首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Immunohistochemical techniques were used to study the adrenal organs of the anuran species Rana esculenta, Caldula pulchra and Bufo marinus with respect to the distribution and coexistence of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), Leu-enkephalin (Leu-ENK). Met-enkephalin-Arg-Phe (MEAP) and dynorphin A 1–17 (DYN). Antisera against enzymes involved in catecholamine synthesis, i.e., dopamine--hydroxylase (DBH) and tyrosine hydroxylase (TH), were used for the identification of chromaffin cells. ANP-immunoreactive (-IR) cells occurred in high densities (30%–70% of the total cell population) in all species investigated. In C. pulchra and B. marinus, BNP-IR cells constituted a population of non-DBH-IR and non-TH-IR cells that were different from the ANP-IR cells. A large proportion of the adrenal cells (10%–55%) were immunoreactive to Leu-ENK, and a minority (2%–5%) showed MEAP-immunoreactivity. DYN-immunoreactivity was not observed. The anurans studied exhibited small numbers of SP-IR, CGRP-IR and NPY-IR cells. Immunoreactivities for ANP+Leu-ENK and Leu-ENK+ MEAP were shown to coexist. In C. pulchra and B. marinus, immunoreactions for ANP+NPY, ANP+SP and SP+CGRP were also colocalized. Except for DYN, all neurohormonal peptides also occurred in intra-adrenal nerve fibers. SP-IR fibers also displayed CGRP-immunoreactivity and some Leu-ENK-IR fibers contained MEAP-immunoreactivity. In C. pulchra, NPY-IR fibers were found that also showed ANP-immunoreactivity.Some results of this investigation have been presented in abstract form (Reinecke et al. 1991).  相似文献   

2.
Immunoreactivity (IR) obtained by monoclonal antibodies to substance P (SP) was studied in the asexually reproducing microturbellarians Stenostomum leucops and Microstomum lineare. The IR pattern was studied by confocal and ordinary fluorescence microscopy. In both species, IR occurs in the brain in peripheral cells, neuropilar fibres, in longitudinal cords and in the pharyngeal nervous system. The IR patterns reveal neuroanatomical details not observed with other neuroactive substances. In both species, immunopositive cells send fibers to the ciliary pits. In M. lineare, additional fibres run to more frontally located sensory structures. In S. leucops, two pharyngeal nerve rings are visualized. The pharyngeal nerve ring close to the surface associated with symmetrical immunopositive cell pairs is demonstrated for the first time, while the deeper-lying pharyngeal nerve ring has been previously demonstrated by antibodies to the molluscan cardioactive peptide FMRF-amide. Two cells with strong IR are connected by short fibres to the pharyngeal nerve ring in M. lineare. In the developing new individuals, i.e., the zooids of M. lineare, IR to SP is first revealed in nerve fibres growing out from parental lateral nerve cords towards the centre of the worm where the new brain commissure will appear. Immunopositive cells in the brain periphery and close to the developing ciliary pits appear later. Simultaneous staining by antibodies to SP and 5-HT shows that IR to SP appears later than IR to 5-HT.  相似文献   

3.
Summary The anatomy, histology, ultrastructure and ATPase activity of the intramural rectal gland of the chondrichthyean Hydrolagus colliei, are described. The cells of the rectal gland of Hydrolagus demonstrate the same well developed lateral and basal cisternae, elongate mitochondria and luminal border as those of their elasmobranch counterparts. ATPase activity within the rectal gland of Hydrolagus is as intense as that in a number of elasmobranchs examined in the course of the study. Despite its primitive intramural location the rectal gland of Hydrolagus respresents a homolog of the more specialized and better known elasmobranch gland and appears as well suited for cation excretion.  相似文献   

