首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. Neurochem. (2012) 122, 872-882. ABSTRACT: The function of histamine in the adult central nervous system has been extensively studied, but data on its actions upon the developing nervous system are still scarce. Herein, we review the available information regarding the possible role for histamine in brain development. Some relevant findings are the existence of a transient histaminergic neuronal system during brain development, which includes serotonergic neurons in the midbrain and the rhombencephalon that coexpress histamine; the high levels of histamine found in several areas of the embryo nervous system at the neurogenic stage; the presence of histaminergic fibers and the expression of histamine receptors in various areas of the developing brain; and the neurogenic and proliferative effects on neural stem cells following histamine H(1) - and H(2) -receptor activation, respectively. Altogether, the reviewed information supports a significant role for histamine in brain development and the need for further research in this field.  相似文献   

2.
The investigation of algoinductor (histaminergic) and peptidergic relations in peripheral pain reaction of taste was performed by using of different histamine liberators (applied on tongue). By fluorescence-histochemical methods it was shown that histamine in the apical portion of papilla is derived from cells of taste buds and in the basal zone--from connective tissue cells (including mast cells). It was established in behavior trials on peptidergic system that consumption of taste solutions became changed. It was suggested that histaminergic structures together with SP-containing fibers ensure food controlling in oral cavity.  相似文献   

3.
前庭功能的中枢组胺能神经调制   总被引:1,自引:0,他引:1  
Bergquist F  Dutia MB 《生理学报》2006,58(4):293-304
组胺能药物已经长期用于治疗人类的平衡紊乱,但对于它们在前庭系统中作用的机制还缺乏了解。在本文中,我们综述了关于脑内(特别是脑干前庭核中)的组胺能神经传递,以及组胺在脑可塑性——“前庭代偿”(一种单侧外周前庭损伤之后发生的行为学恢复)中作用的新近文献。我们在综述组胺能类药物促进前庭代偿证据的同时,也讨论了这类药物临床应用的可能性。  相似文献   

4.
Abstract: Using a microdialysis method, we investigated the effects of the nipecotic acid-induced increase in content of endogenous GABA on in vivo release of histamine from the anterior hypothalamus (AHy) of urethane-anesthetized rats. Nipecotic acid (0.5 m M ), an inhibitor of GABA uptake, decreased histamine release to ∼60% of the basal level. This effect was partially antagonized by picrotoxin (0.1 m M ), an antagonist of GABAA receptors, or phaclofen (0.1 m M ), an antagonist of GABAB receptors. These results suggest that histamine release is modulated by endogenous GABA through both GABAA and GABAB receptors. When the tuberomammillary nucleus, where the cell bodies of the histaminergic neurons are localized, was stimulated electrically, the evoked release of histamine from the nerve terminals in the AHy was significantly enhanced by phaclofen, suggesting that GABAB receptors may be located on the histaminergic nerve terminals and modulate histamine release presynaptically. On the other hand, picrotoxin caused an increase in histamine release to ∼170% of the basal level, and this increase was diminished by coinfusion with d (−)-2-amino-5-phosphonopentanoic acid (0.1 m M ), an antagonist of NMDA receptors. Previously, we demonstrated tonic control of histamine release by glutamate mediated through NMDA receptors located on the histaminergic terminals in the AHy. These results suggest the possible localization of GABAA receptors on glutamatergic nerve terminals and that the receptors may regulate the basal release of histamine indirectly.  相似文献   

5.
Rats with portocaval anastomosis (PCA), an animal model of hepatic encephalopathy (HE), have very high brain histamine concentrations. Our previous studies based on a biochemical approach indicated histamine accumulation in the neuronal compartment. In this study, immunohistochemical evidence is presented which further supports the amine localization in histaminergic neurons. These neurons become pathological in appearance with cisternae frequently seen along histaminergic fibres in many brain areas, including the hypothalamus, amygdala, substantia nigra and cerebral cortex. Such formations were not observed in sham-operated animals. The neuronal deposition is predominant, and unique for histamine. It serves as a mechanism to counterbalance excessive brain neurotransmitter formation evoked by PCA. However, there are other mechanisms. The data provided here show that there is also a significant increase in histamine catabolism in the shunted rats, as reflected by both the higher brain N-tele-methylhistamine (t-MeHA) concentration and urinary excretion of N-tele-methylimidazoleacetic acid (t-MelmAA), a major brain histamine end product. The stomach, in addition to the brain, is a site of enhanced histamine synthesis in portocavally shunted subjects. After gastrectomy or food deprivation to eliminate the contribution of the stomach, shunted rats excrete significantly more t-MelmAA, implying the role of the CNS. This last finding suggests that under strictly defined conditions, namely in parenterally fed HE patients with abnormal plasma L-histidine, the measurement of urinary t-MelmAA might provide valuable information concerning putative brain histaminergic activity.  相似文献   

