首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orientation tuning of 148 primary visual cortical neurons was studied in acute experiments on unanesthetized, curarized cats by analysis of their spike responses to flashes in a receptive field of a bar of light of optimal size. Orientation tuning of 88 neurons (59%) was found to be bimodal: Besides the principal preferred orientation there was a second, making an angle with the first. The second tuning maximum in some cases (64%) was exhibited only with a change in stimulus intensity or background brightness. Analysis of orientation tuning by the time-slice method, i.e., on the basis of individual cuts of the spike trace, showed double tuning to be present in 69% of cases only at certain moments after the beginning of stimulation. The results of analysis of the model showed that the double orientation tuning effect may be the result of the specific configuration of the receptive field, the use of a stimulus longer than the receptive field, the presence of a series of alternating excitatory and inhibitory zones in the receptive field, and also of end inhibitory zones on the narrow ends of the field. The unequal change in zones of the receptive fields in time explains the appearance of double orientation tuning in individual fragments of the spike trace. The functional role of double, "cross-wise" tuning in some primary visual cortical neurons and their role in the detection of the features of visual patterns are discussed.  相似文献   

2.
Changed orientational tuning (OT) in 58 visual cortex units was investigated during acute experiments on immobilized cats under light short-lasting sombrevine-induced anesthesia. A 47.6±5.6° alteration in the preferred orientation of 60% of cells occurred following sombrevine injection but no change occurred at any stage of anesthesia in the remainder. The latter group showed a preference for horizontal and vertical orientations, less pronounced in the former category. "Stable" neurons also displayed less acute tuning and more selective detection in comparison with "unstable" units. Breadth of orientational tuning consistently changed by an average of 65.2±6.7° in 55% of neurons, while tuning deteriorated in 31% and sharpened in 24% of cells. No regular change in tuning band occurred in the remainder. Background firing rate and evoked spike activity declined by 58% and 35%, respectively under anesthesia in 2/3 of the cells tested. Tuning bandwidth of unit firing rate had generally recovered within 20–40 min after administering the anesthetic (i.e., as the anesthesia wore off).Higher Nervous Activity and Neurophysiology Research Institute. Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 6, pp. 812–820, November–December, 1989.  相似文献   

3.
Dynamics of orientational tuning in 59 primary visual cortex neurons were investigated before and after sombrevine-induced anesthesia during acute experiments on immobilized cats using temporal slice techniques. A dynamic shift in preferred orientation of a flashing light strip, during which peak amplitude of spike discharges was noted (at an angle of between 22 and 157°) occurred as response developed in two-thirds of the cells. We had previously named this effect "scanning the orientational range" [9]. Scanning declined significantly in 45% of the sample, culminating in complete disappearance of this effect in some cells following sombrevine action. Scanning intensified in 30%, while dynamics of tuning remained unchanged in 25% of units. Sombrevine administration induced change in the preferred stimulus orientation of 60% of the neurons (referred to as "unstable" cells) and remained constant in "stable" cells (= 40%). Dynamic changes in preferred stimulus orientation were 2.5 times as high as those of stable cells in the waking state. The scanning effect declined significantly in 60% of "unstable" neurons under the action of anesthesia and remained unchanged in not more than 6%. At the same time, orientational tuning did not alter in the "stable" cell group in 46% of units, either declining (25%) or increasing (29%) in the remaining scanning ranges.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 107–113, January–February, 1990.  相似文献   

4.
Characteristics of temporal summation in neurons of area 17 of the visual cortex in acute experiments on unanesthetized, immobilized cats. During light adaptation, extracellular spike responses of these neurons to optimal local photic stimuli of varied duration — from 5 to 1000 msec — were studied. The critical duration of temporal summation of excitation, determined by the supraliminal method using the criterion of maximal discharge frequency in the first volley of the spike response, varied in different cells from 5 to 100 msec; neurons with summation lasting 15–100 msec (mean 31.45±5.67 msec) were found most frequently. Neurons with central receptive fields differed significantly from cellswith peripheral fields in the shorter critical duration of temporal summation, the lower frequency of spontaneous discharges, and the shorter duration of the first volley of the response. Summation time in neurons with simple receptive fields was significantly shorter than in neurons with complex receptive fields. The results of these experiments are compared with data in the literature obtained by the study of retinal and lateral geniculate neurons in cats and are discussed from the stand-point of division of ascending afferent projections in the visual system into X-and Y-groups (Ia and Ib).Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 345–352, July–August, 1981.  相似文献   