4.
The present study was designed to investigate and to compare the chemical coding of nerve fibres supplying major populations of neurons in the caudal mesenteric (CaMG) and anterior pelvic (APG) ganglion in juvenile male pigs (n=5) using double-labelling immunofluorescence. The co-existence patterns of some biologically active substances including tyrosine hydroxylase (TH) and vesicular acetylcholine transporter (VAChT) as well as vasoactive intestinal polypeptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), Leu5-enkephalin (LENK) and serotonin (5-HT) were analysed under a confocal laser scanning microscope. Profound differences in the neurochemical features of the nerve terminals between the ganglia were observed. Moreover, there were also distinct differences in the chemical coding of nerve fibres associated with the particular populations and subpopulations of neurons within the ganglia. In both ganglia, nearly all adrenergic and cholinergic neurons were supplied with VAChT-positive nerve fibres (putative preganglionic fibres). However, in the CaMG, they were more numerous and, in contrast to the APG, many of them also stained for VIP. In the APG, a great number of nerve terminals expressed immunoreactivity to SP and CGRP (putative collaterals of sensory neurons). Interestingly, they densely supplied almost exclusively adrenergic neurons. SP-positive nerve fibres were moderate in number in the CaMG, but, in addition to VAChT-IR nerve terminals, the most numerous populations of nerve fibres in this ganglion were those expressing highly colocalized immunoreactivities to CGRP and LENK, and those which stained for 5-HT (putative processes of enteric neurons). However, these fibres supplied almost exclusively larger, intensely stained for TH and clustered adrenergic neurons. This diversity of the nerve terminals reflects the complexity of nerve circuits involved in the innervation of structures supplied by neurons in the porcine CaMG and APG. It also demonstrates the importance of nerve inputs for the proper function of autonomic neurons and thus their target tissues.  相似文献   

5.
We have investigated the distribution of oxytocin/vasopressin (OT/VP) superfamily peptides in the central nervous system (CNS) of the cuttlefish, Sepia officinalis, by using antibodies raised against mammalian OT and VP. Several populations of OT-like and VP-like immunoreactive cell bodies and fibers were widely distributed in cerebral structures involved in learning processes (vertical lobe complex, optic lobes), behavioral communication (peduncle, lateral basal and chromatophore lobes), feeding behavior (inferior frontal, brachial and buccal lobes), sexual activity (dorsal basal, subpedunculate, olfactory lobes), and metabolism (visceral lobes). The two most remarkable findings of this study were the occurrence of OT-like immunoreactivity in many amacrine cells of the vertical lobe and the dense accumulation of VP-like immunoreactive cell bodies in the subpedunculate 1 lobe. No double-immunolabeled cell bodies or fibers were found in any lobes of the CNS, indicating, for the first time in a decapod cephalopod mollusc, the existence of distinct oxytocinergic-like and vasopressinergic-like systems. The widespread distribution of the immunoreactive neurons suggests that these OT-like and VP-like peptides act as neurotransmitters or neuromodulators. This research was supported by grants from the “Région Basse-Normandie” (FRANCE) and the LARC-Neurosciences network (FRANCE).  相似文献   

6.
Abstract: In the presence of substance P (SP; 10 μM), serotonin (5-HT; 1 μM) triggered a cation permeability in cells of the hybridoma (mouse neuroblastoma X rat glioma) clone NG 108-15 that could be assessed by measuring the cell capacity to accumulate [14C]guanidinium for 10-15 min at 37°C. In addition to 5-HT (EC50, 0.33 μM), the potent 5-HT3 receptor agonists 2-methyl-serotonin, phenylbiguanide, and m-chlorophenylbiguanide, and quipazine, markedly increased [14C]guanidinium uptake in NG 108-15 cells exposed to 10 μM SP. In contrast, 5-HT3 receptor antagonists prevented the effect of 5-HT. The correlation (r= 0.97) between the potencies of 16 different ligands to mimic or prevent the effects of 5-HT on [14C]guanidinium uptake, on the one hand, and to displace [3H]zacopride specifically bound to 5-HT3 receptors on NG 108-15 cells, on the other hand, clearly demonstrated that [14C]guanidinium uptake was directly controlled by 5-HT3 receptors. Various compounds such as inorganic cations (La3+, Mn2+, Ba2+, Ni2+, and Zn2+), D-tubocurarine, and memantine inhibited [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT and SP, as expected from their noncompetitive antagonistic properties at 5-HT3 receptors. However, ethanol (100 mM), which has been reported to potentiate the electrophysiological response to 5-HT3 receptor stimulation, prevented the effects of 5-HT plus SP on [14C]guanidinium uptake. The cooperative effect of SP on this 5-HT3-evoked response resulted neither from an interaction of the peptide with the 5-HT3 receptor binding site nor from a possible direct activation of G proteins in NG 108-15 cells. Among SP derivatives, [D-Pro9]SP, a compound inactive at the various neurokinin receptor classes, was the most potent to mimic the stimulatory effect of SP on [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT. Although the cellular mechanisms involved deserve further investigations, the 5-HT-evoked [14C]guanidinium uptake appears to be a rapid and reliable response for assessing the functional state of 5-HT3 receptors in NG 108-15 cells.  相似文献   