6.
The ontogeny of histaminergic neurotransmission in the rat brain was studied by assessing development of histamine levels in brain regions, along with H-1 receptor binding of [3H]mepyramine and H-1 receptor-mediated cellular events. In the hypothalamus, which is rich in histaminergic innervation, levels of the amine were low at birth, increased sharply at 8 days of age, and reached adult concentrations shortly thereafter; this pattern is typical of most neurotransmitters. In contrast, regions poor in neuronal histamine showed an initially high histamine level and a subsequent decline with development, as is known to occur during general growth of tissues. The developmental profile of H-1 receptor binding sites resembled that of the neuronal histamine pool, and the increases with age resulted from changes in the number of binding sites without alterations in Kd. Cellular responses to H-1 receptor activation were assessed by determining the stimulation of phospholipid turnover evoked by intracisternally administered histamine, a process that has been shown to involve only the neuronal compartment. Again, the developmental profile was superimposable upon that of H-1 receptor binding and that of hypothalamic histamine levels. These studies indicate that ontogeny of histaminergic neurotransmission is a coordinated process, with simultaneous development of neuronal histamine, its key biosynthetic enzyme, and H-1 receptors coupled directly to cellular events.  相似文献   

7.
A giant neurone of Achatina fulica Férussac (the TAN, tonically autoactive neurone) is excited by histamine. Pharmacological characteristics of its histaminergic reception are quite different from those of H1 and H2 receptors. The effect of histamine on the TAN is antagonized by neither mepyramine nor burimamide.  相似文献   

8.
The cholinergic, histaminergic and adrenergic features of regulation of the small muscles contractile activity in a vascular wall of a pulmonary artery in rabbits and involvement of an endothelium in these processes, were investigated. The cholinergic release phenomenon of small muscles of the rabbit pulmonary artery has a two-component character of dose dependence. The low-threshold components of Pilocarpinum relaxing effect has an endothelium-dependent nature. The important feature of histaminergic regulation of contractile activity of segments involves a direct contractile effect of histamine that is not inherent. The endothelium renders a suppressing effect on histaminergic contraction of small muscles of the rabbit pulmonary artery. A basic feature of adrenergic regulation of the pulmonary artery involves registered-beta-adrenergic contractile effects in small muscles of a vascular wall. The activation of the cAMP-dependent signal system in small muscles of a pulmonary artery is capable of rendering a contractile effect. The detected features of a regulation in the small circle can have an essential clinical-physiological value.  相似文献   

9.
Sundvik M  Kudo H  Toivonen P  Rozov S  Chen YC  Panula P 《FASEB journal》2011,25(12):4338-4347
The histaminergic and hypocretin/orexin (hcrt) neurotransmitter systems play crucial roles in alertness/wakefulness in rodents. We elucidated the role of histamine in wakefulness and the interaction of the histamine and hcrt systems in larval zebrafish. Translation inhibition of histidine decarboxylase (hdc) with morpholino oligonucleotides (MOs) led to a behaviorally measurable decline in light-associated activity, which was partially rescued by hdc mRNA injections and mimicked by histamine receptor H1 (Hrh1) antagonist pyrilamine treatment. Histamine-immunoreactive fibers targeted the dorsal telencephalon, an area that expresses histamine receptors hrh1 and hrh3 and contains predominantly glutamatergic neurons. Tract tracing with DiI revealed that projections from dorsal telencephalon innervate the hcrt and histaminergic neurons. Translation inhibition of hdc decreased the number of hcrt neurons in a Hrh1-dependent manner. The reduction was rescued by overexpression of hdc mRNA. hdc mRNA injection alone led to an up-regulation of hcrt neuron numbers. These results suggest that histamine is essential for the development of a functional and intact hcrt system and that histamine has a bidirectional effect on the development of the hcrt neurons. In summary, our findings provide evidence that these two systems are linked both functionally and developmentally, which may have important implications in sleep disorders and narcolepsy. development via histamine receptor H1 in zebrafish.  相似文献   

