首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正> In this paper we investigated how the running speed would affect the dynamics of body pitching, and whether body inertiais important for animals. Passive trotting of spring-mass model and passive bounding of spring-beam model were studied atdifferent speeds for different sets of body parameters respectively. Furthermore, different body inertias were used in bounding.We found that running speed exerts effect on leg performance by means of centrifugal force. The centrifugal force can be understoodas an enhancement to the natural frequency of the spring-mass system. The disadvantage of body pitching may beoffset by the great increase in centrifugal force at high speed. The results also reveal that body mass distribution might not be themain reason for the difference in maximal running speeds of different animals.  相似文献   

2.
3.
Despite impressive variation in leg number, length, position and type of skeleton, similarities of legged, pedestrian locomotion exist in energetics, gait, stride frequency and ground-reaction force. Analysis of data available in the literature showed that a bouncing, spring-mass, monopode model can approximate the energetics and dynamics of trotting, running, and hopping in animals as diverse as cockroaches, quail and kangaroos. From an animal's mechanical-energy fluctuation and ground-reaction force, we calculated the compression of a virtual monopode's leg and its stiffness. Comparison of dimensionless parameters revealed that locomotor dynamics depend on gait and leg number and not on body mass. Relative stiffness per leg was similar for all animals and appears to be a very conservative quantity in the design of legged locomotor systems. Differences in the general dynamics of gait are based largely on the number of legs acting simultaneously to determine the total stiffness of the system. Four- and six-legged trotters had a greater whole body stiffness than two-legged runners operating their systems at about the same relative speed. The greater whole body stiffness in trotters resulted in a smaller compression of the virtual leg and a higher natural frequency and stride frequency.  相似文献   

4.
Like human walking, passive dynamic walking—i.e. walking down a slope with no actuation except gravity—is energy efficient by exploiting the natural dynamics. In the animal world, neural oscillators termed central pattern generators (CPGs) provide the basic rhythm for muscular activity in locomotion. We present a CPG model, which automatically tunes into the resonance frequency of the passive dynamics of a bipedal walker, i.e. the CPG model exhibits resonance tuning behavior. Each leg is coupled to its own CPG, controlling the hip moment of force. Resonance tuning above the endogenous frequency of the CPG—i.e. the CPG’s eigenfrequency—is achieved by feedback of both limb angles to their corresponding CPG, while integration of the limb angles provides resonance tuning at and below the endogenous frequency of the CPG. Feedback of the angular velocity of both limbs to their corresponding CPG compensates for the time delay in the loop coupling each limb to its CPG. The resonance tuning behavior of the CPG model allows the gait velocity to be controlled by a single parameter, while retaining the energy efficiency of passive dynamic walking.  相似文献   

5.

Background

Many legged animals change gaits when increasing speed. In insects, only one gait change has been documented so far, from slow walking to fast running, which is characterised by an alternating tripod. Studies on some fast-running insects suggested a further gait change at higher running speeds. Apart from speed, insect gaits and leg co-ordination have been shown to be influenced by substrate properties, but the detailed effects of speed and substrate on gait changes are still unclear. Here we investigate high-speed locomotion and gait changes of the cockroach Nauphoeta cinerea, on two substrates of different slipperiness.

Results

Analyses of leg co-ordination and body oscillations for straight and steady escape runs revealed that at high speeds, blaberid cockroaches changed from an alternating tripod to a rather metachronal gait, which to our knowledge, has not been described before for terrestrial arthropods. Despite low duty factors, this new gait is characterised by low vertical amplitudes of the centre of mass (COM), low vertical accelerations and presumably reduced total vertical peak forces. However, lateral amplitudes and accelerations were higher in the faster gait with reduced leg synchronisation than in the tripod gait with distinct leg synchronisation.