7.
Summary Elytra of the scale-worm Harmothoe imbricata were examined for the presence of monoamine-like immunoreactivities and radioautographic reactions. Serotonin (5-HT)-like immunoreactivity was widely distributed among the cellular constituents of the elytra, being present in epithelial cells including photocytes, in elytral nerves, clear cells and the loose neuronal plexus of the middle compartment. The distribution of [3H]5-HT labelling coincided with that of the immunoreactivity except for an additional reactive band extending through the upper cuticle layer. Tyrosine hydroxylase (TH)-like immunoreactivity was detected in epithelial cells, sensory papillae and elytral ganglion and nerves, with little or no staining in clear cells and plexus neurons of the middle compartment. Radioautographic labelling with [3H]noradrenaline and [3H]adrenaline overlaid many epithelial cells, elytral nerves and sensory papillae, but not the loose neuronal plexus or, apparently, clear cells. It is concluded that monoaminergic systems are widely distributed and that they must play important roles as neuroactive and/or paracrine substances in the elytral neuroectoderm. The distribution of [3H]5-HT label in photocytes also suggests the involvement of serotonergic mechanisms in luminescence control, luminescence being the only known effector activity of elytra.  相似文献   

8.
The taste disc of the red-bellied toad Bombina orientalis (Discoglossidae) has been investigated by light and electron microscopy and compared with that of Rana pipiens (Ranidae). Unlike the frog, B. orientalis possesses a disc-shaped tongue that cannot be ejected for capture of prey. The taste discs are located on the top of fungiform papillae. They are smaller than those in Ranidae, and are not surrounded by a ring of ciliated cells. Ultrastructurally, five types of cells can be identified (mucus cells, wing cells, sensory cells, and both Merkel cell-like basal cells and undifferentiated basal cells). Mucus cells are the main secretory cells of the taste disc and occupy most of the surface area. Their basal processes do not synapse on nerve fibers. Wing cells have sheet-like apical processes and envelop the mucus cells. They contain lysosomes and multivesicular bodies. Two types of sensory cells reach the surface of the taste disc; apically, they are distinguished by either a brush-like arrangement of microvilli or a rod-like protrusion. They are invaginated into lateral folds of mucus cells and wing cells. In contrast to the situation in R. pipiens, sensory cells of B. orientalis do not contain dark secretory granules in the perinuclear region. Synaptic connections occur between sensory cells (presynaptic sites) and nerve fibers. Merkel cell-like basal cells do not synapse onto sensory cells, but synapse-like connections exist between Merkel cell-like basal cells (presynaptic site) and nerve fibers.  相似文献   

