首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of the mitogen‐activated protein kinase (MAPK) pathway is a major advance in the treatment of metastatic melanoma. However, its therapeutic success is limited by the rapid emergence of drug resistance. The insulin‐like growth factor‐1 receptor (IGF‐1R) is overexpressed in melanomas developing resistance toward the BRAFV600 inhibitor vemurafenib. Here, we show that hyperactivation of BRAF enhances IGF‐1R expression. In addition, the phosphatase activity of PTEN as well as heterocellular contact to stromal cells increases IGF‐1R expression in melanoma cells and enhances resistance to vemurafenib. Interestingly, PTEN‐negative melanoma cells escape IGF‐1R blockade by decreased expression of the receptor, implicating that only in melanoma patients with PTEN‐positive tumors treatment with IGF‐1R inhibitors would be a suitable strategy to combat therapy resistance. Our data emphasize the crosstalk and therapeutic relevance of microenvironmental and tumor cell‐autonomous mechanisms in regulating IGF‐1R expression and by this sensitivity toward targeted therapies.  相似文献   

2.
In lower or simple species, such as worms and flies, disruption of the insulin‐like growth factor (IGF)‐1 and the insulin signaling pathways has been shown to increase lifespan. In rodents, however, growth hormone (GH) regulates IGF‐1 levels in serum and tissues and can modulate lifespan via/or independent of IGF‐1. Rodent models, where the GH/IGF‐1 axis was ablated congenitally, show increased lifespan. However, in contrast to rodents where serum IGF‐1 levels are high throughout life, in humans, serum IGF‐1 peaks during puberty and declines thereafter during aging. Thus, animal models with congenital disruption of the GH/IGF‐1 axis are unable to clearly distinguish between developmental and age‐related effects of GH/IGF‐1 on health. To overcome this caveat, we developed an inducible liver IGF‐1‐deficient (iLID) mouse that allows temporal control of serum IGF‐1. Deletion of liver Igf1 gene at one year of age reduced serum IGF‐1 by 70% and dramatically impaired health span of the iLID mice. Reductions in serum IGF‐1 were coupled with increased GH levels and increased basal STAT5B phosphorylation in livers of iLID mice. These changes were associated with increased liver weight, increased liver inflammation, increased oxidative stress in liver and muscle, and increased incidence of hepatic tumors. Lastly, despite elevations in serum GH, low levels of serum IGF‐1 from 1 year of age compromised skeletal integrity and accelerated bone loss. We conclude that an intact GH/IGF‐1 axis is essential to maintain health span and that elevated GH, even late in life, associates with increased pathology.  相似文献   

3.
Long non‐coding RNAs (lncRNAs) take various effects in cancer mostly through sponging with microRNAs (miRNAs). lncRNA NR2F1‐AS1 is found to promote tumour progression in hepatocellular carcinoma, endometrial cancer and thyroid cancer. However, the role of lncRNA NR2F1‐AS1 in breast cancer angiogenesis remains unknown. In this study, we found lncRNA NR2F1‐AS1 was positively related with CD31 and CD34 in breast cancer through Pearson's correlation analysis, while lncRNA NR2F1‐AS1 transfection promoted human umbilical vascular endothelial cell (HUVEC) tube formation. In breast cancer cells, lncRNA NR2F1‐AS1 enhanced the HUVEC proliferation, tube formation and migration ability through tumour‐conditioned medium (TCM). In zebrafish model, lncRNA NR2F1‐AS1 increased the breast cancer cell‐related neo‐vasculature and subsequently promoted the breast cancer cell metastasis. In mouse model, lncRNA NR2F1‐AS1 promoted the tumour vessel formation, increased the micro vessel density (MVD) and then induced the growth of primary tumour. Mechanically, lncRNA NR2F1‐AS1 increased insulin‐like growth factor‐1 (IGF‐1) expression through sponging miRNA‐338‐3p in breast cancer cells and then activated the receptor of IGF‐1 (IGF‐1R) and extracellular signal‐regulated kinase (ERK) pathway in HUVECs. These results indicated that lncRNA NR2F1‐AS1 could promote breast cancer angiogenesis through IGF‐1/IGF‐1R/ERK pathway.  相似文献   

