首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dissolved organic carbon (DOC) and nitrogen (DON) concentrations were quantified in urban and rural watersheds located in central Texas, USA between 2007 and 2008. The proportion of urban land use ranged from 6 to 100% in our 12 study watersheds which included nine watersheds without waste water treatment plants (WWTP) and three watersheds sampled downstream of a WWTP. Annual mean DOC concentrations ranged 20.4–52.5 mg L?1. Annual mean DON concentrations ranged 0.6–1.9 mg L?1. Only the rural watersheds without a WWTP had significantly lower DOC concentrations compared to those watersheds with a WWTP but all the streams except two had significantly reduced DON compared to those with a WWTP. Analysis of the nine watersheds without a WWTP indicated that 68% of the variability in mean annual DOC concentration was explained by urban open areas such as golf courses, sports fields and neighborhood parks under turf grass. There was no relationship between annual mean DON concentration and any land use. Urban open area also explained a significant amount of the variance in stream sodium and stream sodium adsorption ratio (SAR). Ninety-four percent of the variance in annual mean DOC concentration was explained by SAR. Irrigation of urban turf grass with domestic tap water high in sodium (>181 mg Na+ L?1) may be inducing sodic soil conditions in watershed soils in this region resulting in elevated mean annual DOC concentrations in our streams.  相似文献   

2.
Dissolved organic carbon (DOC) in streams draining hydrologically modified and intensively farmed watersheds has not been well examined, despite the importance of these watersheds to water quality issues and the potential of agricultural soils to sequester carbon. We investigated the dynamics of DOC for 14 months during 2006 and 2007 in 6 headwater streams in a heavily agricultural and tile-drained landscape in the midwestern US. We also monitored total dissolved nitrogen (TDN) in the streams and tile drains. The concentrations of DOC in the streams and tile drains ranged from approximately 1–6 mg L?1, while concentrations of TDN, the composition of which averaged >94% nitrate, ranged from <1 to >10 mg L?1. Tile drains transported both DOC and TDN to the streams, but tile inputs of dissolved N were diluted by stream water, whereas DOC concentrations were generally greater in the streams than in tile drains. Filamentous algae were dense during summer base flow periods, but did not appear to contribute to the bulk DOC pool in the streams, based on diel monitoring. Short-term laboratory assays indicated that DOC in the streams was of low bioavailability, although DOC from tile drains in summer had bioavailability of 27%. We suggest that these nutrient-rich agricultural streams are well-suited for examining how increased inputs of DOC, a potential result of carbon sequestration in agricultural soils, could influence ecosystem processes.  相似文献   

3.
A snow addition experiment in moist acidic tussock tundra at Toolik Lake, Alaska, increased winter snow depths 2–3 m, and resulted in a doubling of the summer active layer depth. We used radiocarbon (?14C) to (1) determine the age of C respired in the deep soils under control and deepened active layer conditions (deep snow drifts), and (2) to determine the impact of increased snow and permafrost thawing on surface CO2 efflux by partitioning respiration into autotrophic and heterotrophic components. ?14C signatures of surface respiration were higher in the deep snow areas, reflecting a decrease in the proportion of autotrophic respiration. The radiocarbon age of soil pore CO2 sampled near the maximum mid-July thaw depth was approximately 1,000 years in deep snow treatment plots (45–55 cm thaw depth), while CO2 from the ambient snow areas was ~100 years old (30-cm thaw depth). Heterotrophic respiration ?14C signatures from incubations were similar between the two snow depths for the organic horizon and were extremely variable in the mineral horizon, resulting in no significant differences between treatments in either month. Radiocarbon ages of heterotrophically respired C ranged from <50 to 235 years BP in July mineral soil samples and from 1,525 to 8,300 years BP in August samples, suggesting that old soil C in permafrost soils may be metabolized upon thawing. In the surface fluxes, this old C signal is obscured by the organic horizon fluxes, which are significantly higher. Our results indicate that, as permafrost in tussock tundra ecosystems of arctic Alaska thaws, carbon buried up to several thousands of years ago will become an active component of the carbon cycle, potentially accelerating the rise of CO2 in the atmosphere.  相似文献   