10.
In rats, the hypothalamic neurotransmitter histamine participates in regulation of vasopressin secretion and seems to be of physiological importance, because blockade of the histaminergic system reduces dehydration-induced vasopressin secretion. We investigated whether histamine is also involved in regulation of vasopressin secretion during dehydration in humans. We found that 40 h of dehydration gradually increased plasma osmolality by 10 mosmol/kg and induced a fourfold increase in vasopressin levels. Pretreatment with the H(2)-receptor antagonists cimetidine or ranitidine significantly reduced the dehydration-induced increase in vasopressin levels approximately 40% after 34 and 37 h of dehydration, whereas this was not the case with the H(1)-receptor antagonist mepyramine. Dehydration reduced aldosterone secretion by approximately 50%. This effect of dehydration was reduced by both H(1)- and H(2)-receptor blockade after 16 and/or 34 h of dehydration. We conclude that vasopressin secretion in response to dehydration in humans is under the regulatory influence of histamine and that the effect seems to be mediated via H(2)-receptors. In addition, the regulation of aldosterone secretion during dehydration also seems to involve the histaminergic system via H(1) and H(2) receptors.  相似文献   

11.
The effect of galanin, a peptide present in a subpopulation of histaminergic neurons emanating from the rat posterior hypothalamus, was investigated on K(+)-evoked [3H]histamine release in slices and synaptosomes from rat cerebral cortex, striatum, hippocampus and hypothalamus. Porcine galanin (0.3 microM) significantly inhibited histamine release induced by 25 mM K+ in slices from hypothalamus and hippocampus, but not from cerebral cortex and striatum, i.e., only in regions in which a colocalization of histamine and galanin has been described. The inhibitory effect of galanin was concentration dependent, with an EC50 value of 5.8 +/- 1.9 nM. The maximal inhibition was of 30-40% in hypothalamic and hippocampal slices depolarized with 25 mM K+. The galanin-induced inhibition observed in hypothalamic slices was not prevented in the presence of 0.6 microM tetrodotoxin and also occurred in hippocampal and hypothalamic synaptosomes, strongly suggesting the activation by galanin of presynaptic receptors located upon histaminergic nerve endings. The maximal inhibitory effect of galanin in slices or synaptosomes was lower than that previously reported for histamine acting at H3-autoreceptors, possibly suggesting that not all histaminergic axon terminals, even in the hypothalamus and hippocampus, are endowed with galanin receptors. It increased progressively in hypothalamic and hippocampal synaptosomes as the strength of the depolarizing stimulus was reduced. It is concluded that galanin modulates histamine release via presynaptic receptors, presumably autoreceptors located upon nerve terminals of a subpopulation of cerebral histaminergic neurons.  相似文献   

12.
The effects of histidine and histamine on branchial vascular haemodynamics were studied using the isolated, perfused gill of the tropical cichlid, Oreochromis (Sarotherodon) niloticus. Histidine had no vasoactive effect while histamine induced vasodilatation. Histamine-induced vasodilatation was irreversibly inhibited by the H1 and H2 receptor antagonists, piriton and cimetidine, respectively. This suggests a possible involvement of the non-neurogenic histaminergic system, acting directly via H1 and H2 histamine receptors, in the regulation of branchial vascular haemodynamics in teleosts.  相似文献   

13.
Ma  Zhangqing  Wang  Wusan  Wang  Tianxiao  Xu  Wei  Qu  Weiming  Huang  Zhili  Hong  Zongyuan 《Neurochemical research》2019,44(7):1764-1772

Ethanol is one of the most highly abused psychoactive compounds worldwide and induces sedation and hypnosis. The histaminergic system is involved in the regulation of sleep/wake function and is a crucial player in promoting wakefulness. To explore the role and mechanism of the histaminergic system in ethanol-induced sedation and hypnosis, we recorded locomotor activity (LMA) and electroencephalography (EEG)/electromyography (EMG) in mice using an infrared ray passive sensor recording system and an EEG/EMG recording system, respectively, after administration of ethanol. In vivo microdialysis coupled with high performance liquid chromatography and fluorometry technology were used to detect histamine release in the mouse frontal cortex (FrCx). The results revealed that ethanol significantly suppressed LMA of histamine receptor 1 (H1R)-knockout (KO) and wild-type (WT) mice in the range of 1.5–2.5 g/kg, but suppression was remarkably stronger in WT mice than in H1R-KO mice. At 2.0 and 2.5 g/kg, ethanol remarkably increased non-rapid eye movement sleep and decreased wakefulness, respectively. Neurochemistry experimental data indicated that ethanol inhibited histamine release in the FrCx in a dose-dependent manner. These findings suggest that ethanol induces sedation and hypnosis via inhibiting histamine release in mice.