5.
Dynamics of tuning to orientation of flashing light bar and to orientation of cross-like figure was studied by a temporal slices method in 87 neurons of the cat primary visual cortex. Tuning was plotted by spikes number in the entire response and in its successive fragments with a step of 20 ms. It was found that successive dynamic shift of preferred orientation of a bar was typical for 87% units, white such shift of preferred orientation of a cross was met in 75% of cases. Comparison of tuning dynamics for bar and cross allowed to separate units into three groups: the first one (58.6% of cases) with larger dynamic shift of a bar preferred orientation then of a cross (74.9 +/- 5.8 degrees [symbol: see text] 29.8 +/- 4.1 degrees, correspondingly, p < 0.00001), the second group (21.5%) with opposite effect (24.2 +/- 5.2 degrees and 69.2 +/- 10.0 degrees, p < 0.0002) and the third group (19.8%) without significant shift of preferred orientation of bar and cross and without difference in their dynamics. Possible mechanisms of the preferred orientation dynamics and its difference for bar and cross are discussed.  相似文献   

6.
The characteristics of neurons in Area 17 of the visual cortex in cats were investigated by extracellular recording of their activity. Unit responses to flashes modulated by intensity and duration (100 µsec-1 sec) were recorded. Of 80 neurons tested, 67.6% were spontaneously active and 32.4% were silent. The threshold responses of the neurons to flashes varied by 7 logarithmic units. The distribution curve of the cells by response thresholds had one maximum corresponding to an energy of the order of 1–10 lm·sec. The time during which the cells could summate excitation did not exceed a mean value of 34 msec. Depending on the latent periods of the visual cortical neurons they can be divided into three groups. The first group includes neurons responding 20–40 msec after stimulation, the second and third neurons responding after 100–120 and 160–180 msec, respectively. Photic stimulation considerably altered the ratio between the numbers of cells generating spikes with high and low frequency. No correlation was found between the sensitivity of the visual cortical cells to light, the latent period of their response, and the critical time of summation. This shows that the cortex contains many duplicate units which are grouped together on the basis of only one of the functional characteristics of their spike response.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 173–179, March–April, 1970.  相似文献   

7.
The dynamics of the intensity function of 32 neurons in area 17 of the visual cortex to photic stimuli of optimal size, shape, and orientation flashing in the center of the receptive field was studied by the time slices method, with a step of 10 or 20 msec, in unanesthetized, curarized cats. All neurons tested showed instability of their intensity function reflected in characteristics of successive fragments of the response: It changed both in preferred intensity and in width of the intensity range within which the neuron generated an above-threshold response. In 72% of cases the preferred intensity for the neuron changed successively during the 4–200 msec after the beginning of stimulation by 4–36 dB from greater toward lesser brightnesses, but later it changed more rapidly (in 20–60 msec), rising again apparently in a jump. In four cases the response optimum was shifted up the intensity scale from its initial value by 10–20 dB. Analysis showed that the observed effects are the simple result of the shape of the relationship between temporal characteristics of the response (latent period, time taken to reach the maximum, and time of ending of the burst) to photic stimulus intensity. The possible functional role of these effects for dynamic time coding of information on brightness of photic stimuli by visual cortical neurons is discussed.  相似文献   

8.
The dynamics of orientation tuning (OT) were investigated in acute experiments on immobilized locally anesthetized cats during response development in 40 neurons of the primary visual cortex before and after Nembutal injection. The range of OT scanning decreased in 53.8% of neurons after Nembutal administration (on the average, by 53.4±5.1°; P<0.001); the phenomenon disappeared completely in some neurons. After Nembutal anesthesia, scanning in 20.5% of units either increased or started up in cases of its absence. The scanning range remained constant in 25.6% of neurons. The mentioned changes in the scanning range were consistently more accentuated in cells for which the preferred orientation, as estimated by standard criteria, was shifted under narcosis than in cells invariant to general anesthesia. In the latter group, units with an unchanged scanning range occurred four times more often at all stages of the experiment as against the group of unstable neurons.Translated from Neirofiziologiya, Vol. 25, No. 2, pp. 141–146, March–April, 1993.  相似文献   

