首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data are presented on the genetic diversity and spatial structure of the natural wild soybean population from the neighborhood of the settlement of Ekaterinovka in Primorskii krai and on the relationship between the genetic structure of this population and its spatial organization. These data are discussed in comparison with the results of studies of wild soybean populations in the Far East region of the Russian Federation and China. Recommendations are given concerning the collection of genetic wild soybean resources.  相似文献   

2.
The data are presented on genetic population structure of wild soybean growing in natural and anthropogenically disturbed landscapes of Primorskii krai of the Russian Federation. Comparative analysis showed that wild soybean populations exposed to anthropogenic influence exhibited lower genetic diversity than natural populations. Recommendations on conservation of the wild plant gene pools using comparative data on population genetic structures are made.  相似文献   

3.
Data are presented on the genetic diversity and spatial structure of the natural wild soybean population from the neighborhood of the settlement of Ekaterinovka in Primorskii krai and on the relationship between the genetic structure of this population and its spatial organization. These data are discussed in comparison with the results of studies of wild soybean populations in the Far East region of the Russian Federation and China. Recommendations are given concerning the collection of genetic wild soybean resources.  相似文献   

4.
J Guo  Y Liu  Y Wang  J Chen  Y Li  H Huang  L Qiu  Y Wang 《Annals of botany》2012,110(4):777-785
Background and Aims Wild soybean (Glycine soja), a native species of East Asia, is the closest wild relative of the cultivated soybean (G. max) and supplies valuable genetic resources for cultivar breeding. Analyses of the genetic variation and population structure of wild soybean are fundamental for effective conservation studies and utilization of this valuable genetic resource. Methods In this study, 40 wild soybean populations from China were genotyped with 20 microsatellites to investigate the natural population structure and genetic diversity. These results were integrated with previous microsatellite analyses for 231 representative individuals from East Asia to investigate the genetic relationships of wild soybeans from China. Key Results Analysis of molecular variance (AMOVA) revealed that 43·92 % of the molecular variance occurred within populations, although relatively low genetic diversity was detected for natural wild soybean populations. Most of the populations exhibited significant effects of a genetic bottleneck. Principal co-ordinate analysis, construction of a Neighbor-Joining tree and Bayesian clustering indicated two main genotypic clusters of wild soybean from China. The wild soybean populations, which are distributed in north-east and south China, separated by the Huang-Huai Valley, displayed similar genotypes, whereas those populations from the Huang-Huai Valley were different. Conclusions The previously unknown population structure of the natural populations of wild soybean distributed throughout China was determined. Two evolutionarily significant units were defined and further analysed by combining genetic diversity and structure analyses from Chinese populations with representative samples from Eastern Asia. The study suggests that during the glacial period there may have been an expansion route between south-east and north-east China, via the temperate forests in the East China Sea Land Bridge, which resulted in similar genotypes of wild soybean populations from these regions. Genetic diversity and bottleneck analysis supports that both extensive collection of germplasm resources and habitat management strategies should be undertaken for effective conservation studies of these important wild soybean resources.  相似文献   

5.
A comparative study of the genetic structure of natural and anthropogenic populations of G. soja gives significant information about formation of different populations, and allows developing measures for preservation of unique natural gene bank of wild soybean, the species closely related to cultivated soybean. In this study, ISSR markers were used to carry out a comparative analysis of genetic structure of natural and anthropogenic subpopulations of G. soja for studying possible mutual influence of subpopulations of anthropogenic and natural phytocenosis on the formation of their genetic diversity and to study genetic structure of natural subpopulations of wild soybean in the contact places between the two types ofcenoses. As a result, the characteristics that describe the genetic diversity of studied populations have been identified and the important role of an interaction between subpopulations of different phytocenoses on formation of the spatial genetic structure of population in the valley of Tsukanovka river has been demonstrated.  相似文献   