9.
Summary The distribution and morphology of neurons reacting with antisera against dopamine (DA), tyrosine hydroxylase (TH) and histamine (HA) were analyzed in the blowflies Calliphora erythrocephala and Phormia terraenovae. TH-immunoreactive (THIR) and HA-immunoreactive (HAIR) neurons were also mapped in the fruitfly Drosophila melanogaster. The antisera against DA and TH specifically labeled the same neurons in the blowflies. About 300 neurons displayed DA immunoreactivity (DAIR) and THIR in the brain and subesophageal ganglion of the blowflies. Most of these neurons were located in bilateral clusters; some were distributed as bilateral pairs, and two ventral unpaired median (VUM) neurons were seen in the subesophageal ganglion. Immunoreactive processes were found in all compartments of the mushroom bodies except the calyces, in all divisions of the central body complex, in the medulla, lobula and lobula plate of the optic lobe, and in non-glomerular neuropil of protocerebrum, tritocerebrum and the subesophageal ganglion. No DA or TH immunoreactivity was seen in the antennal lobes. In Drosophila, neurons homologous to the blowfly neurons were detected with the TH antiserum. In Phormia and Drosophila, 18 HA-immunoreactive neurons were located in the protocerebrum and 2 in the subesophageal ganglion. The HAIR neurons arborized extensively, but except for processes in the lobula, all HAIR processes were seen in non-glomerular neuropil. The deuto- and tritocerebrum was devoid of HAIR processes. Double labeling experiments demonstrated that TH and HA immunoreactivity was not colocalized in any neuron. In some regions there wasm however, substantial superposition between the two systems. The morphology of the extensively arborizing aminergic neurons described suggests that they have modulatory functions in the brain and subesophageal ganglion.  相似文献   

10.
The cardinalfishes (Apogonidae) are a diverse clade of small, mostly reef-dwelling fishes, for which a variety of morphological data have not yielded a consistent phylogeny. We use DNA sequence to hypothesize phylogenetic relationships within Apogonidae and among apogonids and other acanthomorph families, to examine patterns of evolution including the distribution of a visceral bioluminescence system. In conformance with previous studies, Apogonidae is placed in a clade with Pempheridae, Kurtidae, Leiognathidae, and Gobioidei. The apogonid genus Pseudamia is recovered outside the remainder of the family, not as sister to the superficially similar genus Gymnapogon. Species sampled from the Caribbean and Western Atlantic (Phaeoptyx, Astrapogon, and some Apogon species) form a clade, as do the larger-bodied Glossamia and Cheilodipterus. Incidence of visceral bioluminescence is found scattered throughout the phylogeny, independently for each group in which it is present. Examination of the fine structure of the visceral bioluminescence system through histology shows that light organs exhibit a range of morphologies, with some composed of complex masses of tubules (Siphamia, Pempheris, Parapriacanthus) and others lacking tubules but containing chambers formed by folds of the visceral epithelium (Acropoma, Archamia, Jaydia, and Rhabdamia). Light organs in Siphamia, Acropoma, Pempheris and Parapriacanthus are distinct from but connected to the gut; those in Archamia, Jaydia, and Rhabdamia are simply portions of the intestinal tract, and are little differentiated from the surrounding tissues. The presence or absence of symbiotic luminescent bacteria does not correlate with light organ structure; the tubular light organs of Siphamia and chambered tubes of Acropoma house bacteria, those in Pempheridae and the other Apogonidae do not.  相似文献   

11.
Indirect double immunofluorescence labelling in the pharynx and lung of the bullfrog, Rana catesbeiana, demonstrated the occurrence, distribution, and coexistence of two neuropeptides. In the pharynx, immunoreactive calcitonin gene-related peptide (CGRP) and substance P (SP) were localized in nerve fibers distributed within and just beneath the ciliated epithelium. In the lung, CGRP and SP were localized in nerve fibers in five principal locations: 1) within the smooth muscle layer in the interfaveolar septa; 2) in the luminal thickened edges of the septa; 3) around the pulmonary vasculature; 4) within, and 5) under the ciliated epithelium. Within the smooth muscle layer in the septa, luminal thickened septa, and around blood vessels, almost all fibers showed coexistence of CGRP and SP. Within and just beneath the ciliated epithelium in the thickened septa, all fibers showed coexistence of CGRP and SP. No immunoreactivity for vasoactive intestinal polypeptide, neuropeptide Y, galanin, somatostatin, FMRFamide, and leucine-and methionine-enkephalins was detected in the nerve fibers within the larynx and the lung. Together with our previous data, the present findings suggest that peptidergic mechanisms are involved in the regulation of amphibian respiratory systems throughout their life.  相似文献   

