首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The clinical efficacy of the widely used chemotherapeutic drug methotrexate (MTX) is limited due to its associated hepatotoxicity. Pomegranate polyphenols are of huge health benefits and known to possess remarkable antioxidant properties capable of protecting normal cells from various stimuli-induced oxidative stress and cell death. In this study, we explored the protective role of pomegranate fruit extract (PFE) in ameliorating MTX-induced hepatic damage. Male Swiss albino mice exposed to MTX (20 mg/kg body weight) exhibited distinct markers of toxicity such as increased activities of enzymes alanine transaminase, aspartate transaminase, lactate dehydrogenase and alkaline phosphatase and also increased oxidative stress in liver evidenced by increased ROS generation and lipid peroxidation. Decrease in reduced glutathione levels, superoxide dismutase, catalase, hepatic heme oxygenase 1 and NQO-1 activities were also observed. Tracing the signal transduction pathways, it was seen that MTX exposure significantly increased nuclear translocation of NF-κB coupled with increase in phosphorylated Iκ-B and down-regulation of NF-kappaB-dependent antiapoptotic protein Bcl-2. Treatment with MTX increased the expression of the apoptotic enhancer Rho/Cdc42 as well as the phosphorylation of SAPK/JNK. A shift in the Bax/Bcl-2 ratio towards apoptosis and increase in the caspase 3 level was also evident. Administration of PFE for 7 consecutive days before and after MTX challenge suppressed MTX-induced cell death, mitigated the injurious effects of MTX and offered protection against apoptosis. PFE was shown to reduce ROS generation in hepatocytes by activating the Nrf2-ARE pathway and inhibiting NF-κB as a consequence of which the antioxidant defense mechanism in the liver was up-regulated, thereby conferring protection against MTX-induced hepatotoxicity and apoptosis.  相似文献   

2.
Methotrexate (MTX), a folic acid antagonist widely used for the treatment of a variety of tumors and inflammatory diseases, affects normal tissues that have a high rate of proliferation, including the hematopoietic cells of the bone marrow and the gastrointestinal mucosal cells. To elucidate the role of free radicals and leukocytes in MTX-induced oxidative organ damage and the putative protective effect of L-carnitine (L-Car), Wistar albino rats were administered a single dose of MTX (20 mg/kg) followed by either saline or L-Car (500 mg/kg) for 5 days. After decapitation of the rats, trunk blood was obtained, and the ileum, liver, and kidney were removed for histological examination and for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, and collagen content. Our results showed that MTX administration increased the MDA and MPO activities and collagen content and decreased GSH levels in all tissues, while these alterations were reversed in L-Car-treated group. The elevated serum TNF-α level observed following MTX treatment was depressed with L-Car. The oxidative burst of neutrophils stimulated by Annexin V was reduced in the saline-treated MTX group, while L-Car abolished this inhibition. Similarly, flow cytometric measurements revealed that leukocyte apoptosis was increased in MTX-treated animals, while L-Car reversed these effects. Severe degeneration of the intestinal mucosa, liver parenchyma, and glomerular and tubular epithelium observed in the saline-treated MTX group was improved by L-Car treatment. These results suggest that L-Car, possibly via its free radical scavenging and antioxidant properties, ameliorates MTX-induced oxidative organ injury and inhibits leukocyte apoptosis. Thus, supplementation with L-Carnitine as an adjuvant therapy may be promising in alleviating the systemic side-effects of chemotherapeutics.  相似文献   