6.
中国野生大豆遗传资源搜集基本策略与方法   总被引:2,自引:0,他引:2  
遗传资源搜集原则是通过种子采集追求样本具有最高程度的遗传多样性。为了合理而有效地搜集野生大豆资源,近年来通过野生大豆居群考察和遗传多样性分析,初步明确了野生大豆资源居群的遗传多样性分布动态:遗传多样性地理的和生态的区域性、生态系统内居群的遗传相关性及各种生境下居群遗传多样性差异,从理论上奠定了野生大豆资源合理有效搜集的依据。根据居群遗传多样性的分布规律,初步建立了居群野生大豆资源的搜集策略和方法。  相似文献   

7.
Seed weight is one of the most important botanical and phylogenetic characteristics. The study objective was to understand whether there is genetic difference in different seed weights of wild soybean (Glycine soja Sieb. & Zucc.). A total of 563 wild soybean samples, which belonged separately to genebank germplasm accessions (220 samples), one regional population samples (293 plants) and one natural population (150 plants), were analyzed using microsatellite markers. Of four size classes, the smallest seed size type had the highest coefficient of variation in seed weight; small and large seed types had relatively great genetic differences. In the national genebank germplasm accessions, genetic diversity gradually decreased from quantitatively dominant small and middling seed types to less frequent large seed types. In the regional and natural populations, generally, small to middling seed sizes had higher genetic diversity than the smallest and larger seed sizes. Cluster analysis revealed genetic differences in seed size traits. The semi-wild type (Glycine gracilis Skvortzow) was the most genetically differentiated from other seed sizes. However, it was also clearly shown that the phylogenic genetic differentiation among seed sizes was less than the genetic differentiation among geographical habitat populations in the wild soybean species.  相似文献   

8.
Comparative analysis of the genetic structure of natural and anthropogenic populations of G. soja gives significant information about the formation of different populations and allows for the developing of measures for the preservation of the unique natural gene bank of wild soybean, which is a species closely related to cultivated soybean. In this study, ISSR-markers were used to carry out a comparative analysis of the genetic structure of natural and anthropogenic subpopulations of G. soja for studying the possible mutual influence of subpopulations of anthropogenic and natural phytocenosis on the formation of their genetic diversity and studying the genetic structure of natural subpopulations of wild soybean in the contact places between the two types of cenoses. As a result, the characteristics that describe the genetic diversity of the studied populations have been identified, and the important role of interaction between subpopulations of different phytocenoses in the formation of the spatial genetic structure of the population in the Tsukanovka river valley have been demonstrated.  相似文献   

9.
In order to exploit the genetic resources of wild soybean (Glycine soja) which is the progenitor of cultivated soybean (Glycine max), the genic frequencies of Ti (coding trypsin inhibitors) and Sp1 (coding β-amylase isozymes) for 13 populations of wild soybean in Beijing region were determined. There are 2 alleles (Tia and Tib) in Ti locus of Beijing populations. Calculation of heterozygosity indicates Sp1 is polymorphic, while this monomorphic within a population. Based on the vatiation (from 0 to 50%) for heterozygosity of Sp1 among populations, with special reference to the values of genetic distances among populatious, and no heterozygote has been found in 1300 plants which would be heterozygotes if they were outbreeder, we suggested that wild soybean in natural populations is absolute inbreeder. The frequencies of Ti and Sp1 alleles vary from place to place extremely, however, no correlation exists between allozyme frequencies and ecological factors. Field investigation has shown that there is a threat from the reduction in available habitats, caused by building irrigation works .and urbanization. Finally, sampling strategy for conservation of genetic resources of wild soybean was discussed and some suggestions were made.  相似文献   

