐stimulated NO production and reduced levels of reactive oxygen species in endothelial cells cultured with plasma from IL‐37‐treated animals (p < .05 vs. vehicle plasma). RecIL‐37 treatment increased endurance exercise capacity by 2.4‐fold, which was accompanied by a 2.9‐fold increase in the phosphorylated AMP‐activated kinase (AMPK) to AMPK ratio (i.e., AMPK activation) in quadriceps muscle. RecIL‐37 treatment also improved whole‐body insulin sensitivity and glucose tolerance (p < .05 vs. vehicle). Improvements in physiological function occurred without significant changes in plasma, aortic, and skeletal muscle pro‐inflammatory proteins (under resting conditions), whereas pro‐/anti‐inflammatory IL‐6 was greater in recIL‐37‐treated animals. Plasma metabolomics analysis revealed that recIL‐37 treatment altered metabolites related to pathways involved in NO synthesis (e.g., increased L‐arginine and citrulline/arginine ratio) and fatty acid metabolism (e.g., increased pantothenol and free fatty acids). Our findings provide experimental support for IL‐37 therapy as a novel strategy to improve diverse physiological functions in old age.  相似文献   

5.
6.
Tumour necrosis factor (TNF)‐α induces cardiac metabolic disorder and mitochondrial dysfunction. Hydrogen sulphide (H2S) contains anti‐inflammatory and biological effects in cardiomyocytes. This study investigated whether H2S modulates TNF‐α‐dysregulated mitochondrial function and metabolism in cardiomyocytes. HL‐1 cells were incubated with TNF‐α (25 ng/mL) with or without sodium hydrosulphide (NaHS, 0.1 mmol/L) for 24 hours. Cardiac peroxisome proliferator‐activated receptor (PPAR) isoforms, pro‐inflammatory cytokines, receptor for advanced glycation end products (RAGE) and fatty acid metabolism were evaluated through Western blotting. The mitochondrial oxygen consumption rate and adenosine triphosphate (ATP) production were investigated using Seahorse XF24 extracellular flux analyzer and bioluminescence assay. Fluorescence intensity using 2′, 7′‐dichlorodihydrofluorescein diacetate was used to evaluate mitochondrial oxidative stress. NaHS attenuated the impaired basal and maximal respiration, ATP production and ATP synthesis and enhanced mitochondrial oxidative stress in TNF‐α‐treated HL‐1 cells. TNF‐α‐treated HL‐1 cells exhibited lower expression of PPAR‐α, PPAR‐δ, phosphorylated 5′ adenosine monophosphate‐activated protein kinase‐α2, phosphorylated acetyl CoA carboxylase, carnitine palmitoyltransferase‐1, PPAR‐γ coactivator 1‐α and diacylglycerol acyltransferase 1 protein, but higher expression of PPAR‐γ, interleukin‐6 and RAGE protein than control or combined NaHS and TNF‐α‐treated HL‐1 cells. NaHS modulates the effects of TNF‐α on mitochondria and the cardiometabolic system, suggesting its therapeutic potential for inflammation‐induced cardiac dysfunction.  相似文献   

7.
Rice leaves accumulate serotonin in response to infection by Bipolaris oryzae. The leaves of the sl mutant, which is deficient in the gene encoding tryptamine 5‐hydroxylase, accumulate tryptamine instead of serotonin upon infection by B. oryzae. Because tryptamine is a possible precursor of indole‐3‐acetic acid (IAA), we investigated the accumulation of IAA in sl leaves infected with B. oryzae. Liquid chromatography coupled with tandem mass spectrometry analysis indicated that IAA accumulated at approximately 1.5 μmol/gFW in the leaves of sl mutant. This accumulation was suppressed by 95% by the treatment with the tryptamine decarboxylase inhibitor, (S)‐α‐(fluoromethyl)tryptophan, at 100 μm , indicating that tryptamine served as the precursor of IAA. The accumulation of IAA was not reproduced by treatment with CuCl2 or by exogenous feeding of tryptamine. Furthermore, inoculation of Magnaporthe grisea induced only a lower level of IAA accumulation. On the other hand, B. oryzae produced IAA in culture media containing tryptamine. These findings strongly suggested that the metabolism of tryptamine by B. oryzae was responsible for IAA accumulation in the leaves of the sl mutant. Serotonin added to the culture media was also converted into 5‐hydroxyindole‐3‐acetic acid (5HIAA) at a rate similar to that of tryptamine. Considering that wild‐type rice leaves accumulate serotonin for defensive purposes, reducing the concentration of serotonin by conversion into 5HIAA may be significant as a detoxification process in the interaction between B. oryzae and rice.  相似文献   