3.
Methotrexate (MTX) is an anti-metabolite, widely used in the cancer chemotherapy and rheumatoid arthritis. However, its long-term clinical use is restricted on account of its severe intestinal toxicity. The present study was aimed to investigate the intestinal toxicity of MTX and the possible protective effect of α-lipoic acid (LA) on Sprague–Dawley rats. MTX-induced intestinal toxicity was evaluated at the dose of 2.5 mg/kg for short-term (5 days treatment) and 1 mg/kg for long-term (5 days in a week for four consecutive weeks treatment) study. The possible protective effect of LA was evaluated in both short- as well as long-term study in a dose-dependent manner. MTX treatment induced diarrhoea and mortality in rats, indicating its severe toxicity in the target organ of investigation, i.e., intestine. Further, the intestinal toxicity of MTX was assessed by evaluating different parameters of oxidative stress, DNA damage, cytotoxicity as well as histological changes. Immunostaining for p53 revealed higher genotoxic assault in the intestinal cells due to MTX treatment. Pretreatment of rats with LA led to significant decrease in the oxidative stress, DNA damage, cellular damage, inflammatory changes and apoptosis as determined by malondialdehyde level, glutathione level, comet assay parameters, histological evaluation, immunostaining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. In the present investigation, we report that LA pretreatment ameliorates MTX-induced intestinal toxicity in rat as evident from the protection against oxidative stress, decrease in DNA damage and protection of cellular morphology as well as improvement in the stool consistency and animal survival rate.  相似文献   

4.
Aflatoxin B1 (AFB1) is the most potent of the mycotoxins and is widely observed in nutrition abnormalities. There are some studies suggesting oxidative stress‐induced toxic changes on liver related to AFB1 toxicity. The aim of the present study was to evaluate whether antioxidant caffeic acid phenethyl ester (CAPE) relieves oxidative stress in AFB1‐induced liver injury in rat. Twenty‐four male rats were equally divided into three groups. The first group was used as a control. The second group received three doses of AFB1. The three doses of CAPE were given to constitute the third group with doses of AFB1. After 10 days of experiment, liver and serum samples were taken from all animals. Serum gamma glutamyl transferase (GGT), alkaline phosphatase (ALP), glutathione s‐transferase (GST), nitric oxide (NO) and sulfhydryl values were higher in the AFB1 group than in control, whereas serum GGT, ALP, GST and NO values were decreased by in the AFB1 + CAPE group than in AFB1 group. Liver GST, total oxidant capacity, sulfhydryl, apoptosis index and ischemia‐modified albumin values were higher in the AFB1 group than in control, whereas the GST activity and apoptosis index were lower in the AFB1 + CAPE group than in the AFB1 group. There were histopathological degeneration and apoptosis in hepatocytes of AFB1 group. The findings were totally recovered by CAPE administration. In conclusion, we observed that AFB1 caused oxidative and nitrosative hepatoxicity to hepatocytes in the rat. However, CAPE induced protective effects on the AFB1‐induced hepatoxicity by modulating free radical production, biochemical values and histopathological alterations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Thrombocytopenia in methotrexate (MTX)-treated cancer and rheumatoid arthritis (RA) patients connotes the interference of MTX with platelets. Hence, it seemed appealing to appraise the effect of MTX on platelets. Thereby, the mechanism of action of MTX on platelets was dissected. MTX (10 μM) induced activation of pro-apoptotic proteins Bid, Bax and Bad through JNK phosphorylation leading to ΔΨm dissipation, cytochrome c release and caspase activation, culminating in apoptosis. The use of specific inhibitor for JNK abrogates the MTX-induced activation of pro-apoptotic proteins and downstream events confirming JNK phosphorylation by MTX as a key event. We also demonstrate that platelet mitochondria as prime sources of ROS which plays a central role in MTX-induced apoptosis. Further, MTX induces oxidative stress by altering the levels of ROS and glutathione cycle. In parallel, the clinically approved thiol antioxidant N-acetylcysteine (NAC) and its derivative N-acetylcysteine amide (NACA) proficiently alleviate MTX-induced platelet apoptosis and oxidative damage. These findings underpin the dearth of research on interference of therapeutic drugs with platelets, despite their importance in human health and disease. Therefore, the use of antioxidants as supplementary therapy seems to be a safe bet in pathologies associated with altered platelet functions.  相似文献   