4.
5.
6.
Chitin, a major component of fungal cell walls, is a well‐known pathogen‐associated molecular pattern (PAMP) that triggers defense responses in several mammal and plant species. Here, we show that two chitooligosaccharides, chitin and chitosan, act as PAMPs in grapevine (Vitis vinifera) as they elicit immune signalling events, defense gene expression and resistance against fungal diseases. To identify their cognate receptors, the grapevine family of LysM receptor kinases (LysM‐RKs) was annotated and their gene expression profiles were characterized. Phylogenetic analysis clearly distinguished three V. vinifera LysM‐RKs (VvLYKs) located in the same clade as the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 (AtCERK1), which mediates chitin‐induced immune responses. The Arabidopsis mutant Atcerk1, impaired in chitin perception, was transformed with these three putative orthologous genes encoding VvLYK1‐1, ‐2, or ‐3 to determine if they would complement the loss of AtCERK1 function. Our results provide evidence that VvLYK1‐1 and VvLYK1‐2, but not VvLYK1‐3, functionally complement the Atcerk1 mutant by restoring chitooligosaccharide‐induced MAPK activation and immune gene expression. Moreover, expression of VvLYK1‐1 in Atcerk1 restored penetration resistance to the non‐adapted grapevine powdery mildew (Erysiphe necator). On the whole, our results indicate that the grapevine VvLYK1‐1 and VvLYK1‐2 participate in chitin‐ and chitosan‐triggered immunity and that VvLYK1‐1 plays an important role in basal resistance against E. necator.  相似文献   

7.
8.
9.
Cumulating evidences suggested an important role of sphingosine‐1‐phosphate (S1P) and its receptors in regulating endothelial barrier integrity. Our previous study revealed that the circulating S1P levels and renal expression of S1PRs correlated with disease activity and renal damage in patients with antineutrophil cytoplasmic antibody (ANCA)‐associated vasculitis (AAV). This study investigated the role of S1P and its receptors in myeloperoxidase (MPO)‐ANCA‐positive IgG‐mediated glomerular endothelial cell (GEnC) activation. The effect of S1P on morphological alteration of GEnCs in the presence of MPO‐ANCA‐positive IgG was observed. Permeability assay was performed to determine endothelial monolayer activation in quantity. Both membrane‐bound and soluble ICAM‐1 and VCAM‐1 levels were measured. Furthermore, antagonists and/or agonists of various S1PRs were employed to determine the role of different S1PRs. S1P enhanced MPO‐ANCA‐positive IgG‐induced disruption of tight junction and disorganization of cytoskeleton in GEnCs. S1P induced further increase in monolayer permeability of GEnC monolayers in the presence of MPO‐ANCA‐positive IgG. S1P enhanced MPO‐ANCA‐positive IgG‐induced membrane‐bound and soluble ICAM‐1/VCAM‐1 up‐regulation of GEnCs. Soluble ICAM‐1 levels in the supernatants of GEnCs stimulated by S1P and MPO‐ANCA‐positive IgG increased upon pre‐incubation of S1PR1 antagonist, while pre‐incubation of GEnCs with the S1PR1 agonist down‐regulated sICAM‐1 level. Blocking S1PR2‐4 reduced sICAM‐1 levels in the supernatants of GEnCs stimulated by S1P and MPO‐ANCA‐positive IgG. Pre‐incubation with S1PR5 agonist could increase sICAM‐1 level in the supernatants of GEnC stimulated by S1P and MPO‐ANCA‐positive IgG. S1P can enhance MPO‐ANCA‐positive IgG‐mediated GEnC activation through S1PR2‐5.  相似文献   

10.
Reducing insulin/IGF‐1 signaling (IIS) extends lifespan, promotes protein homeostasis (proteostasis), and elevates stress resistance of worms, flies, and mammals. How these functions are orchestrated across the organism is only partially understood. Here, we report that in the nematode Caenorhabditis elegans, the IIS positively regulates the expression of caveolin‐1 (cav‐1), a gene which is primarily expressed in neurons of the adult worm and underlies the formation of caveolae, a subtype of lipid microdomains that serve as platforms for signaling complexes. Accordingly, IIS reduction lowers cav‐1 expression and lessens the quantity of neuronal caveolae. Reduced cav‐1 expression extends lifespan and mitigates toxic protein aggregation by modulating the expression of aging‐regulating and signaling‐promoting genes. Our findings define caveolae as aging‐governing signaling centers and underscore the potential for cav‐1 as a novel therapeutic target for the promotion of healthy aging.  相似文献   