Conclusions

Temporally distributed leg force application as resulting from metachronal leg coordination at high running speeds may be particularly useful in animals with limited capabilities for elastic energy storage within the legs, as energy efficiency can be increased without the need for elasticity in the legs. It may also facilitate locomotion on slippery surfaces, which usually reduce leg force transmission to the ground. Moreover, increased temporal overlap of the stance phases of the legs likely improves locomotion control, which might result in a higher dynamic stability.
  相似文献   

6.
Kim S  Park S 《Journal of biomechanics》2011,44(7):1253-1258
Bipedal walking models with compliant legs have been employed to represent the ground reaction forces (GRFs) observed in human subjects. Quantification of the leg stiffness at varying gait speeds, therefore, would improve our understanding of the contributions of spring-like leg behavior to gait dynamics. In this study, we tuned a model of bipedal walking with damped compliant legs to match human GRFs at different gait speeds. Eight subjects walked at four different gait speeds, ranging from their self-selected speed to their maximum speed, in a random order. To examine the correlation between leg stiffness and the oscillatory behavior of the center of mass (CoM) during the single support phase, the damped natural frequency of the single compliant leg was compared with the duration of the single support phase. We observed that leg stiffness increased with speed and that the damping ratio was low and increased slightly with speed. The duration of the single support phase correlated well with the oscillation period of the damped complaint walking model, suggesting that CoM oscillations during single support may take advantage of resonance characteristics of the spring-like leg. The theoretical leg stiffness that maximizes the elastic energy stored in the compliant leg at the end of the single support phase is approximated by the empirical leg stiffness used to match model GRFs to human GRFs. This result implies that the CoM momentum change during the double support phase requires maximum forward propulsion and that an increase in leg stiffness with speed would beneficially increase the propulsion energy. Our results suggest that humans emulate, and may benefit from, spring-like leg mechanics.  相似文献   

7.
Developing efficient walking gaits for quadruped robots has intrigued investigators for years. Trot gait, as a fast locomotion gait, has been widely used in robot control. This paper follows the idea of the six determinants of gait and designs a trot gait for a parallel-leg quadruped robot, Baby Elephant. The walking period and step length are set as constants to maintain a relatively fast speed while changing different foot trajectories to test walking quality. Experiments show that kicking leg back improves body stability. Then, a steady and smooth trot gait is designed. Furthermore, inspired by Central Pattern Generators (CPG), a series CPG model is proposed to achieve robust and dynamic trot gait. It is generally believed that CPG is capable of producing rhythmic movements, such as swimming, walking, and flying, even when isolated from brain and sensory inputs. The proposed CPG model, inspired by the series concept, can automatically learn the previous well-designed trot gait and reproduce it, and has the ability to change its walking frequency online as well. Experiments are done in real world to verify this method.  相似文献   

8.
The oscillatory behavior of the center of mass (CoM) and the corresponding ground reaction force (GRF) of human gait for various gait speeds can be accurately described in terms of resonance using a spring–mass bipedal model. Resonance is a mechanical phenomenon that reflects the maximum responsiveness and energetic efficiency of a system. To use resonance to describe human gait, we need to investigate whether resonant mechanics is a common property under multiple walking conditions. Body mass and leg stiffness are determinants of resonance; thus, in this study, we investigated the following questions: (1) whether the estimated leg stiffness increased with inertia, (2) whether a resonance-based CoM oscillation could be sustained during a change in the stiffness, and (3) whether these relationships were consistently observed for different walking speeds. Seven healthy young subjects participated in over-ground walking trials at three different gait speeds with and without a 25-kg backpack. We measured the GRFs and the joint kinematics using three force platforms and a motion capture system. The leg stiffness was incorporated using a stiffness parameter in a compliant bipedal model that best fitted the empirical GRF data. The results showed that the leg stiffness increased with the load such that the resonance-based oscillatory behavior of the CoM was maintained for a given gait speed. The results imply that the resonance-based oscillation of the CoM is a consistent gait property and that resonant mechanics may be useful for modeling human gait.  相似文献   

9.
In this paper a bio-inspired approach of velocity control for a quadruped robot running with a bounding gait on compliant legs is set up. The dynamic properties ofa sagittal plane model of the robot are investigated. By analyzing the stable fixed points based on Poincare map, we find that the energy change of the system is the main source for forward velocity adjustment. Based on the analysis of the dynamics model of the robot, a new simple linear running controller is proposed using the energy control idea, which requires minimal task level feedback and only controls both the leg torque and ending impact angle. On the other hand, the functions of mammalian vestibular reflexes are discussed, and a reflex map between forward velocity and the pitch movement is built through statistical regression analysis. Finally, a velocity controller based on energy control and vestibular reflexes is built, which has the same structure as the mammalian nervous mechanism for body posture control. The new con- troller allows the robot to run autonomously without any other auxiliary equipment and exhibits good speed adjustment capa- bility. A series simulations and experiments were set to show the good movement agility, and the feasibility and validity of the robot system.  相似文献   