9.
Directional tuning was investigated in 40 neurons of the primary visual cortex (area 17) before and after Nembutal injection during acute experiments on immobilized cats. Preferred orientation (PO) in 50% of neurons was found to be stable after the drug, while the remainder showed a consistent shift in PO (averaging 53.6±8.0°) for a number of hours. Neurons with consistent PO more frequently showed a preference for horizontal and vertical stimulus orientation; cells with unstable tuning had a wider PO distribution. More refined directional detection (i.e., finer tuning) was noted in "stable" rather than in "unstable" neurons both before and after administering the drug. Under narcosis, directional tuning altered in 50% of cells — an effect more marked in "unstable" than in "stable" cells (68% as against 38%). Mean background discharge rate also fell by an average of 5.5-fold and induced firing rate declined 1.5-fold during narcosis, moreover.Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 669–676, November–December, 1991.  相似文献   

10.
11.
The receptive fields of complex neurons within area 18 of the cerebral cortex of the cat were determined by a computer-assisted method using a moving light bar substantially shorter than the long diameter of the receptive field as a visual stimulus. The visual cells repeatedly generated nerve impulses when the stimulus crossed well-defined active points within their receptive fields. Outside of these active points, the cells remained silent. It is suggested that the receptive fields are formed by a discontinuous accumulation of such active points. When the electrical activities of two neighbouring visual neurons are recorded simultaneously, their active points do not coincide. In addition, some active points were located outside the most prominent excitatory part of the receptive field of the studied cells. Individual visual cells typically differ in the number and distribution of active points. Since these cells best respond to a stimulus moving in a certain direction, it is suggested that they may act as direction of movement and/or velocity detectors. Alternate firing of a number of neighboring cells connected to a distributed pattern of peripheral receptors may form a system which is able to code for velocity and direction of the moving stimulus.  相似文献   

12.
Directional and orientational components usually coexist and are mixed in the cell's overall responses when moving optical stimuli are used to study the response characteristics of visual neurons. While these two properties were quantified with all the previous methods for data analysis, their effects could not be efficiently separated from each other, and thus the analyses were imperfect. In this paper, theoretical evidence and examples are provided to show the defects of the old methods. In order to separate the two components completely, we propose to apply optimal regression analysis with the sine-cosine function series as the fundamental variables. Based on this separation, we defined the orientational selectivity as variation of response strength with orientation and performed integration and averaging to quantify the two properties [cf. Eqs. (5) and (6)]. The present method has the advantages of completeness and accuracy, and can detect some details which would have been missed by other methods. An explanation of the intrinsic implications of the method and our comprehension of directional and orientational selectivities and preferred direction and orientation are also given. Received: 4 January 1993/Accepted in revised form: 1 July 1993  相似文献   

13.
This intracellular study investigates synaptic mechanisms of orientation and direction selectivity in cat area 17. Visually evoked inhibition was analyzed in 88 cells by detecting spike suppression, hyperpolarization, and reduction of trial-to-trial variability of membrane potential. In 25 of these cells, inhibition visibility was enhanced by depolarization and spike inactivation and by direct measurement of synaptic conductances. We conclude that excitatory and inhibitory inputs share the tuning preference of spiking output in 60% of cases, whereas inhibition is tuned to a different orientation in 40% of cases. For this latter type of cells, conductance measurements showed that excitation shared either the preference of the spiking output or that of the inhibition. This diversity of input combinations may reflect inhomogeneities in functional intracortical connectivity regulated by correlation-based activity-dependent processes.  相似文献   

14.
Orientation tuning (OT) of 68 visual cortex neurons (field 17) was studied in cats under conditions of a GABA-ergic inhibition blockade by microiontophoretic bicuculline applications; the neuronal responses were evoked by flashing light strips. All characteristics of orientational detection in most neurons got worse after the applications. The OT became wider in 76.3% of cases: its mean value increased from 52.7±2.8° to 85.2±4.6°. In 63.6% of cases OT selectivity decreased by one-third, and in 68.5% of neurons the detection quality decreased by 60%, on average. The threshold dose of bicuculline causing the OT extension was injected by the phoretic current of 31.0±4.5 nA, and the optimum effect was reached at 67.1±6.0 nA. The background activity and the response magnitude increased under the bicuculline influence 3.0 and 4.4 times, respectively, compared with the control. A few minutes after the iontophoresis termination, the frequency of neuronal discharges and OT characteristics returned to their initial values. We conclude that the local blocking of intracortical inhibition, which causes disinhibition of afferent inputs from the neighboring cells with different (compared with the recorded cell) preferred orientations, considerably worsens orientational specificity of visual cortex neurons, or even results in a complete loss of such specificity. These data are consistent with the concept that intracortical inhibition plays a leading role in the formation and sharpening of OT in the visual cortex neurons.Neirofiziologiya/Neurophysiology, Vol. 27, No. 1, pp. 54–62, January–February, 1995.  相似文献   