8.
Resistance to chemotherapy with 5‐fluorouracil (5‐FU) in patients with colorectal cancer (CRC) is the major obstacle to reach the maximum efficiency of CRC treatment. Combination therapy has emerged as a novel anticancer strategy. The present study evaluates the cotreatment of γ‐tocopherol and 5‐FU in enhancing the efficacy of chemotherapy against HT‐29 colon cancer cells. Cytotoxic effect of this combination was examined using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay and a synergistic effect was evaluated by a combination index technique. Nuclear morphology was studied via 4′,6‐diamidino‐2‐phenylindole staining and flow cytometric assays were conducted to identify molecular mechanisms of apoptosis and cell cycle progression. We investigated the expression of Cyclin D1, Cyclin E, Bax, and Bcl‐2 by a quantitative real‐time polymerase chain reaction. The IC50 values for 5‐FU and γ‐tocopherol were 21.8 ± 2.5 and 14.4 ± 2.6 μM, respectively, and also this combination therapeutic increased the percentage of apoptotic cells from 35% ± 2% to 40% ± 4% (P < .05). Furthermore, incubation HT‐29 colon cells with combined concentrations of two drugs caused significant accumulation of cells in the subGsubG1 phase. Our results presented the combination therapy with 5‐FU and γ‐tocopherol as a novel therapeutic approach, which can enhance the efficacy of chemotherapy.  相似文献   

9.
Lipotoxicity cardiomyopathy is the result of excessive accumulation and oxidation of toxic lipids in the heart. It is a major threat to patients with diabetes. Glucagon‐like peptide‐1 (GLP‐1) has aroused considerable interest as a novel therapeutic target for diabetes mellitus because it stimulates insulin secretion. Here, we investigated the effects and mechanisms of the GLP‐1 analog exendin‐4 and the dipeptidyl peptidase‐4 inhibitor saxagliptin on cardiac lipid metabolism in diabetic mice (DM). The increased myocardial lipid accumulation, oxidative stress, apoptosis, and cardiac remodeling and dysfunction induced in DM by low streptozotocin doses and high‐fat diets were significantly reversed by exendin‐4 and saxagliptin treatments for 8 weeks. We found that exendin‐4 inhibited abnormal activation of the (PPARα)‐CD36 pathway by stimulating protein kinase A (PKA) but suppressing the Rho‐associated protein kinase (ROCK) pathway in DM hearts, palmitic acid (PA)‐treated rat h9c2 cardiomyocytes (CMs), and isolated adult mouse CMs. Cardioprotection in DM mediated by exendin‐4 was abolished by combination therapy with the PPARα agonist wy‐14643 but mimicked by PPARα gene deficiency. Therefore, the PPARα pathway accounted for the effects of exendin‐4. This conclusion was confirmed in cardiac‐restricted overexpression of PPARα mediated by adeno‐associated virus serotype‐9 containing a cardiac troponin T promoter. Our results provide the first direct evidence that GLP‐1 protects cardiac function by inhibiting the ROCK/PPARα pathway, thereby ameliorating lipotoxicity in diabetic cardiomyopathy.  相似文献   

10.
In our search for novel histone deacetylases inhibitors, we have designed and synthesized a series of novel hydroxamic acids and N‐hydroxybenzamides incorporating quinazoline heterocycles ( 4a  –  4i , 6a  –  6i ). Bioevaluation showed that these quinazoline‐based hydroxamic acids and N‐hydroxybenzamides were potently cytotoxic against three human cancer cell lines (SW620, colon; PC‐3, prostate; NCI‐H23, lung). In term of cytotoxicity, several compounds, e.g., 4g , 4c , 4g  –  4i , 6c , and 6h , displayed from 5‐ up to 10‐fold higher potency than SAHA (suberoylanilidehydroxamic acid, vorinostat). The compounds were also generally comparable to SAHA in inhibiting HDACs with IC50 values in sub‐micromolar range. Some compounds, e.g., 4g , 6c , 6e , and 6h , were even more potent HDAC inhibitors compared to SAHA in HeLa extract assay. Docking studies demonstrated that the compounds tightly bound to HDAC2 at the active binding site with binding affinities higher than that of SAHA. Detailed investigation on the estimation of absorption, distribution, metabolism, excretion, and toxicity (ADMET) suggested that compounds 4g , 6c , and 6g , while showing potent HDAC2 inhibitory activity and cytotoxicity, also potentially displayed ADMET characteristics desirable to be expected as promising anticancer drug candidates.  相似文献   