10.
Spinal pattern generators in quadrupedal animals can coordinate different forms of locomotion, like trotting or galloping, by altering coordination between the limbs (interlimb coordination). In the human system, infants have been used to study the subcortical control of gait, since the cerebral cortex and corticospinal tract are immature early in life. Like other animals, human infants can modify interlimb coordination to jump or step. Do human infants possess functional neuronal circuitry necessary to modify coordination within a limb (intralimb coordination) in order to generate distinct forms of alternating bipedal gait, such as walking and running? We monitored twenty-eight infants (7–12 months) stepping on a treadmill at speeds ranging between 0.06–2.36 m/s, and seventeen adults (22–47 years) walking or running at speeds spanning the walk-to-run transition. Six of the adults were tested with body weight support to mimic the conditions of infant stepping. We found that infants could accommodate a wide range of speeds by altering stride length and frequency, similar to adults. Moreover, as the treadmill speed increased, we observed periods of flight during which neither foot was in ground contact in infants and in adults. However, while adults modified other aspects of intralimb coordination and the mechanics of progression to transition to a running gait, infants did not make comparable changes. The lack of evidence for distinct walking and running patterns in infants suggests that the expression of different functional, alternating gait patterns in humans may require neuromuscular maturation and a period of learning post-independent walking.  相似文献   

11.
The objective of the work presented here was the modeling of a bipedal robot using a central pattern generator (CPG) formed by a set of mutually coupled Rayleigh oscillators. We analyzed a 2D model, with the three most important determinants of gait, that performs only motions parallel to the sagittal plane. Using oscillators with integer relation of frequency, we determined the transient motion and the stable limit cycles of the network formed by the three oscillators, showing the behavior of the knee angles and the hip angle. A comparison of the plotted graphs revealed that the system provided excellent results when compared to experimental analysis. Based on the results of the study, we come to the conclusion that the use of mutually coupled Rayleigh oscillators can represent an excellent method of signal generation, allowing their application for feedback control of a walking machine.Acknowledgements The authors would like to express their gratitude to CNPq and CAPES for the financial support provided during the course of this research.  相似文献   

12.
Many parameters of gait and performance, including stride frequency, stride length, maximum speed, and rate of O2 uptake are experimentally found to be power-law functions of body weight in running quadrupeds. All of these parameters are reasonably easy to measure except maximum speed, where the question arises whether one means top sprinting speed or top speed for sustained running. Moreover, differences in training and motivation make comparisons of top speed difficult. The problem is circumvented by comparing animals running at the transition between trotting and galloping, a physiologically similar speed. Theoretical models are proposed which preserve either geometric similarity, elastic similarity, or static stress similarity between animals of large and small body weights. The model postulating elastic similarity provides the best correlation with published data on body and bone proportions, body surface area, resting metabolic rate, and basal heart and lung frequencies. It also makes the most successful prediction of stride frequency, stride length, limb excursion angles, and the metabolic power required for running at the trot-gallop transition in quadrupeds ranging in size from mice to horses.  相似文献   

13.
Horses have a tendency to utilize a relatively narrow set of speeds near the middle of a much broader range they are capable of using within a particular gait, i.e., a preferred speed. Possible explanations for this behavior include minimizing musculoskeletal stresses and maximizing metabolic economy. If metabolic economy (cost of transport, CT) and preferred speeds are linked, then shifts in CT should produce shifts in preferred speed. To test this hypothesis, preferred speed was measured in trotting horses (n = 7) unloaded on the level and loaded with 19% of their body weight on the level. The preferred speed on the level was 3.33 +/- 0.09 (SE) m/s, and this decreased to 3.13 +/- 0.11 m/s when loaded. In both conditions (no load and load), the rate of O2 consumption (n = 3) was a curvilinear function of speed that produced a minimum CT (i.e., speed at which trotting is most economical). When unloaded, the speed at which CT was minimum was very near the preferred speed. With a load, CT decreased and the minimum was also near the preferred speed of horses while carrying a load.  相似文献   