10.
北京地区野生大豆种群SSR标记的遗传多样性评价   总被引:7,自引:0,他引:7       下载免费PDF全文
 使用40对SSR引物分析了北京地区野生大豆(Glycine soja)天然种群的遗传结构与遗传多样性。10个种群共检测到526个等位变异, 平均每对引物等位基因数为13.15个, 种群平均Shannon指数(I)为0.658, 群体平均位点预期杂合度(He)为0.369, 群体平均位点杂合度(Ho)为1.29 %。平均种群内遗传多样度(Hs)为0.362, 平均种群间遗传多样度(DST)为0.446, 基因分化程度(GST)为0.544。该研究显示, 中-西部生态区种群比北部和东部山区种群有较高的遗传多样性。在地理上, 环绕北京地区的太行山和燕山两大余脉区域野生大豆种群遗传分化表现出地理差异。可能是经过干旱选择而形成的有抗旱潜力的种群在遗传上表现单一化。期待该种群提供耐旱基因。  相似文献   

11.
Glycine soja, also called wild soybean, is the wild ancestor of domesticated soybean (Glycine max), and one of the world's major cultivated crops. Wild soybean is a valuable resource for the breeding of cultivated soybean and harbors useful genes or agronomic traits. To use and conserve this valuable resource, we conducted a study to evaluate the genetic diversity and population structure of wild soybean using the sequencing data of two nuclear loci (AF105221 and PhyB) and one chloroplast locus (trnQ-rps16) of more than 600 individuals representing 53 populations throughout the natural distribution range. The results showed that most of the variation was found within the populations and groups, but significant genetic differentiation was also detected among different eco-geographical groups. Correlations between genetic and geographical distance at all the loci were consistent with the isolation by distance gene flow model. G. soja exhibited the highest genetic diversity in middle and downstream of Yangzi River (MDYR) region, followed by North East China (NEC), and was the lowest in North West China (NWC). We concluded that both in situ and ex situ conservation strategies required for wild soybean populations, especially which are native to MDYR and NEC regions.  相似文献   

12.
The research objectives were to determine aspects of the population dynamics relevant to effective monitoring of gene flow in the soybean crop complex in Japan. Using 20 microsatellite primers, 616 individuals from 77 wild soybean (Glycine soja) populations were analysed. All samples were of small seed size (< 0.03 g), were directly collected in the field and came from all parts of Japan where wild soybeans grow, except Hokkaido. Japanese wild soybean showed significant reduction in observed heterozygosity, low outcrossing rate (mean 3.4%) and strong genetic differentiation among populations. However, the individual assignment test revealed evidence of rare long-distance seed dispersal (> 10 km) events among populations, and spatial autocorrelation analysis revealed that populations within a radius of 100 km showed a close genetic relationship to one another. When analysis of graphical ordination was applied to compare the microsatellite variation of wild soybean with that of 53 widely grown Japanese varieties of cultivated soybean (Glycine max), the primary factor of genetic differentiation was based on differences between wild and cultivated soybeans and the secondary factor was geographical differentiation of wild soybean populations. Admixture analysis revealed that 6.8% of individuals appear to show introgression from cultivated soybeans. These results indicated that population genetic structure of Japanese wild soybean is (i) strongly affected by the founder effect due to seed dispersal and inbreeding strategy, (ii) generally well differentiated from cultivated soybean, but (iii) introgression from cultivated soybean occurs. The implications of the results for the release of transgenic soybeans where wild soybeans grow are discussed.  相似文献   