11.
γ‐Tubulin is critical for microtubule (MT) assembly and organization. In metazoa, this protein acts in multiprotein complexes called γ‐Tubulin Ring Complexes (γ‐TuRCs). While the subunits that constitute γ‐Tubulin Small Complexes (γ‐TuSCs), the core of the MT nucleation machinery, are essential, mutation of γ‐TuRC‐specific proteins in Drosophila causes sterility and morphological abnormalities via hitherto unidentified mechanisms. Here, we demonstrate a role of γ‐TuRCs in controlling spindle orientation independent of MT nucleation activity, both in cultured cells and in vivo, and examine a potential function for γ‐TuRCs on astral MTs. γ‐TuRCs locate along the length of astral MTs, and depletion of γ‐TuRC‐specific proteins increases MT dynamics and causes the plus‐end tracking protein EB1 to redistribute along MTs. Moreover, suppression of MT dynamics through drug treatment or EB1 down‐regulation rescues spindle orientation defects induced by γ‐TuRC depletion. Therefore, we propose a role for γ‐TuRCs in regulating spindle positioning by controlling the stability of astral MTs.  相似文献   

12.
13.
Differences in lipid metabolism associate with age‐related disease development and lifespan. Inflammation is a common link between metabolic dysregulation and aging. Saturated fatty acids (FAs) initiate pro‐inflammatory signalling from many cells including monocytes; however, no existing studies have quantified age‐associated changes in individual FAs in relation to inflammatory phenotype. Therefore, we have determined the plasma concentrations of distinct FAs by gas chromatography in 26 healthy younger individuals (age < 30 years) and 21 healthy FA individuals (age > 50 years). Linear mixed models were used to explore the association between circulating FAs, age and cytokines. We showed that plasma saturated, poly‐ and mono‐unsaturated FAs increase with age. Circulating TNF‐α and IL‐6 concentrations increased with age, whereas IL‐10 and TGF‐β1 concentrations decreased. Oxidation of MitoSOX Red was higher in leucocytes from FA adults, and plasma oxidized glutathione concentrations were higher. There was significant colinearity between plasma saturated FAs, indicative of their metabolic relationships. Higher levels of the saturated FAs C18:0 and C24:0 were associated with lower TGF‐β1 concentrations, and higher C16:0 were associated with higher TNF‐α concentrations. We further examined effects of the aging FA profile on monocyte polarization and metabolism in THP1 monocytes. Monocytes preincubated with C16:0 increased secretion of pro‐inflammatory cytokines in response to phorbol myristate acetate‐induced differentiation through ceramide‐dependent inhibition of PPARγ activity. Conversely, C18:1 primed a pro‐resolving macrophage which was PPARγ dependent and ceramide dependent and which required oxidative phosphorylation. These data suggest that a midlife adult FA profile impairs the switch from proinflammatory to lower energy, requiring anti‐inflammatory macrophages through metabolic reprogramming.  相似文献   

14.
15.
Correlation between periodontitis and atherosclerosis is well established, and the inherent mechanisms responsible for this relationship remain unclear. The biological function of growth arrest‐specific 6 (gas6) has been discovered in both atherosclerosis and inflammation. Inhibitory effects of gas6 on the expression of inflammatory factors in human umbilical vein endothelial cells (HUVECs) stimulated by Porphyromonas gingivalis lipopolysaccharide (P. gingivalis‐LPS) were reported in our previous research. Herein, the effects of gas6 on monocytes‐endothelial cells interactions in vitro and their probable mechanisms were further investigated. Gas6 protein in HUVECs was knocked down with siRNA or overexpressed with plasmids. Transwell inserts and co‐culturing system were introduced to observe chemotaxis and adhering affinity between monocytes and endothelial cells in vitro. Expression of gas6 was decreased in inflammatory periodontal tissues and HUVECs challenged with P. gingivalis‐LPS. The inhibitory effect of gas6 on chemotaxis and adhesion affinity between monocytes and endothelial cells was observed, and gas6 promoted Akt phosphorylation and inhibited NF‐κB phosphorylation. To our best knowledge, we are first to report that gas6 inhibit monocytes‐endothelial cells interactions in vitro induced by P. gingivalis‐LPS via Akt/NF‐κB pathway. Additionally, inflammation‐mediated inhibition of gas6 expression is through LncRNA GAS6‐AS2, rather than GAS6‐AS1, which is also newly reported.  相似文献   