14.
Kinematic and center of mass (CoM) mechanical variables used to define terrestrial gaits are compared for various tetrapod species. Kinematic variables (limb phase, duty factor) provide important timing information regarding the neural control and limb coordination of various gaits. Whereas, mechanical variables (potential and kinetic energy relative phase, %Recovery, %Congruity) provide insight into the underlying mechanisms that minimize muscle work and the metabolic cost of locomotion, and also influence neural control strategies. Two basic mechanisms identified by Cavagna et al. (1977. Am J Physiol 233:R243-R261) are used broadly by various bipedal and quadrupedal species. During walking, animals exchange CoM potential energy (PE) with kinetic energy (KE) via an inverted pendulum mechanism to reduce muscle work. During the stance period of running (including trotting, hopping and galloping) gaits, animals convert PE and KE into elastic strain energy in spring elements of the limbs and trunk and regain this energy later during limb support. The bouncing motion of the body on the support limb(s) is well represented by a simple mass-spring system. Limb spring compliance allows the storage and return of elastic energy to reduce muscle work. These two distinct patterns of CoM mechanical energy exchange are fairly well correlated with kinematic distinctions of limb movement patterns associated with gait change. However, in some cases such correlations can be misleading. When running (or trotting) at low speeds many animals lack an aerial period and have limb duty factors that exceed 0.5. Rather than interpreting this as a change of gait, the underlying mechanics of the body's CoM motion indicate no fundamental change in limb movement pattern or CoM dynamics has occurred. Nevertheless, the idealized, distinctive patterns of CoM energy fluctuation predicted by an inverted pendulum for walking and a bouncing mass spring for running are often not clear cut, especially for less cursorial species. When the kinematic and mechanical patterns of a broader diversity of quadrupeds and bipeds are compared, more complex patterns emerge, indicating that some animals may combine walking and running mechanics at intermediate speeds or at very large size. These models also ignore energy costs that are likely associated with the opposing action of limbs that have overlapping support times during walking. A recent model of terrestrial gait (Ruina et al., 2005. J Theor Biol, in press) that treats limb contact with the ground in terms of collisional energy loss indicates that considerable CoM energy can be conserved simply by matching the path of CoM motion perpendicular to limb ground force. This model, coupled with the earlier ones of pendular exchange during walking and mass-spring elastic energy savings during running, provides compelling argument for the view that the legged locomotion of quadrupeds and other terrestrial animals has generally evolved to minimize muscle work during steady level movement.  相似文献   

15.
Hard-wired central pattern generators for quadrupedal locomotion   总被引:5,自引:0,他引:5  
Animal locomotion is generated and controlled, in part, by a central pattern generator (CPG), which is an intraspinal network of neurons capable of producing rhythmic output. In the present work, it is demonstrated that a hard-wired CPG model, made up of four coupled nonlinear oscillators, can produce multiple phase-locked oscillation patterns that correspond to three common quadrupedal gaits — the walk, trot, and bound. Transitions between the different gaits are generated by varying the network's driving signal and/or by altering internal oscillator parameters. The above in numero results are obtained without changing the relative strengths or the polarities of the system's synaptic interconnections, i.e., the network maintains an invariant coupling architecture. It is also shown that the ability of the hard-wired CPG network to produce and switch between multiple gait patterns is a model-independent phenomenon, i.e., it does not depend upon the detailed dynamics of the component oscillators and/or the nature of the inter-oscillator coupling. Three different neuronal oscillator models — the Stein neuronal model, the Van der Pol oscillator, and the FitzHugh-Nagumo model -and two different coupling schemes are incorporated into the network without impeding its ability to produce the three quadrupedal gaits and the aforementioned gait transitions.  相似文献   