4.
Senesced vegetation is exposed to a wide range of salt concentrations in surface waters resulting from human activities which include deicing salts and irrigation water chemistry. Both dissolved organic carbon (DOC) and salt concentrations are rising in northern hemisphere watersheds, yet there has been little investigation of sodium as a potential mechanism for DOC increases. The objective of this study was to investigate the impact of solution sodicity and salinity on DOC and dissolved organic nitrogen (DON) leaching from five types of senesced and cut vegetation. Vegetation was soaked for 24 h in a series of sodium chloride (NaCl)–calcium chloride (CaCl2) solutions with sodium adsorption ratios (SAR) of 2, 10, or 30 and electrical conductivities of 0.1 dS m?1 through 3.0 dS m?1. Vegetation was also soaked in a sodium bicarbonate (NaHCO3) solution at SAR = 30 and stream water from local watersheds with a range of sodicity and salinity. The mass of both DOC and DON released increased as SAR increased in the NaCl solutions, but the total salinity had inconsistent effects on DOC and DON release. NaHCO3 leached similar amounts of DOC and DON as NaCl. The SAR of the stream water solutions was able to explain 88 % of the variability in DOC leached from vegetation (p < 0.05). The results indicated that sodicity, quantified by SAR, had a significant impact on DOC and DON leaching from senesced vegetation and could be a potential mechanism to explain the observed increases in surface water DOC.  相似文献   

5.
We examined the impact of permafrost on dissolved organic matter (DOM) composition in Caribou-Poker Creeks Research Watershed (CPCRW), a watershed underlain with discontinuous permafrost, in interior Alaska. We analyzed long term data from watersheds underlain with varying degrees of permafrost, sampled springs and thermokarsts, used fluorescence spectroscopy, and measured the bioavailabity of dissolved organic carbon (DOC). Permafrost driven patterns in hydrology and vegetation influenced DOM patterns in streams, with the stream draining the high permafrost watershed having higher DOC and dissolved organic nitrogen (DON) concentrations, higher DOC:DON and greater specific ultraviolet absorbance (SUVA) than the streams draining the low and medium permafrost watersheds. Streams, springs and thermokarsts exhibited a wide range of DOC and DON concentrations (1.5–37.5 mgC/L and 0.14–1.26 mgN/L, respectively), DOC:DON (7.1–42.8) and SUVA (1.5–4.7 L mgC−1 m−1). All sites had a high proportion of humic components, a low proportion of protein components, and a low fluorescence index value (1.3–1.4), generally consistent with terrestrially derived DOM. Principal component analysis revealed distinct groups in our fluorescence data determined by diagenetic processing and DOM source. The proportion of bioavailable DOC ranged from 2 to 35%, with the proportion of tyrosine- and tryptophan-like fluorophores in the DOM being a major predictor of DOC loss (p < 0.05, R 2 = 0.99). Our results indicate that the degradation of permafrost in CPCRW will result in a decrease in DOC and DON concentrations, a decline in DOC:DON, and a reduction in SUVA, possibly accompanied by a change in the proportion of bioavailable DOC.  相似文献   

6.
Dissolved organic carbon (DOC) constitutes a small yet important part of a watershed’s carbon budget because it is mobile and biologically active. Agricultural conservation practices such as native perennial vegetation (NPV) strips will influence carbon cycling of an upland agroecosystem, and could affect how much DOC enters streams in runoff, potentially affecting aquatic ecosystems. In a study conducted in Iowa (USA), four treatments with strips of NPV varying in slope position and proportion of area were randomly assigned among 12 small agricultural watersheds in a balanced incomplete block design. Runoff samples from 2008 to 2010 were analyzed for DOC and correlated with flow data to determine flow weighted DOC concentrations and loads. Data were analyzed for the entire 3 years, annually, seasonally, monthly, by flow event size and for one extreme storm event. Overall we found few differences in DOC concentration with the exception that concentrations were greater in the 10 % NPV at the footslope watersheds than the 20 % NPV in contours watersheds over the 3 years, and the 100 % agricultural treatment had higher DOC concentrations than all NPV treatments during the one extreme event. Because the NPV treatments reduced runoff, DOC export tended to be highest in the 100 % agricultural watersheds over the 3 years and during high flows. We also compared two watersheds that were restored to 100 % NPV and found decreases in DOC concentrations and loads indicating that complete conversion to prairie leads to less watershed DOC export. Regression results also support the contention that increases in the percentage of NPV in the watershed decreases watershed export of DOC. Further analysis indicated that DOC concentrations were diluted as flow event size increased, independent of any treatment effects. It appears groundwater sources become an important component to flow as flow event size increases in these watersheds.  相似文献   