6.
We investigated changes in rat liver tissues following administration of thymoquinone (TQ) against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced hepatotoxicity. Fifty rats were assigned randomly to five groups of 10 as follows: control, corn oil, TCDD, TQ and TCDD + TQ. Biochemical and histopathological analyses were conducted on liver tissue. We found that 30 day TCDD administration caused histopathological changes in liver including thickening of Glisson’s capsule, intracytoplasmic vacuolization in hepatocytes, sinusoidal dilation, vascular and sinusoidal congestion and inflammatory cell infiltration. TCDD administration increased malondialdehyde (MDA), total oxidant status (TOS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) levels in rat liver tissue and reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and total antioxidant status (TAS) levels compared to all other groups. In the TQ treated group, GSH, SOD, CAT and TAS levels increased compared to all other groups. MDA, TOS, ALT, AST, ALP levels decreased compared to all other groups. Our histological findings were consistent with the biochemical findings. The oxidative and histologic effects of TCDD were eliminated by TQ treatment. TCDD administration caused oxidative stress in rat liver and TQ administered with TCDD prevented TCDD induced hepatotoxicity. TQ could be considered an alternative anti-TCDD toxicity agent.  相似文献   

7.
Kumari A  Kakkar P 《Life sciences》2012,90(15-16):561-570
AimsLupeol, a triterpene, possesses numerous pharmacological activities, including anti-malarial, anti-arthritic and anti-carcinogenic properties. The present study was conducted to explore the hepatoprotective potential of lupeol against acetaminophen (AAP)-induced hepatotoxicity in Wistar rats.Main methodsRats were given a prophylactic treatment of lupeol (150 mg/kg body weight, p.o., for 30 consecutive days) with a co-administration of AAP (1 g/kg body weight). The modulatory effects of lupeol on AAP-induced hepatotoxicity were investigated by assaying oxidative stress biomarkers, serum liver toxicity markers, pro/anti apoptotic proteins, DNA fragmentation and by the histopathological examination of the liver.Key findingsLupeol significantly prevented hepatic damage as evident from the histopathological studies and significant decline in serum trans-aminases. The alterations in cellular redox status (p < 0.01) and antioxidant enzyme activities together with the enhanced lipid peroxidation and protein carbonyl levels were also observed in the AAP-treated rats. In addition, significant ROS generation and mitochondrial depolarization were observed in this group. Co-administration of lupeol significantly decreased the level of serum transaminases, MDA and protein carbonyl content. It also prevented ROS generation and mitochondrial depolarization. Furthermore, lupeol enhanced the mitochondrial antioxidant and redox status and inhibited DNA damage and cell death by preventing the downregulation of Bcl-2, upregulation of Bax, release of cytochrome c and the activation of caspase 9/3.SignificanceThe conclusion of this study is that lupeol when co-administered with AAP effectively reduces oxidative stress and prevents AAP-induced hepatotoxicity by inhibiting critical control points of apoptosis.  相似文献   

8.
This study was designed to assess the effect of naringenin (NRG) on simvastatin (SV)-induced hepatic damage in rat and to investigate the effects of these drugs on cytochrome P450 (CYP) 2E1 and 3A1/2 isoforms in order to evaluate the possibility of their coadministration. Hepatic damage in rat was induced by SV (20 and 40 mg/kg/day, po for 30 days). The protective effect of NRG (50 mg/kg/day, po) was identified by estimating liver functions and oxidative stress markers such as lipid peroxidation, reduced glutathione, superoxide dismutase, glutathion s-transferase, and catalase as well as protein profile. DNA fragmentation and histopathological study were carried out to confirm the hepatic damage. An in vitro study was conducted to further evaluate the effect of SV and/or NRG administration on the activities of two microsomal CYP isoenzymes including CYP2E1 and CYP3A1/2. SV exerted an oxidative stress which may contribute to the hepatotoxicity. Administration of NRG in combination with SV significantly improved the liver functions, state of oxidative stress, protein profile, DNA fragmentation, and the histopathological changes. SV and/or NRG have a potential to inhibit CYP3A1/2 and CYP2E1. This study concluded that concurrent administration of NRG with SV provided a protection of liver tissue against the SV-induced hepatic damage. The inhibition of CYP2E1 and CYP3A1/2 by the SV and NRG should be taken into account in order to adjust doses to avoid interaction between SV and NRG and adverse effects of SV.  相似文献   