16.
The neuronal generation of vertebrate locomotion has been extensively studied in the lamprey. Models at different levels of abstraction are being used to describe this system, from abstract nonlinear oscillators to interconnected model neurons comprising multiple compartments and a Hodgkin-Huxley representation of the most relevant ion channels. To study the role of sensory feedback by simulation, it eventually also becomes necessary to incorporate the mechanical movements in the models. By using simplifying models of muscle activation, body mechanics, counteracting water forces, and sensory feedback through stretch receptors and vestibular organs, we have been able to close the feedback loop to enable studies of the interaction between the neuronal and the mechanical systems. The neuromechanical simulations reveal that the currently known network is sufficient for generating a whole repertoire of swimming patterns. Swimming at different speeds and with different wavelengths, together with the performance of lateral turns can all be achieved by simply varying the brainstem input. The neuronal mechanisms behind pitch and roll manoeuvres are less clear. We have put forward a 'crossed-oscillators' hypothesis where partly separate dorsal and ventral circuits are postulated. Neuromechanical simulations of this system show that it is also capable of generating realistic pitch turns and rolls, and that vestibular signals can stabilize the posture during swimming.  相似文献   

17.
There is extensive modulation of cutaneous and H-reflexes during rhythmic leg movement in humans. Mechanisms controlling reflex modulation (e.g., phase- and task-dependent modulation, and reflex reversal) during leg movements have been ascribed to the activity of spinal central pattern generating (CPG) networks and peripheral feedback. Our working hypothesis has been that neural mechanisms (i.e., CPGs) controlling rhythmic movement are conserved between the human lumbar and cervical spinal cord. Thus reflex modulation during rhythmic arm movement should be similar to that for rhythmic leg movement. This hypothesis has been tested by studying the regulation of reflexes in arm muscles during rhythmic arm cycling and treadmill walking. This paper reviews recent studies that have revealed that reflexes in arm muscles show modulation within the movement cycle (e.g., phase-dependency and reflex reversal) and between static and rhythmic motor tasks (e.g., task-dependency). It is concluded that reflexes are modulated similarly during rhythmic movement of the upper and lower limbs, suggesting similar motor control mechanisms. One notable exception to this pattern is a failure of contralateral arm movement to modulate reflex amplitude, which contrasts directly with observations from the leg. Overall, the data support the hypothesis that CPG activity contributes to the neural control of rhythmic arm movement.  相似文献   

18.
SYNOPSIS: Most mammals use symmetrical gaits (such as the trot)at moderate speeds but change to asymmetrical gaits (gallops)at high speeds. A mathematical model of quadrupedal gaits failedto show any advantage in this change: it seemed to show that,even at high speeds, there was always a symmetrical gait thatwas at least as economical as galloping. That model treatedthe back as rigid, but another model seemed to show that backmovements such as occur in galloping could only increase theenergy cost. However, metabolic measurements on horses showedthat galloping is more economical than trotting at high speeds.The explanation seems to be that kinetic energy fluctuations,due to backward and forward swinging of the legs, become verylarge at high speeds. Galloping makes it possible for kineticenergy associated with leg movements to be stored briefly asstrain energy in elastic structures in the back, and returnedin an elastic recoil. The most important of the strain energystores in the back, that have been discovered so far, is theaponeurosis of the longissimus muscle.  相似文献   

19.
A significant characteristic in a swimming pattern of a lamprey is the generation of a constant phase lag along its body in spite of the wide range of undulation frequencies. In this paper, we discuss a mathematical treatment for coupled oscillators with time-delayed interaction and propose a model for the central pattern generator (CPG) of a lamprey to account for the generation of a constant phase relation, with consideration of the signal conduction time. From this model, it is suggested that the desired phase relation can be produced by long ascending connections from the tail to the neck region of the CPG.  相似文献   

20.
This paper presents a control approach for bounding gait of quadruped robots by applying the concept of Virtual Constraints (VCs).A VC is a relative motion relation between two related joints imposed to the robots in terms of a specified gait,which can drive the robot to run with desired gait.To determine VCs for highly dynamic bounding gait,the limit cycle motions of the passive dynamic model of bounding gait are analyzed.The leg length and hip/shoulder angle trajectories corresponding to the limit cycles are parameterized by leg angles using 4 th-order polynomials.In order to track the calculated periodic motions,the polynomials are imposed on the robot as virtual motion constraints by a high-level state machine controller.A bounding speed feedback strategy is introduced to stabilize the robot running speed and enhance the stability.The control approach was applied to a newly designed lightweight bioinspired quadruped robot,AgiDog.The experimental results demonstrate that the robot can bound at a frequency up to 5 Hz and bound at a maximum speed of 1.2 m·s-1 in sagittal plane with a Froude number approximating to 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号