7.
Active processes of permafrost thaw in Western Siberia increase the number of soil subsidencies, thermokarst lakes and thaw ponds. In continuous permafrost zones, this process promotes soil carbon mobilisation to water reservoirs, as well as organic matter (OM) biodegradation, which produces a permanent flux of carbon dioxide (CO2) to the atmosphere. At the same time, the biogeochemical evolution of aquatic ecosystems situated in the transition zone between continuous permafrost and permafrost-free terrain remains poorly known. In order to better understand the biogeochemical processes that occur in thaw ponds and lakes located in discontinuous permafrost zones, we studied ~30 small (1–100,000 m2) shallow (<1 m depth) lakes and ponds formed as a result of permafrost subsidence and thaw of the palsa bog located in the transition zone between the tundra and forest-tundra (central part of Western Siberia). There is a significant increase in dissolved CO2 and methane (CH4) concentration with decreasing water body surface area, with the largest supersaturation with respect to atmospheric CO2 and CH4 in small (<100 m2) permafrost depressions filled with thaw water. Dissolved organic carbon (DOC), conductivity, and metal concentrations also progressively increase from large lakes to thaw ponds and depressions. As such, small water bodies with surface areas of 1–100 m2 that are not accounted for in the existing lake and pond databases may significantly contribute to CO2 and CH4 fluxes to the atmosphere, as well as to the stocks of dissolved trace elements and organic carbon. In situ lake water incubation experiments yielded negligible primary productivity but significant oxygen consumption linked to the mineralisation rate of dissolved OM by heterotrophic bacterioplankton, which produce a net CO2 flux to the atmosphere of 5 ± 2.5 mol C m2 year?1. The most significant result of this study, which has long-term consequences on our prediction of aquatic ecosystem development in the course of permafrost degradation is CO2, CH4, and DOC concentrations increase with decreasing lake age and size. As a consequence, upon future permafrost thaw, the increase in the number of small water bodies, accompanied by the drainage of large thermokarst lakes to the hydrological network, will likely favour (i) the increase of DOC and colloidal metal stocks in surface aquatic systems, and (ii) the enhancement of CO2 and CH4 fluxes from the water surface to the atmosphere. According to a conservative estimation that considers that the total area occupied by water bodies in Western Siberia will not change, this increase in stocks and fluxes could be as high as a factor of ten.  相似文献   

8.
High‐latitude regions store large amounts of organic carbon (OC) in active‐layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near‐surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long‐term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near‐surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire‐induced thawing of near‐surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance.  相似文献   

9.
Because of low net production in arctic and subarctic surface water, dissolved organic matter (DOM) discharged from terrestrial settings plays an important role for carbon and nitrogen dynamics in arctic aquatic systems. Sorption, typically controlling the export of DOM from soil, may be influenced by the permafrost regime. To confirm the potential sorptive control on the release of DOM from permafrost soils in central northern Siberia, we examined the sorption of DOM by mineral soils of Gelisols and Inceptisols with varying depth of the active layer. Water‐soluble organic matter in the O horizons of the Gelisols was less (338 and 407 mg C kg?1) and comprised more dissolved organic carbon (DOC) in the hydrophobic fraction (HoDOC) (63% and 70%) than in the O horizons of the Inceptisols (686 and 706 mg C kg?1, 45% and 48% HoDOC). All A and B horizons from Gelisols sorbed DOC strongly, with a preference for HoDOC. Almost all horizons of the Inceptisols showed a weaker sorption of DOC than those of the Gelisols. The C horizons of the Inceptisols, having a weak overall DOC sorption, sorbed C in the hydrophilic fraction (HiDOC) stronger than HoDOC. The reason for the poor overall sorption and also the preferential sorption of HiDOC is likely the high pH (pH>7.0) of the C horizons and the smaller concentrations of iron oxides. For all soils, the sorption of HoDOC related positively to oxalate‐ and dithionite–citrate‐extractable iron. The A horizons released large amounts of DOC with 46–80% of HiDOC. The released DOC was significantly (r=0.78, P<0.05) correlated with the contents of soil organic carbon. From these results, we assume that large concentrations of DOM comprising large shares of HiDOC can pass mineral soils where the active layer is thin (i.e. in Gelisols), and enter streams. Soils with deep active layer (i.e. Inceptisols), may release little DOM because of more frequent infiltration of DOM into their thick mineral horizons despite their smaller contents of reactive, poorly crystalline minerals. The results obtained for the Inceptisols are in agreement with the situation observed for streams connecting to Yenisei at lower latitudes than 65°50′ with continuous to discontinuous permafrost. The smaller sorption of DOM by the Gelisols is in agreement with the larger DOM concentrations in more northern catchments. However, the Gelisols preferentially retained the HoDOC which dominates the DOC in streams towards north. This discrepancy can be explained by additional seepage water from the organic horizons that is discharged into streams without intensive contact with the mineral soil.  相似文献   