13.
Abstract Plant genetic resources play an important role in the improvement of cultivated plants. To characterize and evaluate the ecological and reproductive features of wild soybean ( Glycine soja Sieb. et Zucc.), which is the most probable ancestor of cultivated soybean ( G. max (L) Merr.), the breeding system and genetic diversity of G. soja were investigated. The extent of natural cross-pollination of G. soja was estimated in four populations along the Omono River in Akita Prefecture, Japan by examining allozyme variation. Although it has been previously believed that G. soja is autogamous, as is cultivated soybean, the mean multilocus outcrossing rate ( t m) estimate was 13%. These values are much higher than the outcrossing rate previously reported for both G. soja and G. max . Frequent visits by honeybees and carpenter bees to flowers were also observed, which supported this conjecture. Furthermore, to evaluate the genetic variation of G. soja as a genetic resource, the genetic structure of 447 populations over Japan were analyzed. Wild soybean populations had a higher degree of variation of isozyme loci. The G ST coefficient of gene differentian values among the sites within the district were particularly high, revealing that the isozyme genotype was greatly different among site populations and homogeneous within the sites. The genetic differentiation among nine districts was observed in the allele frequencies of a few loci, indicating that geographic isolation in the wild soybean population was effectively created through the distance between the districts. The difference in the allele frequency among the districts may be produced under genetic drift. Finally, the importance of the preservation of natural plant populations and the habitats of wild progenitors (i.e. the in situ conservation of plant genetic resources) was emphasized.  相似文献   

14.
河北省野生大豆种群若干数量性状结构特征   总被引:3,自引:0,他引:3       下载免费PDF全文
 分析了我国河北省野生大豆天然种群几个重要数量性状的群体结构特征及其地理生态分布。结果显示:平均种群内变异系数大小顺序依次为:百粒重(46%)>脂肪含量(17%)>开花期(10.3%)>蛋白质含量(4.7%)。种群平均开花期与纬度有相关性,而百粒重、脂肪和蛋白质含量分布与纬度没有相关,与种群的生态和遗传背景有关。种群内每个数量性状分布都存在一个优势区段。种群内数量性状存在因基因频率积累程度的不同而导致表型差异较大的遗传型个体。虽然同一个居群长期受到相同光周期诱导,但是种群不是有单一相近的开花期,存在着开花光周期反应不同的基因型。地理种群结构相似性分析表明:河北省天然野生大豆种群结构相似性与地理生态有密切相关性,存在地理生态群。  相似文献   

15.
Genetic studies on the endangered African wild dog (Lycaon pictus) have primarily focused on the few remaining large and viable populations. However, investigations on the many isolated small African wild dog populations might also be informative for species management because the majority of extant populations are small and may contain genetic variability that is important for population persistence and for species conservation. Small populations are at higher risk of extinction from stochastic and deterministic demographic processes than larger populations and this is often of more immediate conservation concern than loss of genetic diversity, particularly for species that exhibit out-breeding behaviour such as long distance dispersal which may maintain gene flow. However, the genetic advantages of out-breeding behaviour may be reduced if dispersal is compromised beyond reserve borders (edge effects), further weakening the integrity of small populations. Mitochondrial DNA and 11 microsatellite genetic markers were used to investigate population genetic structure in a small population of out-breeding African wild dogs in Zambia, which occupies an historical dispersal corridor for the species. Results indicated the Zambian population suffered from low allelic richness, and there was significant evidence of a recent population bottleneck. Concurrent ecological data suggests these results were due to habitat fragmentation and restricted dispersal which compromised natural out-breeding mechanisms. This study recommends conservation priorities and management units for the African wild dog that focus on conserving remaining levels of genetic diversity, which may also be applicable for a range of out-breeding species.  相似文献   

16.
We are developing techniques to restore coral populations by enhancing larval supply using “artificial spawning hotspots” that aggregate conspecific adult corals. However, no data were available regarding how natural larval supply from wild coral populations is influenced by fertilization rate and how this is in turn affected by local population density and genetic diversity. Therefore, we assessed population density and genetic diversity of a wild, arborescent coral, Acropora yongei, and compared these parameters with those of an artificially established A. yongei population in the field. The population density of wild arborescent corals was only 0.27% of that in the artificial population, even in a high‐coverage area. Genetic diversity was also low in the wild population compared with the artificial population, and approximately 10% of all wild colonies were clones. Based on these results, the larval supply in the artificial population was estimated to be at least 1,400 times higher than that in wild A. yongei populations for the same area of adult population.  相似文献   