12.
Indirect double immunofluorescence labelling for eight neuropeptides in the pancreas of the bullfrog, Rana catesbeiana, demonstrated the occurrence, distribution, and coexistence of certain neuropeptides in the exocrine and endocrine pancreas. Immunoreactivity of substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), FMRFamide (FMRF), and galanin (GAL) was localized in nerve fibers distributed between the acini and around the duct system and vasculature of the exocrine pancreas. In these regions, CGRP-immunoreactive fibers were more numerous than those containing the other five peptides. Almost all SP fibers showed coexistence of SP with CGRP, and about one third of fibers also showed coexistence of SP with VIP, NPY, FMRF, and GAL. In the endocrine pancreas, SP, CGRP, VIP, and GAL were recognized in the nerve fibers around and within the islets of Langerhans, and VIP and GAL fibers were more numerous than SP and CGRP fibers. All CGRP fibers, and about half of the VIP and GAL fibers were immunoreactive for SP. NPY- and FMRF-immunoreactive cells were found at the periphery of the islets. These findings suggest that the exocrine and endocrine pancreatic functions of the bullfrog are under the control of peptidergic innervation.  相似文献   

13.
Data on distribution of biologically active substances in the turtle optic tectum are compared with results of similar experiments on other reptilian as well as on avian species. In two turtle species (Testudo horsfield and Emys orbicularis), immunoreactivity to monoamines (5-HT and TH), NPY, as well as NADPH-d activity were similarly distributed in neuropil of the SGFS retinorecipient part and in that of the SGP/SAP periventricular layers. Immunoreactivity to neuropeptides SP and m-Enk was maximal in neuropil of the SGFS non-retinorecipient part. The periventricular layers were characterized by the abundant radial SP- and mENK-ir as well as the NADPH-d-positive neurons. Diffusely dispersed ChAT-ir elements and many ir fibers perpenducilar to the tectal surface were observed in the SGFS retinorecipient part; the SGFS non-retinorecipient part contained a dense plexus of thick ir fibers and diffusely distributed ir terminals. The GABA ir cells were the most numerous in the tectum; they were spread in all tectal layers. Thus, various biologically active substances located in superficial retinorecipient tectal sublayers could affect processing and transmission of information via ascending dendrites of neurons in deeper layers. The cells containing SP, m-Enk, and NADPH-d had laminar organization in SGP; via the system of ascending and descending axons, they are able to affect other structures within and outside of the optic tectum. Putative sources of tectal modulatory innervation are discussed. In all studied reptilian and avian species, the principal similarity is revealed in the neurochemical organization. Some differences might be explained by the level of tectal differentiation due to factors of phylogenetic evolution and/or adaptive specialization.  相似文献   

14.
Summary The localization of the vertebrate-like neuropeptides substance P (SP), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), and cholecystokinin (CCK8) in the central nervous system of the freshwater snail Planorbarius corneus has been studied using specific antisera and single and double immunohistochemistry. A widespread but precise distribution of immunore-activity (IR) in neurons and fibers of almost all the ganglia is observed for each antiserum. A comparison of the IR with classical neurosecretory staining (AB/AY) shows a partial overlap only for CGRP and CCK8. Whereas CGRP-IR is found in some Yellow Cells in the left parietal ganglion, CCK8-IR is found in Yellow Green, Green and Brown Cells in the viscero-parietal complex. Studies employing double-sequential methods or simultaneous immunofluorescence have shown that, with regard to the tested antisera, CCK8- and NPY-IR are colocalized in a limited number of cells and fibers in the buccal and visceral ganglia, whereas CCK8- and SP-IR are colocalized only rarely in neurons in the left cerebral ganglion. The possible roles in P. corneus of the investigated neuropeptides and the contribution that molluscan models may offer to the knowledge of the basic properties of neuropeptides are discussed.  相似文献   