10.
Large runoff, sediment, and nutrient exports from watersheds could occur due to individual extreme climate events or a combination of multiple hydrologic and meteorological conditions. Using high-frequency hydrologic, sediment, and turbidity data we show that freeze–thaw episodes followed by intense winter (February) rainstorms can export very high concentrations and loads of suspended sediment and particulate organic carbon (POC) and nitrogen (PN) from mid-Atlantic watersheds in the US. Peak suspended sediment (> 5000 mg L?1), POC (> 250 mg L?1) and PN (> 15 mg L?1) concentrations at our 12 and 79 ha forested watersheds for the February rainfall-runoff events were highest on record and the fluxes were comparable to those measured for tropical storms. Similar responses were observed for turbidity values (> 400 FNU) at larger USGS-monitored watersheds. Much of the sediments and particulate nutrients likely originated from erosion of stream bank sediments and/or channel storage. Currently, there is considerable uncertainty about the contribution of these sources to nonpoint source pollution, particularly, in watersheds with large legacy sediment deposits. Future climate projections indicate increased intensification of storm events and increased variability of winter temperatures. Freeze–thaw cycles coupled with winter rain events could increase erosion and transport of streambank sediments with detrimental consequences for water quality and health of downstream aquatic ecosystems.  相似文献   

11.
Export of dissolved organic carbon (DOC) from grassland ecosystems can be an important C flux which directly affects ecosystem C balance since DOC is leached from the soil to the groundwater. DOC fluxes and their controlling factors were investigated on two grassland sites with similar climatic conditions but different soil types (Vertisol vs. Arenosol) for a 2.5-year period. Parts of both grasslands were disturbed by deep ploughing during afforestation. Contrary to what was expected, ploughing did not increase DOC export but surface soil DOC concentrations decreased by 28% (Vertisol) and 14% (Arenosol). DOC flux from the soil profile was negatively influences by the clay content of the soil with seven times larger DOC export in the clay-poor Arenosol (55 kg C ha?1 a?1) than in the clay-rich Vertisol (8 kg C ha?1 a?1). At the Arenosol site, highest DOC concentrations were measured in late summer, whereas in the Vertisol there was a time lag of several months between surface and subsoil DOC with highest subsoil DOC concentrations during winter season. DOC export was not correlated with soil organic carbon stocks. Large differences in 14C concentrations of 22–40 pMC between soil organic carbon and DOC in the subsoil indicated that both C pools are largely decoupled. We conclude that DOC export at both sites is not controlled by the vegetation but by physicochemical parameters such as the adsorption capacity of soil minerals and the water balance of the ecosystem. Only in the acidic sandy Arenosol DOC export was a significant C flux of about 8% of net ecosystem production.  相似文献   

12.
Leaching of dissolved organic carbon (DOC) from the forest floor and transport in soil solution into the mineral soil are important for carbon cycling in boreal forest ecosystems. We examined DOC concentrations in bulk deposition, throughfall and in soil solutions collected under the O and B horizons in three Norway spruce stands along a climatic gradient in Sweden. Mean annual temperature for the three sites was 5.5, 3.4 and 1.2 °C. At each site we also examined the effect of soil moisture on DOC dynamics along a moisture gradient (dry, mesic and moist plots). To obtain information about the fate of DOC leached from the O horizon into the mineral soil, 14C measurements were made on bulk organic matter and DOC. The concentration and fluxes of DOC in O horizon leachates were highest at the southern site and lowest at the northern. Average DOC concentrations at the southern, central and northern sites were 49, 39 and 30 mg l−1, respectively. We suggest that DOC leaching rates from O horizons were related to the net primary production of the ecosystem. Soil temperature probably governed the within-year variation in DOC concentration in O horizon leachates, but the peak in DOC was delayed relative to that of temperature, probably due to sorption processes. Neither soil moisture regime (dry, mesic or moist plots) nor seasonal variation in soil moisture seemed to be of any significance for the concentration of DOC leached from the O horizon. The 14C measurements showed that DOC in soil solution collected below the B horizon was derived mainly from the B horizon itself, rather than from the O horizon, indicating a substantial exchange (sorption–desorption reactions) between incoming DOC and soil organic carbon in the mineral soil.  相似文献   