9.
The cornerstone of treatment for rheumatoid arthritis is low dose methotrexate (MTX), but its use is limited by concerns regarding its potential for hepatotoxicity. Allylpyrocatechol (APC), a phytoconstituent sourced from leaves of Piper betle demonstrated antioxidant, anti-inflammatory, and antiarthritic properties. The present study aimed to evaluate the combined effect of APC and MTX on limiting progression of lipopolysaccharide accelerated collagen-induced arthritis, along with reduction of MTX-induced hepatic damage. A collagen-induced arthritis (CIA) model was established by immunising Sprague-Dawley rats with bovine collagen type II (CII) and lipopolysaccharide, followed by a booster dose of CII on day 15. Rats from days 11–27 were administered APC (20?mg/kg), methotrexate (1.5?mg/kg), or a combination of MTX and APC. The combinatorial therapy of APC and MTX significantly improved the parameters of arthritis as evident from the reduction in paw oedema and arthritic score and was endorsed by radiological and histopathological changes. This combination prevented the rise in levels of proinflammatory cytokines, tumour necrosis factor (TNF-α), and interleukin 6 (IL-6). Furthermore, unlike MTX-monotherapy, the APC-MTX combination decreased the associated cachexia, splenomegaly, and oxidative stress. Importantly, the hepatic damage mediated by MTX monotherapy was effectively attenuated by the inclusion of APC. Taken together, antioxidants such as APC when combined with MTX not only potentiated the antiarthritic effect but importantly alleviated the MTX-induced hepatic damage, thus endorsing its effectiveness in preventing progression of articular diseases such as rheumatoid arthritis.  相似文献   

10.
Oxidative stress is thought to be involved in lead-induced toxicity. The aim of this study was to investigate the possible protective role of naringenin on lead-induced oxidative stress in the liver and kidney of rats. In the present investigation, lead acetate (500 mg Pb/L) was administered orally for 8 weeks to induce hepatotoxicity and nephrotoxicity. The levels of hepatic and renal markers such as alanine aminotransferase, aspartate aminotransferase, urea, uric acid, and creatinine were significantly (P < 0.05) increased following lead acetate administration. Lead-induced oxidative stress in liver and kidney tissue was indicated by a significant (P < 0.05) increase in the level of maleic dialdehyde and decreased levels of reduced glutathione, superoxide dismutase, catalase, and glutathione peroxidase. Naringenin markedly attenuated lead-induced biochemical alterations in serum, liver, and kidney tissues (P < 0.05). The present study suggests that naringenin shows antioxidant activity and plays a protective role against lead-induced oxidative damage in the liver and kidney of rats.  相似文献   

11.
The present study was undertaken to investigate the protective effect of Indian honey on acetaminophen induced oxidative stress and liver damage in rat. Honey serves as a source of natural medicine, which is effective to reducing the risk of heart disease, liver toxicity and inflammatory processes. The hepatoprotective activity of the Indian honey was determined by assessing levels of Serum transaminases, ALP and total bilirubin. Finally, the effects of the test substances on the antioxidant enzymes of the liver were also studied by assessing changes in the level of reduced glutathione, glutathione peroxidase, catalase and superoxide dismutase. Serum transaminase, ALP and total bilirubin level were significantly elevated and the antioxidant status in liver such as activities of SOD, CAT, GPx and the levels of GSH were declined significantly in APAP alone treated animals. Pretreatment with honey and silymarin prior to the administration of APAP significantly prevented the increase in the serum levels of hepatic enzyme markers and reduced oxidative stress. The histopathological evaluation of the livers also revealed that honey reduced the incidence of liver lesions induced by APAP. Results suggest that the Indian honey protects liver against oxidative damage and it could be used as an effective hepatoprotector against APAP induced liver damage.  相似文献   