11.
12.
Increasing number of studies have shown nuclear localization of the insulin‐like growth factor 1 receptor (nIGF‐1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF‐1R have, however, still not been disclosed. Previously, we reported that IGF‐1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple‐SUMO‐site‐mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R‐). Cell clones (R‐WT and R‐TSM) expressing equal amounts of IGF‐1R were selected for experiments. Phosphorylation of IGF‐1R, Akt, and Erk upon IGF‐1 stimulation was equal in R‐WT and R‐TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R‐WT proliferated substantially faster than R‐TSM, which did not differ significantly from the empty vector control. Upon IGF‐1 stimulation G1‐S‐phase progression of R‐WT increased from 12 to 38%, compared to 13 to 20% of R‐TSM. The G1‐S progression of R‐WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO‐IGF‐1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO‐IGF‐1R dependent mechanisms seem important.  相似文献   

13.
Potato virus Y (PVY) is one of the most damaging viruses of tobacco. In particular, aggressive necrotic strains (PVYN) lead to considerable losses in yield. The main source of resistance against PVY is linked to the va locus. However, va‐overcoming PVY isolates inducing necrotic symptoms were observed in several countries. In this context, it is important to find va‐independent protection strategies. In a previous study, the phenotyping of 162 tobacco varieties revealed 10 accessions that do not carry the va allele and do not exhibit typical PVYN‐induced veinal necrosis. Despite the absence of necrotic symptoms, normal viral accumulation in these plants suggests a va‐independent mechanism of tolerance to PVYN‐induced systemic veinal necrosis. Fine mapping of the genetic determinant(s) was performed in a segregating F2 population. The tolerance trait is inherited as a single recessive gene, and allelism tests demonstrated that eight of the 10 tolerant varieties carry the same determinant. Anchoring the linkage map to the tobacco genome physical map allowed the identification of a RPP8‐like R gene, called NtTPN1 (for t abacum P VY‐induced 相似文献   

14.
15.
16.
Patients suffering from diabetes mellitus (DM) are at a severe risk of atherothrombosis. Early growth response (Egr)‐1 is well characterized as a central mediator in vascular pathophysiology. We tested whether valsartan independent of Ang II type 1 receptor (AT1R) can reduce tissue factor (TF) and toll‐like receptor (TLR)‐2 and ‐4 by regulating Egr‐1 in THP‐1 cells and aorta in streptozotocin‐induced diabetic mice. High glucose (HG, 15 mM) increased expressions of Egr‐1, TF, TLR‐2 and ‐4 which were significantly reduced by valsartan. HG increased Egr‐1 expression by activation of PKC and ERK1/2 in THP‐1 cells. Valsartan increased AMPK phosphorylation in a concentration and time‐dependent manner via activation of LKB1. Valsartan inhibited Egr‐1 without activation of PKC or ERK1/2. The reduced expression of Egr‐1 by valsartan was reversed by either silencing Egr‐1, or compound C, or DN‐AMPK‐transfected cells. Valsartan inhibited binding of NF‐κB and Egr‐1 to TF promoter in HG condition. Furthermore, valsartan reduced inflammatory cytokine (TNF‐α, IL‐6 and IL‐1β) production and NF‐κB activity in HG‐activated THP‐1 cells. Interestingly, these effects of valsartan were not affected by either silencing AT1R in THP‐1 cells or CHO cells, which were devoid of AT1R. Importantly, administration of valsartan (20 mg/kg, i.p) for 8 weeks significantly reduced plasma TF activity, expression of Egr‐1, TLR‐2, ‐4 and TF in thoracic aorta and improved glucose tolerance of streptozotocin‐induced diabetic mice. Taken together, we concluded that valsartan may reduce atherothrombosis in diabetic conditions through AMPK/Egr‐1 regulation.  相似文献   