13.
1. Riparian zones function as important ecotones that reduce nitrate concentration in groundwater and inputs into streams. In the boreal forest of interior Alaska, permafrost confines subsurface flow through the riparian zone to shallow organic horizons, where plant uptake of nitrate and denitrification are typically high. 2. In this study, riparian zone nitrogen retention was examined in a high permafrost catchment (approximately 53% of land area underlain by permafrost) and a low permafrost catchment (approximately 3%). To estimate the contribution of the riparian zone to catchment nitrogen retention, we analysed groundwater chemistry using an end‐member mixing model. 3. Stream nitrate concentration was over twofold greater in the low permafrost catchment than the high permafrost catchment. Riparian groundwater was not significantly different between catchments, averaging 13 μm overall. Nitrogen retention, measured using the end‐member mixing model, averaged 0.75 and 0.22 mmol N m?2 day?1 in low and high permafrost catchments, respectively, over the summer. The retention rate of nitrogen in the riparian zone was 10–15% of the export in stream flow. 4. Our results indicate that the riparian zone functions as an important sink for groundwater nitrate and dissolved organic carbon (DOC). However, differences in stream nitrate and DOC concentrations between catchments cannot be explained by solute inputs from riparian groundwater to the stream and differences between streams are probably attributable to deeper groundwater inputs or flows from springs that bypass the riparian zone.  相似文献   

14.
Response of soil chemistry to forest dieback after bark beetle infestation   总被引:1,自引:0,他引:1  
We evaluated changes in the chemistry of the uppermost soil horizons in an unmanaged spruce forest (National Park Bohemian Forest, Czech Republic) for 3 years after dieback caused by a bark beetle infestation, and compared these changes with a similar undisturbed forest area. The soils below the disturbed forest received 2–6 times more elements via litter fall compared to the unaffected plot. The subsequent decomposition of litter and reduced nutrient uptake by trees resulted in a steep increase in soil concentrations of soluble N (NH4-N, organic-bound N) and P forms in the disturbed plot. The average concentrations of NH4-N and soluble reactive P increased from 0.8 to 4.4 mmol kg?1 and from 0.04 to 0.9 mmol kg?1, respectively, in the uppermost soil horizon. Decomposition of litter at the disturbed plot elevated soil concentrations of Ca2+, Mg2+ and K+, which replaced Al3+ and H+ ions from the soil sorption complex. Consequently, soil concentrations of exchangeable base cations increased from 120 to 200 meq kg?1, while exchangeable Al3+ and H+ decreased 66 and 50 %, respectively, and soil base saturation increased from 40 to 70 %. The Al3+ liberation did not elevate concentrations of ionic Al in the soil solution, because most of the liberated Al3+ was rapidly complexed by dissolved organic carbon (DOC) and transformed to DOC–Al complexes. The chemical parameters investigated at the unaffected plot remained stable during the study.  相似文献   

15.
Nitrogen (N) deposition and land management practices can have profound impacts on the structure and functioning of alpine ecosystems occupying headwaters of major river systems. Such impacts have the potential to result in loss of N to surface waters and acidification, both of which could have serious consequences for water quality and downstream habitats. We present results from a 6-year study of Calluna-dominated alpine heathland in Scotland, designed to assess the interactive effects of N addition (0 and 50 kg N ha?1 y?l), simulated accidental fire and grazing on soil solution chemistry. Both N addition and to a lesser extent burning had significant effects on soil solution chemistry, whereas grazing had no significant impact. Soil solution nitrate (NO3 ?) and ammonium (NH4 +) concentration showed a rapid response to N addition and N addition also resulted in acidification of soil solution. A ‘flush’ of base cations, which normally buffer soil from the acid effects of deposited N, accompanied the excess N released from the soil to soil solution. The N treatment had no effect on dissolved organic carbon (DOC), however, concentrations were significantly (14%) lower at the burned plots. In addition to treatment effects, temporal analysis of data from control plots demonstrated that soil solution chemistry was influenced by extremes in weather conditions. Peak NO3 ? concentrations were observed in soil solution following the cold winter of 2000–2001 when there were frequent freeze/thaw events. A large pulse of base cations was lost from the soil following the dry year of 2003. These weather-induced responses potentially exacerbate the treatment effects observed in this study.  相似文献   