17.
A total of 892 individuals sampled from a wild soybean population in a natural reserve near the Yellow River estuary located in Kenli of Shandong Province (China) were investigated.Seventeen SSR (simple sequence repeat) primer pairs from cultivated soybeans were used to estimate the genetic diversity of the population and its variation pattern versus changes of the sample size (sub-samples),in addition to investigating the fine-scale spatial genetic structure within the population.The results showed relatively high genetic diversity of the population with the mean value of allele number (A) being 2.88,expected heterozygosity (He) 0.431,Shannon diversity index (/) 0.699,and percentage of polymorphic loci (P) 100%.Sub-samples of different sizes (ten groups) were randomly drawn from the population and their genetic diversity was calculated by computer simulation.The regression model of the four diversity indexes with the change of sample sizes was computed.As a result,27-52 individuals can reach 95% of total genetic variability of the population.Spatial autocorrelation analysis revealed that the genetic patch size of this wild soybean population is about 18 m.The study provided a scientific basis for the sampling strategy of wild soybean populations.  相似文献   

18.
Jin Y  He T  Lu BR 《Genetica》2006,128(1-3):41-49
Knowledge of spatial patterns of genetic variation within populations of wild relative species has significant implications with respect to sampling strategies for ex situ and in situ conservation. To study spatial genetic structure of wild soybean (Glycine soja Sieb. et Zucc.) at the fine scale, three natural populations in northern China were analyzed using inter-simple sequence repeat (ISSR) fingerprints for estimating kinship coefficients. A regression analysis of kinship coefficients against spatial distances revealed that individuals occurring close together tended to be more genetically related. The Sp statistic further indicated a comparable spatial pattern among the three wild soybean populations with similar Sp values (mean = 0.0734, varied from 0.0645 to 0.0943) detected across the three populations. Genetic patches were on average ca. 20 m in size, and the effective neighborhood sizes varied between 10 and 15 m. The spatial genetic structure evident in the wild soybean populations may be attributed to the restricted seed dispersal and predominant inbreeding mating system of this species. The detection of family structure in the populations of wild soybean has a significant implication for the effective conservation of the important genetic resources.  相似文献   

19.
Recent advances in studies of genetic variation at protein and DNA levels in plant natural populations and its relationship with environmental changes were reviewed with special reference to the works on the wild barley ( Hordeum spontaneum C. Koch.). On one side, adaptation was shown in statistic data, on the other side, the fact that a considerable part of genetic variation does exist within populations (subpopulations) under same ecological condition indicated its maintainability of neutral or near-neutral mutations in natural populations. The researches on adaptive populations of plants, especially on wild soybean ( Glycine soja Sieb. et Zucc.) mainly conducted in author's laboratory, have shown that the most part of molecular variation within and among populations can not be explained by selection particularly as far as the individual uniqueness was concerned. There are some data shown that adaptation may be caused by accumulation of a few near-neutral mutations. Recent publications on molecular mechanisms of morphological evolution has been received special attention to elucidate the discrepancy between molecular evolution and morphological adaptive evolution. A frame on the unified evolution theory has been built. Finally some related viewpoints of philosophy were discussed.  相似文献   

20.
The genetic relationships among seven cultivated populations and eight natural populations of wild common buckwheat were analyzed using amplified fragment length polymorphism (AFLP). The genetic distance was estimated for each pair of the 15 populations based on the AFLP data, and a phylogenetic tree was constructed using the neighbor-joining (NJ) method based on the genetic distance. All the cultivated populations were grouped in a cluster. The natural populations were grouped into two clusters composed of (1) the Sanjiang group (three populations from eastern Tibet and one population from Adong village of Yunnan province) and (2) two populations from Yunnan province and two populations from Sichuan province. The Sanjiang group is more closely related to cultivated populations. These results indicate that the direct ancestor of common buckwheat was natural populations of wild common buckwheat from the Sanjiang area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号