15.
Summary The antennal lobe of both sexes of the silk moth Bombyx mori contains 55–60 ventrally located antennal glomeruli; in addition, that of the male contains a dorsal macroglomerular complex (MGC). A group of identifiable glomeruli consisting of two lateral large glomeruli (LLG) and four medial small glomeruli (MSG) is present in both sexes, but the LLG are greatly enlarged in the female. A MGC is also present in the male gypsy moth Lymantria dispar and male giant silk moth Antheraea polyphemus. The MGC in all of these species is organized into 3–4 distinct levels of glomeruli. Antennal sensory fibers were stained by cobalt backfills in B. mori, A. polyphemus, and L. dispar. Most fibers stained from cut long hairs (sensilla trichodea) projected to MGC in males and LLG in both sexes of B. mori. The distribution of fibers in the MGC of B. mori was topographically biased in that a majority of fibers from anterior branches projected medially in MGC while most fibers from posterior branches projected laterally or anteriorly. Terminal arborizations of single fibers were each restricted to a single glomerular level of the MGC. Fibers projecting to the posterior antennal center were frequently stained in cut-hair and control preparations, apparently by uptake of cobalt through intact sensilla on flagellar branches.  相似文献   

16.
1. Aim: The role of the serotonin transporter (SERT) is to remove serotonin (5-HT) from the synaptic space. In vitro studies have shown that 5-HT uptake via SERT is influenced by the availability of its substrate, 5-HT. We used RN46A cells, a line that expresses SERT, to investigate 5-HT regulation of 5-HT uptake and the intracellular signaling pathways involved. RN46A cells also express mRNAs for 5-HT receptors (5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C) and as cAMP and intracellular Ca2+ are modulated by different 5-HT receptors, we studied both pathways.2. Methods: 5-HT uptake was determined as imipramine-inhibitable uptake of [3H]5-HT, intracellular cAMP was measured by RIA and intracellular Ca2+ changes were determined using the ratiometric method of intracellular Ca2+ imaging.3. Results: For uptake experiments, cells were kept for 30 min either with or without 1 μM 5-HT in the medium before measuring uptake. Removal of 5-HT for 30 min significantly decreased [3H]5-HT uptake. The absence of 5-HT for 15 min failed to induce any changes in intracellular cAMP levels. Removal of 5-HT from the medium did not change intracellular Ca2+ levels either; however, adding 1 μM 5-HT after 5 min in 5-HT-free conditions rapidly increased intracellular Ca2+ levels in 50% of the cells. The remaining cells showed no changes in the intracellular Ca2+ levels.4. Conclusions: We have shown that in RN46A cells, that endogenously express SERT and mRNAs for several 5-HT receptors, changes in 5-HT levels influence 5-HT uptake rate as well as induce changes in intracellular Ca2+ levels. This suggests that 5-HT may utilize intracellular Ca2+ to regulate 5-HT uptake.  相似文献   

17.
Summary Immunocytochemical methods were applied to study the distribution of putative neurotransmitters (5-HT, substance P, GABA, glutamate and aspartate) in the nerve plexuses of the foot and the anterior byssus retractor muscle (ABRM) of Mytilus galloprovincialis (Mollusca, Bivalvia). The foot presents extensive nerve plexuses containing 5-HT and substance P-like immunoreactive material with a similar distribution beneath the surface epithelium, around the vessels and in the glandular regions. Coexistence of the two putative neurotransmitters was observed in a few nerve fibers, Conversely, muscle fibers, both in the foot and in the ABRM, are innervated only by 5-HT-positive fibers, while substance P-like material is present only in the networks of the ABRM epimysial sheath. Immunoreactivity for glutamate and aspartate was not demonstrated, while rare GABA-positive nerve cells and fibers were found only in the foot. The results of this investigation provide a morphological background to previous physiological studies on 5-HT in the nervous system of bivalve molluscs. Moreover, they confirm that the nervous system of Mytilus contains a remarkable amount of a substance related to the vertebrate tachykinin family.  相似文献   