16.
Metal pollution, in combination with other environmental stressors such as acid deposition and climate change, may disturb metal biogeochemical cycles. To investigate the influence of dissolved organic carbon, acidity and seasonality on metal geochemistry, this study has described concentrations of 19 metals as they pass through an acidified forested catchment on the Precambrian Shield in south-central Ontario, Canada. Metal, dissolved organic carbon (DOC) and sulphate (SO4 2−) concentrations fluctuate throughout the catchment compartments as the water passes through and interacts with vegetation, soils and bedrock. Relationships among metals, DOC and SO4 2− are most pronounced in compartments where DOC and SO4 2− exhibit high variability, namely in the throughfall, organic horizon soil water, and wetland-draining stream. Metal, DOC and SO4 2− concentrations varied seasonally in the streams, and temporal coherence occurred among metal, DOC and SO4 2− concentrations in the organic horizon soil water and the wetland-draining stream (PC1). In the wetland-draining stream, the highest DOC, Cr, Cu, Fe, Pb, and V concentrations occur in the summer, whereas concentrations of SO4 2− and most other metals peak in the fall after a period of drought. Despite the rural location, provincial water quality objectives for surface water were exceeded for many metals when the peak fall values occurred.  相似文献   

17.
The Yenisei river passes every type of permafrost regime, from south to north, being characterized by increasing continuity of the permafrost and by decreasing thickness of the active layer. We used that situation to test the hypothesis that amounts and properties of dissolved organic matter (DOM) in small streams draining forested catchments respond to different permafrost regimes. Water samples were taken from eight tributaries along the Yenisei between 67°30′N and 65°49′N latitude. The samples were analysed for dissolved organic carbon (DOC) and nitrogen (DON) and DOM was characterized by its chemical composition (XAD‐8 fractionation, sugars, lignin phenols, amino acids, protein, UV and fluorescence spectroscopy), and its biodegradability. Most properties of the tributary waters varied depending on latitude. The higher the latitude, the higher were DOC, DON and the proportion of the hydrophobic fraction of DOC. The contribution of hexoses and pentoses to DOC were higher in southern tributaries; on the other hand, phenolic compounds were more abundant in northern tributaries. Mineralizable DOC ranged between 4% and 28% of total DOC. DOM in northern tributaries was significantly (P<0.05) less biodegradable than that in southern tributaries reflecting the differences in the chemical properties of DOM. Our results suggest that the differences in DOM properties are mainly attributed to differences of permafrost regime, affecting depth of active layer, soil organic matter accumulation and vegetation. Soil organic matter and vegetation determine the amount and composition of DOM produced in the catchments while the depth of the active layer likely controls the quantity and quality of DOM exported to streams. Sorptive interactions of DOM with the soil mineral phase typically increase with depth. The results imply that a northern shift of discontinuous permafrost likely will change in the long term the input of DOM into the Yenisei and thus probably into the Kara Sea.  相似文献   