12.
To evaluate the protective potential of lycopene (Lyc) and proanthocyanidins (PCs) against mercuric chloride (HgCl2)-induced hepatotoxicity, the study focused on the mechanism of oxidative stress. Firstly, the rats were subcutaneously (s.c.) injected with 0, 2.2, 4.4, and 8.8 μmol/kg HgCl2. Additionally, 40 mg/kg Lyc and 450 mg/kg PCs were given to the rats intragastrically (i.g.) before exposure to 8.8 μmol/kg HgCl2. Then, body weight, liver weight coefficient, mercury (Hg) contents, histological feature, ultrastructure, apoptosis, reactive oxygen species (ROS), glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and malondialdehyde (MDA) in the liver were measured. Lactate dehydrogenase (LDH) and alanine transaminase (ALT) in serum were determined. After exposure to different concentrations of HgCl2,it was found that Hg contents, pathological and ultrastructure injury, activities of LDH and ALT, apoptosis, and levels of ROS, GSH, and MDA increased and the activities of SOD and GSH-Px decreased in a concentration-dependent manner. Further investigation found that pretreatment with Lyc and PCs inhibited ROS production, protected antioxidant enzymes, and reversed hepatotoxicity. We concluded that Lyc and PCs had hepatoprotective effects on HgCl2-induced toxicity by antagonizing oxidative stress in rat liver.  相似文献   

13.
Overdoses of acetaminophen (APAP), a famous and widely used drug, may have hepatotoxic effects. Nanoscience is a novel scientific discipline that provides specific tools for medical science problems including using nano trace elements in hepatic diseases. Our study aimed to assess the hepatoprotective role of selenium nanoparticles (Nano-Se) against APAP-induced hepatic injury. Twenty-four male rats were classified into three equal groups: a control group that received 0.9 % NaCl, an APAP-treated group (oral administration), and a group treated with Nano-Se (10–20 nm, intraperitoneal (i.p.) injection) and APAP (oral administration). APAP overdose induced significant elevations in liver function biomarkers, hepatic lipid peroxidation, hepatic catalase, and superoxide dismutase (SOD), decreased the reduced glutathione (GSH) content and glutathione reductase (GR) activity, and stimulated significant DNA damage in hepatocytes, compared to control rats. Nano-Se administration improved the hepatic antioxidant protection mechanism and decreased cellular sensitivity to DNA fragmentation. Nano-Se exhibits a protective effect against APAP-induced hepatotoxicity through improved liver function and oxidative stress mediated by catalase, SOD, and GSH and decreases hepatic DNA fragmentation, a hepatic biomarker of cell death. Nano-Se could be a novel hepatoprotective strategy to inhibit oxidative stress.  相似文献   

14.
Paracetamol (PC) is a widely used analgesic and antipyretic drug, but it leads to acute hepatotoxicity at high doses intakes. This study was aimed to investigate the effects of Chrysin (CR) on hepatotoxicity constituted at high doses of PC in rats. Rats were subjected to oral pretreatment of CR (25 and 50 mg/kg b.w.) via feeding needle for 6 days against hepatotoxicity induced by a single dose of PC (500 mg/kg b.w.) administered orally via feeding needles. Although PC increases lipid peroxidation and liver enzyme activities, it has led to reduction of antioxidant enzyme activities. PC induced inflammatory responses by increasing the levels of TNF‐α and IL‐1β. Furthermore, PC caused apoptosis and autophagy by increasing activity of Caspase‐3 and LC3B level. On the other hand, CR therapy significantly regulated these values in rats. This study demonstrated that CR possesses restorative effect against PC‐induced hepatotoxicity by suppressing oxidative stress, inflammation, and apoptotic and autophagic tissue damage.  相似文献   