18.
Summary The presence and distribution of bombesin-like material were investigated in the brain of the cartilaginous fishScyliorhinus canicula using conventional immunocytochemical techniques. Perikarya containing bombesin-like immunoreactivity were identified in the hypothalamus, within the magnocellular component of the preoptic nucleus. Some immunopositive elements appeared to be of cerebrospinal fluid-contacting type. Beaded immunoreactive fibers were seen crossing the ventral telencephalon and the whole hypothalamus. An important tract of fibers was found in the infundibular floor and in the median eminence, in close contact with the vascular system of the pituitary portal plexus. A moderate number of positive fibers innervated the habenular complex and the dorsal wall of the posterior tuberculum. These findings indicate that a neuropeptide strictly related to amphibian bombesin is located in specific hypothalamic neurons ofS. canicula. The distribution of the immunoreactive fibers and terminals suggests that, in fish, this peptide, may be involved in neuroendocrine and neuromodulator functions.  相似文献   

19.
重金属铜、锌、镉复合胁迫对麻疯树幼苗生理生化的影响   总被引:2,自引:0,他引:2  
该研究以Cu~(2+)、Zn~(2+)、Cd~(2+)单一胁迫为对照,探讨不同浓度的Cu~(2+)、Zn~(2+)、Cd~(2+)复合胁迫对麻疯树幼苗生理生化指标的影响。结果表明:随着Cu~(2+)、Zn~(2+)、Cd~(2+)浓度的增加,麻疯树幼苗叶片中的蛋白质(Pro)、丙二醛(MDA)含量均逐渐增加,其叶片叶绿素含量随着Zn~(2+)胁迫浓度的增加呈现出先降后升的趋势,在中等浓度(100 mg·L-1)的Zn~(2+)胁迫时含量最低、随着Cu~(2+)胁迫浓度的增加叶绿素含量先升高后降低,在Cu~(2+)浓度为200 mg·L-1时含量最高,达到1 200 mg·g-1FW; Cd~(2+)胁迫对叶绿素含量和根系活力无明显影响。根系活力在Zn~(2+)浓度为100 mg·L~(-1)时最强,随着Cu~(2+)浓度的增加而减弱。低浓度的Cu~(2+)、Zn~(2+)、Cd~(2+)对过氧化物酶活性和可溶性糖含量都具有促进作用。Cu~(2+)、Zn~(2+)、Cd~(2+)复合胁迫时对可溶性蛋白、叶绿素和丙二醛含量均无明显影响,随着复合胁迫时浓度的增加,可溶性糖含量和根系活力先增后减。这表明麻疯树对三种重金属的胁迫具有一定的抗性,过高浓度的胁迫会影响麻疯树幼苗生理生化的一些指标,但是麻疯树可以通过自身的防御系统使伤害降到最小。此外,重金属复合胁迫可以在一定程度上减轻单一胁迫对麻疯树幼苗造成的毒害作用。  相似文献   

20.
杂交和多倍化是蕨类植物物种形成的主要机制,往往导致多倍体复合群的出现。同一复合群的成员在形态上具有明显的连续性与过渡性,复合群内部往往存在复杂的亲缘关系,给分类带来很大困难。傅氏凤尾蕨复合群是凤尾蕨属中分类学问题最为突出的复合群之一,成员间仅以植株的高度、羽片的大小、裂片间隙的大小、裂片先端的形状或孢子囊群的长短等细小的特征相区别。为确定该复合群某些成员的分类学位置,并理清成员间的亲缘关系,该研究选取了3个叶绿体DNA片段atp B、mat K和trn L-F构建傅氏凤尾蕨复合群的系统发育树,并结合孢粉学证据,探讨该复合群成员间的亲缘关系。结果表明:百越凤尾蕨和傅氏凤尾蕨的关系最为密切,建议把百越凤尾蕨归并到傅氏凤尾蕨中;硕大凤尾蕨与傅氏凤尾蕨的关系较远,但其孢子形态与傅氏凤尾蕨有一定重叠,两者的亲缘关系待深入研究;线裂凤尾蕨是一独立的种,与该复合群其它成员明显不同;隆林凤尾蕨都较早分化出来,单独作为一支,但其孢子形态多变,暗示其可能是杂种起源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号