  相似文献   

14.
The adenosine A(2A) receptor (A(2A)R) has been demonstrated to play a crucial role in the regulation of the sleep process. However, the molecular mechanism of the A(2A)R-mediated sleep remains to be elucidated. Here we used electroencephalogram and electromyogram recordings coupled with in vivo microdialysis to investigate the effects of an A(2A)R agonist, CGS21680, on sleep and on the release of histamine and GABA in the brain. In freely moving rats, CGS21680 applied to the subarachnoid space underlying the rostral basal forebrain significantly promoted sleep and inhibited histamine release in the frontal cortex. The histamine release was negatively correlated with the amount of non-rapid eye movement sleep (r = - 0.652). In urethane-anesthetized rats, CGS21680 inhibited histamine release in both the frontal cortex and medial pre-optic area in a dose-dependent manner, and increased GABA release specifically in the histaminergic tuberomammillary nucleus but not in the frontal cortex. Moreover, the CGS21680-induced inhibition of histamine release was antagonized by perfusion of the tuberomammillary nucleus with a GABA(A) antagonist, picrotoxin. These results suggest that the A(2A)R agonist induced sleep by inhibiting the histaminergic system through increasing GABA release in the tuberomammillary nucleus.  相似文献   

15.
The inotropic response induced by beta-adrenergic and H1 histaminergic receptor stimulation was characterized in guinea pig left atria by obtaining dose-response relationships for isoproterenol and histamine under various experimental conditions. Conditions (hypothermia, high frequencies of stimulation, and large extracellular calcium concentrations) which enhanced the ability of cardiac muscle to develop force also increased the sensitivity of the left atrium to isoproterenol while decreasing its efficacy. On the other hand, conditions which enhanced the ability of cardiac muscle to develop force depressed the efficacy of histamine to such an extent that the sensitivity to histamine was also decreased. In addition, conditions which markedly depressed the ability of cardiac muscle to develop force also decreased the efficacy and sensitivity to histamine. The data indicate that while beta-adrenoceptor stimulation results in an inotropic response under all conditions studied, stimulation of H1 histaminergic receptors results in an inotropic response only within a narrow range of experimental conditions.  相似文献   

16.
The histaminergic system is one component of the ascending arousal system which is involved in wakefulness, neuroendocrine control, cognition, psychiatric disorders and motivation. During the appetitive phase of motivated behaviors the arousal state rises to an optimal level, thus giving proper intensity to the behavior. Previous studies have demonstrated that the histaminergic neurons show an earlier activation during the appetitive phase of feeding, compared to other ascending arousal system nuclei, paralleled with a high increase in arousal state. Lesions restricted to the histaminergic neurons in rats reduced their motivation to get food even after 24h of food deprivation, compared with intact or sham lesioned rats. Taken together, these findings indicate that the histaminergic system is important for appetitive behavior related to feeding. However, its role in other goal-directed behaviors remains unexplored. In the present work, male rats rendered motivated to obtain water, sex, or amphetamine showed an increase in Fos-ir of histaminergic neurons in appetitive behaviors directed to get those reinforcers. However, during appetitive tests to obtain sex, or drug in amphetamine-conditioned rats, Fos expression increased in most other ascending arousal system nuclei, including the orexin neurons in the lateral hypothalamus, dorsal raphe, locus coeruleus and laterodorsal tegmental neurons, but not in the ventral tegmental area, which showed no Fos-ir increase in any of the 3 conditions. Importantly, all these appetitive behaviors were drastically reduced after histaminergic cell-specific lesion, suggesting a critical contribution of histamine on the intensity component of several appetitive behaviors.  相似文献   

17.
In a series of studies on brain functions of histamine, probes to manipulate activities of histaminergic neuronal systems were applied to assess histaminergic function in non-obese normal, and lean and obese Zucker rats. Food intake was suppressed by both activation of H1-receptors and inhibition of H3-receptors in the ventromedial hypothalamic nucleus (VMH) and the paraventricular nucleus, each of which is a satiety center. Feeding circadian rhythm was decreased in its amplitude through histaminergic modulation in the hypothalamus. Histamine neurons in the mesencephalic trigeminal nucleus (Me5) were involved in regulation of masticatory functions, particularly eating speed, while histamine-containing neurons in the VMH controlled intake volume of meals. Energy deficiency in the brain enhanced satiation through histaminergic activation of VMH neurons, which in turn produced glycogenolysis in the hypothalamus to maintain homeostatic control of glucose supply. A very-low-calorie conventional Japanese diet, which is a fiber rich and low energy food source, enhanced satiation by increased mastication and because of the low energy supply of the diet. Hypothalamic histamine neurons were activated by high ambient temperature and also by interleukin-1β, an endogenous pyrogen, to maintain homeostatic thermoregulation. Behavioral and metabolic abnormalities of Zucker obese rats were mediated by a deficit in hypothalamic neuronal histamine, and the Zucker rat was evaluated as an animal model of histamine deficiency. Transplantation of the lean fetal hypothalamus into the third cerebroventricle of host obese Zuckers attenuated the abnormalities.  相似文献   