15.
Excessive generation of reactive oxygen species (ROS) can induce oxidative damage to vital cellular molecules and structures including DNA, lipids, proteins, and membranes. Recently, melatonin has attracted attention because of their free radical scavenging and antioxidant properties. The aim of this study was to evaluate the possible protective role of melatonin against atrazine-induced oxidative stress in rat erythrocytes in vivo. Adult male albino rats of Wistar strain were randomly divided into four groups. Control group received isotonic saline; melatonin (10 mg/kg bw/day) group; atrazine (300 mg/kg of bw/day) group; atrazine + melatonin group. Oral administration of atrazine and melatonin was given daily for 21 days. Oxidative stress was assessed by determining the glutathione (GSH) and malondialdehyde (MDA) level, and alteration in antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione-S-transferase (GST), and glucose-6-phosphate dehydrogenase (G-6-PD) in the erythrocytes of normal and experimental animals. A significant increase in the MDA levels and decrease in the GSH was observed in the atrazine treated animals (P < 0.05). Also, significant increase in the activities of SOD, CAT, GPx, and GST were observed in atrazine treated group compared to controls (P < 0.05). Moreover, significant decrease in protein, total lipids, cholesterol, and phospholipid content in erythrocyte membrane were demonstrated in atrazine treated rats. Administration of atrazine significantly inhibits the activities of G-6-PD and membrane ATPases such as Na(+)/K(+)-ATPase, Mg(2+)-ATPase, and Ca(2+)-ATPase (P < 0.05). Scanning electron microscopic (SEM) examination of erythrocytes revealed morphological alterations in the erythrocytes of atrazine treated rats. Furthermore, supplementation of melatonin significantly modulates the atrazine-induced changes in LPO level, total lipids, total ATPases, GSH, and antioxidant enzymes in erythrocytes. In conclusion, the increase in oxidative stress markers and the concomitant alterations in antioxidant defense system indicate the role of oxidative stress in erythrocytes of atrazine-induced damage. Moreover, melatonin shows a protective role against atrazine-induced oxidative damage in rat erythrocytes.  相似文献   

16.
The aim of this study was to demonstrate the role of curcumin on oxidative stress, cell proliferation and apoptosis in the rat intestinal mucosa after ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ curcumin; each group contain 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the curcumin group, 3 days before I/R, curcumin (100 mg/kg) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and intestinal tissues samples were obtained for biochemical and histopathological investigation in all groups. Curcumin treatment significantly decreased the elevated tissue malondialdehyde levels and increased of reduced superoxide dismutase, and glutathione peroxidase enzyme activities in intestinal tissues samples. I/R caused severe histopathological injury including mucosal erosions and villous congestion and hemorrhage. Curcumin treatment significantly attenuated the severity of intestinal I/R injury, with inhibiting of I/R-induced apoptosis and cell proliferation. These results suggest that curcumin treatment has a protective effect against intestinal damage induced by intestinal I/R. This protective effect is possibly due to its ability to inhibit I/R-induced oxidative stress, apoptosis and cell proliferation.  相似文献   

17.
Gastrointestinal toxicity is one of the most serious side effects in the methotrexate (MTX) treatment. This study was designed to investigate whether ellagic acid (EA) and/or pumpkin seed oil (PSO) had a protective effect on MTX-induced small intestine damage. Forty albino rats were randomized into five groups of 8 rats each. Group I served as a normal control group. In Group II, MTX was administered as a single dose (20 mg/kg) intraperitoneally. Groups III, IV and V were pre-treated respectively with either PSO (40 mg/kg), EA (10 mg/kg) or 0.2% DMSO (vehicle control) orally every day by gavage for 5 days and then they received MTX. All animals were sacrificed 5 days after the intraperitoneal injection of MTX for histopathological examination, estimation of serum prostaglandin E2 (PGE2) level, assay of tissue malondialdehyde (MDA), reduced glutathione (GSH) and nitric oxide (NO) levels and myloperoxidase (MPO), xanthine oxidase (XO) and adenosine deaminase (AD) activities. Administration of EA and/or PSO decreased the intestinal damage, PGE2, MDA and NO levels and MPO, XO and AD activities and increased GSH level. These results suggest that EA and PSO protect the small intestine of rats from MTX-induced damage through their antioxidant and anti-inflammatory effects and thus have potential as a promising drug in the prevention of undesired side effects of MTX.  相似文献   