18.
Evans  Lucas R.  Pierson  Derek  Lajtha  Kate 《Biogeochemistry》2020,149(1):75-86

Dissolved organic carbon (DOC) flux is an important mechanism to convey soil carbon (C) from aboveground organic debris (litter) to deeper soil horizons and can influence the formation of stable soil organic C compounds. The magnitude of this flux depends on both infiltration and DOC production rates which are functions of the climatic, soil, topographic and ecological characteristics of a region. Aboveground litter quantity and quality was manipulated for 20 years in an old-growth Douglas fir forest under six treatments to study relationships among litter inputs, DOC production and flux, and soil C dynamics. DOC concentrations were measured at two depths using tension lysimeters, and a hydrologic model was created to quantify water and DOC flux through the soil profile. DOC concentrations ranged from 3.0–8.0 and 1.5–2.5 mg C/L among treatments at 30 and 100 cm below the soil surface, respectively. Aboveground detrital inputs did not have a consistent positive effect on soil solution DOC; the addition of coarse woody debris increased soil solution DOC by 58% 30 cm belowground, while doubling the mass of aboveground leaf litter decreased DOC concentrations by 30%. We suggest that high-quality leaf litter accelerated microbial processing, resulting in a “priming” effect that led to the lower concentrations. Annual DOC flux into groundwater was small (2.7–3.7 g C/m2/year) and accounts for < 0.1% of estimated litter C at the site. Therefore, direct DOC loss from surface litter to groundwater is relatively negligible to the soil C budget. However, DOC flux into the soil surface was much greater (73–210 g C/m2/year), equivalent to 1.4–2.4% of aboveground litter C. Therefore, DOC transport is an important source of C to shallow soil horizons.

  相似文献   

19.
王雯倩  蔡玉山  肖湘  段亮亮 《生态学报》2023,43(16):6716-6727
溶解性有机碳(DOC)的输移过程是流域碳循环中重要的组成部分,对全球碳循环产生重要影响。以大兴安岭多年冻土区的典型森林小流域-老爷岭流域为研究对象,获得2021年4月9日到6月30日冻融期降雨量、气温、土温等气象数据及逐日径流量、径流DOC浓度,计算了冻融循环期(4月9日-28日)和融化期(4月29日-6月30日)流域径流DOC的输出通量,揭示了径流DOC浓度及输出通量的影响因素。结果表明:(1)研究时段内,老爷岭流域径流DOC浓度变化范围为3.88-33.75 mg/L,流域上游的径流DOC浓度变化趋势与下游基本一致,DOC浓度随着温度的升高呈现下降趋势,4月份平均径流DOC浓度明显高于5、6月份。(2)研究时段内流域径流DOC总输出通量为3215.48 kg/km2,其中5月径流DOC输出通量高于4、6月份。径流量与径流DOC输出通量存在显著正相关关系(P<0.05),是流域DOC输出通量的主导因素。(3)研究时段内流域DOC浓度与平均气温呈极显著负相关(R2=0.5048,P<0.001);降水样品中的DOC浓度变化范围为1.06-9.42 mg/L,显著低于径流DOC浓度;土壤中DOC含量变化趋势与径流DOC变化趋势一致,0-10 cm、10-20 cm土壤平均DOC浓度范围为77.57-133.99 mg/L。(4)冻融循环期平均日径流DOC浓度(24.02 mg/L)显著(P<0.05)高于融化期(14.64 mg/L),而融化期平均日DOC输出通量(48.02 kg/km2)是冻融循环期(9.52 kg/km2)的5倍。研究结果揭示了大兴安岭多年冻土小流域春季冻融期径流DOC的输移特征及其影响因素,对理解多年冻土区碳循环有重要意义。  相似文献   

20.
We evaluated (1) the longitudinal pattern of stream chemistry and (2) the effects of the riparian zone on this longitudinal pattern for nitrate (NO3 ), dissolved organic carbon (DOC), and total dissolved iron (Fe). We selected two small watersheds; the “southern watershed” had an extending riparian wetland and the “northern watershed” had a narrow riparian area. Stream NO3 concentrations decreased from the spring to outlet of both watersheds. In the southern watershed, stream DOC concentration decreased from the spring to midstream and then increased to the outlet. Stream Fe concentration in the southern watershed longitudinally increased. On the other hand, the northern watershed exhibited no longitudinal pattern for DOC and Fe concentrations. In both watersheds, while NO3 concentrations in the soil and ground water were lower than those in the stream waters, DOC and Fe concentrations exhibited the opposite patterns. The longitudinal decreases of NO3 concentrations in both streams and increase of stream Fe in the southern watershed mainly resulted from the inflow of the soil and ground water to the stream. The decrease in stream DOC from the spring to midstream in the southern watershed was due to the deep groundwater having low DOC, while the subsequent increase to the surrounding soil and ground water. Moreover, considerations of stream solute flow with soil and ground water chemistry suggested other mechanisms adding NO3 and removing/diluting DOC and Fe, especially for the northern watershed; coexistence of oxidizing and reducing conditions in the riparian zone might control the longitudinal concentration change in the stream water chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号