18.
In the present study, we investigated the influence of blockade of the serotoninergic and histaminergic neurotransmitter system on the anorectic effect of IP-injected amylin in rats. In 12- or 24-h food-deprived rats, blockade of central and peripheral serotonin (5-HT) receptors with the 5-HT1 and 5-HT2 receptor antagonist metergoline (0.5 or 0.05 mg/kg, IP, respectively) did not seem to influence the anorectic effect of IP injected amylin (1 μg/kg). Similarly, inhibition of 5-HT synthesis and release with the 5-HT1A receptor agonist (±)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (200 μg/kg, IP) did not diminish amylin's (5 μg/kg, IP) anorectic effect in 24-h food-deprived rats whereas that of CCK (3 μg/kg, IP) was blocked under comparable conditions. Pretreatment of rats with the histamine H3 receptor agonists R--methylhistamine (MH; 3 mg/kg, IP) and Imetit (3 mg/kg, IP), which block transmission in the histaminergic system by inhibiting release of endogenous histamine, attenuated amylin's (1 μg/kg) anorectic effect in 24-h food-deprived rats. These results suggest that the histaminergic system is involved in transduction of IP amylin's inhibitory effect on feeding in rats. In contrast, the serotoninergic system does not seem to be involved in mediating amylin's anorectic effect.  相似文献   

19.
The vasodilator reflex induced by baroreceptor stimulation was studied on the hindlimbs of the dog. The reflex was induced by norepinephrine (1 microgram/kg) either by intravenous injection or by direct injection into the carotid sinus. In other experiences, the baroreceptor stimulation was obtained by distension of the sinus by rapid injection of 100 ml of physiological serum. The vascular response was studied by recording the hindlimbs blood flow. One of the limbs was previously pretreated by mepyramine and cimetidine (blockage of histaminergic H1 and H2 receptors). During the first minute after the baroreceptor stimulation, blood samples were collected from the venous blood of hindlimbs for histamine assay (fluorometric assay). Our results show: a much lower vasodilation on the limb pretreated by histamine antagonist, a significant increase during the reflex vasodilation of histamine blood levels measured in the efferent blood of hindlimbs. These results, obtained in experimental conditions as physiological as possible (blood perfusion of the limbs with "natural" hemodynamic parameters) permit to conclude that the vasodilation induced by baroreceptor reflex is at least partially histaminergic in the dog.  相似文献   

20.
Eosinophils are recruited to sites of inflammation via the action of a number of chemical mediators, including PAF, leukotrienes, eotaxins, ECF-A and histamine. Although many of the cell-surface receptors for these mediators have been identified, histamine-driven chemotaxis has not been conclusively attributed to any of the three known histamine receptor subtypes, suggesting the possibility of a 4th histamine-responsive receptor on eosinophils. We have identified and cloned a novel G protein-coupled receptor (GPCR), termed Pfi-013, from an IL-5 stimulated eosinophil cDNA library which is homologous to the human histamine H3 receptor, both at the sequence and gene structure level. Expression data indicates that Pfi-013 is predominantly expressed in peripheral blood leukocytes, with lower expression levels in spleen, testis and colon. Ligand-binding studies using Pfi-013 expressed in HEK-293Galpha15 cells, demonstrates specific binding to histamine with a Kd of 3.28 +/- 0.76 nM and possesses a unique rank order of potency against known histaminergic compounds in a competitive ligand-binding assay (histamine > clobenpropit > iodophenpropit > thioperamide > R-alpha-methylhistamine > cimetidine > pyrilamine). We have therefore termed this receptor human histamine H4. Chemotaxis studies on isolated human eosinophils have confirmed that histamine is chemotactic and that agonists of the known histamine receptors (H1, H2, and H3) do not induce such a response. Furthermore, studies employing histamine-receptor antagonists have shown an inhibition of chemotaxis only by the H3 antagonists clobenpropit and thioperamide. Since these compounds are also antagonists of hH4 we postulate that the receptor mediating histaminergic chemotaxis is this novel histamine H4 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号