17.
18.
Solar ultraviolet (UV) radiation‐induced reactive oxidative species is mainly responsible for the development of photoageing. Rosmarinic acid was one of the main bioactive components detected in Thymus vulgaris (TV) we extracted. In this study, UVB‐induced skin damages have been shown to be ameliorated by treatment with TV in hairless mice (HR‐1) skin, demonstrated by decreased matrix metalloproteinases (MMPs) and increased collagen production. However, the underlying molecular mechanism on which TV acted was unclear. We examined the photoprotective effects of TV against UVB and elucidated the molecular mechanism in normal human dermal fibroblasts. Thymus vulgaris remarkably prevented the UVB‐induced reactive oxygen species and lactate dehydrogenase. Dose‐dependent increase in glutathione, NAD(P)H: quinone oxidoreductase1 and heme oxygenase‐1, by TV was confirmed by increased nuclear accumulation of Nrf2. Furthermore, 5‐Methoxyindole‐2‐carboxylic acid was introduced as a specific inhibitor of dihydrolipoyl dehydrogenase (DLD). We demonstrated that Nrf2 expression was regulated by DLD, which was a tricarboxylic acid cycle‐associated protein that decreased after UVB exposure. Besides, TV significantly diminished UVB induced phosphorylation of mitogen activated protein kinases pathway, containing extracellular signal‐regulated kinase, Jun N‐terminal kinase and p38, which consequently reduced phosphorylated c‐fos and c‐jun. Our results suggest that TV is a potential botanical agent for use against UV radiation‐induced oxidative stress mediated skin damages.  相似文献   

19.
Tyrosinase related protein‐1 (TRP‐1) is a melanocyte‐specific gene product involved in eumelanin synthesis. Mutation in the Tyrp1 gene is associated with brown pelage in mouse and oculocutaneous albinism Type 3 in humans (OCA3). It has been demonstrated that TRP‐1 expresses DHICA oxidase activity in the murine system. However, its actual function in the human system is still unclear. The study was designed to determine the effects of mutation at two Typr1 alleles, namely the Tyrp1b (brown) and Tyrp1b‐cj (cordovan) compared with wild type Tyrp1B (black) on melanocyte function and melanin biosynthesis. The most significant finding was that both of the Tyrp1 mutations (i.e. brown expressing a point mutation and cordovan expressing decreased amount of TRP‐1 protein) resulted in attenuation of cell proliferation rates. Neither necrosis nor apoptosis was responsible for the observed decrease in cell proliferation rates of the brown and cordovan melanocytes. Ultrastructural evaluation by electron microscopic analysis revealed that both mutations in Tyrp1 affected melanosome maturation without affecting its structure. These observations demonstrate that mutation in Tyrp1 compromised tyrosinase activity within the organelle. DOPA histochemistry revealed differences in melanosomal stages between black and brown melanocytes but not between black and cordovan melanocytes. There were no significant differences in tyrosine hydroxylase activities of tyrosinase and TRP‐1 in wild type black, brown and cordovan melanocyte cell lysates. We conclude that mutations in Tyrp1 compromise cell proliferation and melanosomal maturation in mouse melanocyte cultures.  相似文献   

20.
Many Gram‐negative plant pathogenic bacteria express effector proteins of the XopQ/HopQ1 family which are translocated into plant cells via the type III secretion system during infection. In Nicotiana benthamiana, recognition of XopQ/HopQ1 proteins induces an effector‐triggered immunity (ETI) reaction which is not associated with strong cell death but renders plants immune against Pseudomonas syringae and Xanthomonas campestris pv. vesicatoria strains. Additionally, XopQ suppresses cell death in N. benthamiana when transiently co‐expressed with cell death inducers. Here, we show that representative XopQ/HopQ1 proteins are recognized similarly, likely by a single resistance protein of the TIR‐NB‐LRR class. Extensive analysis of XopQ derivatives indicates the recognition of structural features. We performed Agrobacterium‐mediated protein expression experiments in wild‐type and EDS1‐deficient (eds1) N. benthamiana leaves, not recognizing XopQ/HopQ1. XopQ recognition limits multiplication of Agrobacterium and attenuates levels of transiently expressed proteins. Remarkably, XopQ fails to suppress cell death reactions induced by different effectors in eds1 plants. We conclude that XopQ‐mediated cell death suppression in N. benthamiana is due to the attenuation of Agrobacterium‐mediated protein expression rather than the cause of the genuine XopQ virulence activity. Thus, our study expands our understanding of XopQ recognition and function, and also challenges the commonly used co‐expression assays for elucidation of in planta effector activities, at least under conditions of ETI induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号