18.
The effects of MDMA administration on oxidative stress markers in rat eye and hippocampus, and the neuroprotective effects of the antioxidant 3,4-dihydro-6-hydroxy-7-methoxy-2,2-dimethyl-1(2H)-benzopyran (CR-6) have been studied. MDMA effects on liver were used for comparison with those in eye and hippocampus and to test CR-6 protective effects. Another goal was to test for apoptosis in retinal cells, as it is known that happens in liver and brain. After 1 week of ecstasy administration, malondialdehyde (MDA) concentration increased, glutathione peroxidase (GPx) activity and glutathione (GSH) content decreased in liver, as previously described. MDA concentration increased and GPx activity decreased in hippocampus; whereas no change was observed in GSH concentration. MDMA decreased ocular GSH concentration and GPx activity; no change was observed in MDA concentration. The number of TUNEL-positive nuclei increased significantly in rat retinas after 1 week of MDMA administration. CR-6 normalized the modifications in liver, hippocampus and retina mentioned above.  相似文献   

19.
Despite its broad applications, cisplatin affords considerable nephro- and hepatotoxicity through triggering inflammatory and oxidative stress cascades. The aim of the current investigation was to study the possible protective effects of tangeretin on cisplatin-induced hepatotoxicity. The impact of tangeretin on cisplatin-evoked hepatic dysfunction and histopathologic changes along with oxidative stress, inflammatory and apoptotic biomarkers were investigated compared to silymarin. Tangeretin pre-treatment significantly improved liver function tests (ALT and AST), inhibited cisplatin-induced lipid profile aberrations (total cholesterol and triglycerides) and diminished histopathologic structural damage in liver tissues. Tangeretin also attenuated cisplatin-induced hepatic inflammatory events as indicated by suppression of tumor necrosis factor-α (TNF-α) and enhancement of interleukin-10 (IL-10). Meanwhile, it lowered malondialdehyde (MDA), nitric oxide (NO) and nuclear factor erythroid 2-related factor 2 (NRF-2) levels with restoration of glutathione (GSH), and glutathione peroxidase (GPx). Regarding mitogen-activated protein kinase (MAPK) pathway, tangeretin attenuated cisplatin-induced increase in phospho-p38, phospho-c-Jun N-terminal kinase (p-JNK) and phospho-extracellular signal-regulated kinase (p-ERK1/2) in liver tissues. In addition, tangeretin downregulated Bax expression with augmentation of Bcl-2 promoting liver cell survival. Our results highlight the protective effects of tangeretin against cisplatin-induced acute hepatic injury via the concerted modulation of inflammation, oxidative stress, MAPKs and apoptotic pathways.  相似文献   

20.
ABSTRACT

Exposure to high doses of acetaminophen is the most common cause of drug induced liver injury. We investigated the protective effects of Hedera helix extract against acetaminophen induced oxidative stress and hepatotoxicity using a mouse model. We used two control groups: group A was given 0.9% NaCl, group B was an acetaminophen control that was given a single injection of 600 mg/kg acetaminophen. T1?T4 groups were pretreated orally with different doses of H. helix extract. The mice were sacrificed and blood samples were collected to estimate the levels of glutathione peroxidase (GPx), malondialdehyde (MDA), superoxide dismutase (SOD) and total bilirubin. Liver samples also were used for histopathological studies. We found that acetaminophen significantly increased the levels of serum ALP, ALT, AST and MDA, and also significantly reduced the antioxidant factors, CAT, GPX and SOD. H. helix extract treatment produced a significant reduction in the levels of ALP, ALT, AST and MDA in serum and restored the levels of CAT, GPX and SOD to control levels. The histopathological findings were consistent with the biochemical findings. H. helix extract exhibited antioxidant and hepatoprotective effects against acetaminophen induced liver damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号