16.
Dendrolimus spp. are important destructive pests of conifer forests, and Dendrolimus punctatus Walker (Lepidoptera; Lasiocampidae) is the most widely distributed Dendrolimus species. During periodic outbreaks, this species is said to make “fire without smoke” because large areas of pine forest can be quickly and heavily damaged. Yet, little is known about the molecular mechanisms that underlie the unique ecological characteristics of this forest insect. Here, we combined Pacific Biosciences (PacBio) RSII single‐molecule long reads and high‐throughput chromosome conformation capture (Hi‐C) genomics‐linked reads to produce a high‐quality, chromosome‐level reference genome for D. punctatus. The final assembly was 614 Mb with contig and scaffold N50 values of 1.39 and 22.15 Mb, respectively, and 96.96% of the contigs anchored onto 30 chromosomes. Based on the prediction, this genome contained 17,593 protein‐coding genes and 56.16% repetitive sequences. Phylogenetic analyses indicated that D. punctatus diverged from the common ancestor of Hyphantria cunea, Spodoptera litura and Thaumetopoea pityocampa ~ 108.91 million years ago. Many gene families that were expanded in the D. punctatus genome were significantly enriched for the xenobiotic biodegradation system, especially the cytochrome P450 gene family. This high‐quality, chromosome‐level reference genome will be a valuable resource for understanding mechanisms of D. punctatus outbreak and host resistance adaption. Because this is the first Lasiocampidae insect genome to be sequenced, it also will serve as a reference for further comparative genomics.  相似文献   

17.
Thitarodes pui larvae have a limited distribution in the Tibetan Plateau and are the host of a parasitic fungus, Ophiocordyceps sinensis. Low temperature is a main environmental stress. However, understanding of T. pui cold adaptation mechanisms is insufficient. Delta‐9‐acyl‐CoA desaturase (D9D) is closely correlated with cold adaptation for many organisms. To further understand the cold adaptation processes in T. pui larvae, two D9Ds, TpdesatA and TpdesatB were sequenced, and expression patterns were investigated during different seasons and cold exposure (under 0°C) in the laboratory. The full lengths of two cDNAs are 1,290 bp and 1,603 bp, and the ORFs encode a polypeptide of 348 and 359 amino acids, respectively. Four transmembrane domains, three conserved histidine residues and five hydrophobic regions exist in these two sequences. The expression level of TpdesatA is up‐regulated in the long‐term cold exposure and negatively correlated with temperature in seasonal patterns. TpdesatB responds to cold temperature in short‐term cold exposure and positively corresponds temporarily in seasonal expression. Two D9Ds may have different substrate specificities, TpdesatA tends to use C16:0 and C18:0 as substrate while TpdesatB prefers C18:0. In conclusion, TpdesatA may play a very important role in T. pui cold tolerance and TpdesatB regulates function in short‐term cold exposure and content change of fatty acids in the body.  相似文献   

18.
19.
20.
COMU is uronium‐type coupling reagent based on OxymaPure. It showed several advantages over classical benzotriazole‐based coupling reagents such as higher solubility, water‐soluble byproduct, and monitoring the reaction by changing of color. Although COMU is well known to perform excellent in solution, but its hydrolytic stability in DMF limits its use in automatic peptide synthesizer. Herein, we evaluated the hydrolytic stability of COMU in γ‐valerolactone (GVL), acetonitrile (ACN) and N‐formylmorpholine (NFM) and compared its stability against DMF. The stability of COMU after 24 h was found to be 88 and 89% in GVL and ACN, respectively, when compared in DMF (14%). Further, the demanding Aib‐ACP decapeptide and JR decapeptide were successfully synthesized using COMU dissolved in GVL or ACN while Fmoc amino acids were dissolved in DMF. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号