15.
Receptive fields of auditory cortical neurons were studied by electrical stimulation of nerve fibers in different parts of the cochlea in cats anesthetized with pentobarbital. The dimensions of the receptive fields were shown to depend on the topographic arrangement of the neuron in the auditory cortex. The more caudad the neuron on the cortical projection of the cochlea in the primary auditory cortex, the more extensive its receptive field. The receptive fields were narrowest in the basal turn of the cochlea and were symmetrical with respect to their center. It is suggested that the region of finest discrimination of acoustic stimuli in cats is located in the basal region of the cochlea, i.e., in that part of its receptor system which has the narrowest receptive field and is represented by significantly more (than the middle and apical regions of the cochlea) nerve cells in the primary auditory cortex [1].A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 467–473, September–October, 1981.  相似文献   

16.
Depending on the organization of their receptive fields and character of their responses to shaped visual stimuli the following main groups of visual cortical neurons were distinguished in the squirrelSciurus vulgaris: nonselective for direction of movement and orientation of stimuli (14%); selective for direction of movement (30%) and selective for line orientation (49%); 7% of neurons were not classified. Cells selective for direction of movement and some nonselective cells exhibited specific sensitivity to high speeds of stimulus movement (optimal velocities of the order of hundreds of degrees per second). Neurons selective for line orientation differed in the degree of overlapping of their on- and off-zones; they could include analogs of simple and complex neurons.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 125–231, March–April, 1981.  相似文献   

17.
Responses of 114 pulvinar neurons to moving visual stimuli were studied. Most (79) neurons possessed spontaneous activity (10–25 spikes/sec). Of 59 neurons tested, 31 responded to stimulation of both retinas and 28 to stimulation only of the contralateral retina. Of 114 neurons, 41 responded only to movement of black objects, while the rest responded to movement of both black and light objects. According to the character of their responses to movement the neurons were divided into two main groups. The first group consisted of neurons sensitive to the direction of motion and responding with a spike discharge to movement in one direction and by inhibition to movement in the opposite direction. The second group included neurons insensitive to the direction of motion and responding by an equal number of discharges to movements in two opposite directions. Besides these two main groups, other neurons responding to movement in two opposite directions by discharges with different temporal distribution and also neurons which changed the character of their response from nondirectional to directional depending on the size of the moving stimulus, were found.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 348–354, July–August, 1978.  相似文献   

18.
 The different cortical visual cells exhibit a large repertoire of responses to sinusoidal gratings, depending on their receptive field structure and the stimulation parameters. It has been shown previously that the tuning curves and histogram shapes of cell responses are affected by subunit distances. One receptive field model (Spitzer and Hochstein 1985b) incorporated subunit distance but assigned it as a constant parameter, for ease of calculation. Here we investigate different tuning curve properties of various primary cortical cell types during testing of 10 deg of nonuniform distances of the receptive fields’ subunits. The effect of nonuniformity was compared for average responses, tuning curve shapes, maximum peak responses, and bandwidths across four cell types of different sizes. The shapes and other properties of tuning curves are usually found to be retained also when the degree of uniformity is not very high for most of the cell types. In addition, the effect of uniformity is compared across these different response properties. The maximum peak responses of the tuning curve are found to display a lower coefficient of variation than the bandwidth, for all cell types, for most degrees of uniformity. Received: 15 June 1993/Accepted in revised form: 5 August 1994  相似文献   

19.
Depression of the cat cortical visual evoked potential by soman   总被引:1,自引:0,他引:1  
The effects of intravenous administration of the anticholinesterase agent soman (pinacolyl methylphosphonofluoridate, 3-15 micrograms/kg) on the visual evoked potential (VEP) were examined in cats using phase-reversed sine wave grating stimuli of different spatial frequencies and contrasts. Doses of 5-7 micrograms/kg caused a depression of the VEP across all spatial frequencies in an abrupt, non-graded fashion. Studies in which contrast was varied showed that VEP depression resulted primarily from a decrease in the system gain rather than a change in the contrast sensitivity, and that response depression increased with increasing contrast. The dominant changes in gain revealed by these studies are consistent with a modulation of potassium conductance in the cell membrane which previous studies have shown to be dependent on a cholinergic mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号