首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
J Amemura  H Ichikawa  E Ohtsubo 《Gene》1990,88(1):21-24
A series of mutant terminal inverted repeats (IRs), having 2 bp substitutions at various sites within the 38-bp IR sequence of the ampicillin-resistance transposon Tn3, were tested for transposition immunity to Tn3. Mutations within region 1-10 in the IR did not affect transposition immunity, while mutations within region 13-38 inactivated the immunity function. These two regions corresponded to domain A which was not bound specifically by Tn3 transposase and to domain B which was bound by the transposase, respectively. This indicates that specific binding of transposase to domain B within the IR sequence is responsible for transposition immunity.  相似文献   

2.
Factors that affect transposition mediated by the Tn21 transposase   总被引:1,自引:0,他引:1  
The frequencies of one-ended transposition mediated by the Tn21 transposase acting on plasmids containing 38-bp inverted repeat sequences (IRs) of both Tn21 and of Tn501/Tn1721 and Tn2501 were measured. The enzyme acted on all these IRs, but more efficiently on the homologous sequences. These differences were magnified when the enzyme acted on plasmids containing two copies of the IRs, inverted with respect to each other. The Tn21 enzyme did not recognize the IR of Tn3. The Tn501 transposase did not mediate measurable one-ended transposition of any of the plasmids used, including those containing an IR of Tn501.  相似文献   

3.
Two domains in the terminal inverted-repeat sequence of transposon Tn3   总被引:4,自引:0,他引:4  
H Ichikawa  K Ikeda  J Amemura  E Ohtsubo 《Gene》1990,86(1):11-17
Tn3 and related transposons have terminal inverted repeats (IR) of about 38 bp that are needed as sites for transposition. We made mini-Tn3 derivatives which had a wild-type IR of Tn3 at one end and either the divergent IR of the Tn3-related transposon, gamma delta or IS101, or a mutant IR of Tn3 at the other end. We then examined both in vivo transposition (cointegration between transposition donor and target molecules) of these mini-Tn3 elements and in vitro binding of Tn3-encoded transposase to their IRs. None of the elements with an IR of gamma delta or IS101 mediated cointegration efficiently. This was due to inefficient binding of transposase to these IR. Most mutant IR also interfered with cointegration, even though transposase bound to some mutant IR as efficiently as it did to wild type. This permitted the Tn3 IR sequence to be divided into two domains, named A and B, with respect to transposase binding. Domain B, at positions 13-38, was involved in transposase binding, whereas domain A, at positions 1-10, was not. The A domain may contain the sequence recognized by some other (e.g., host) factor(s) to precede the actual cointegration event.  相似文献   

4.
Mutational analysis of the inverted repeats of Tn3   总被引:1,自引:0,他引:1  
The transposase protein and the terminal inverted repeat sequences of the prokaryotic transposon Tn3 are essential for transposition. In order to determine the sequences within the inverted repeat necessary for transposition and interaction with transposase, we have constructed a series of mini-Tn3s in which specific mutations have been introduced into the inverted repeats. The effects of these mutations on transposition have been assayed in vivo using a mating-out transposition assay. Several single base-pair mutations within the transposase binding site reduce transposition frequency. Mutations that affect transposition show a greater effect when present in both inverted repeats than when present in only one inverted repeat.  相似文献   

5.
The inverted repeats (IRs) of the insertion element IS903 are composed of two functional regions. An inner region, consisting of basepairs 6-18, is the transposase binding site. The outer region (positions 1-3) is not contacted during initial transposase binding, but is essential for efficient transposition. We have examined the interaction of the IR with the transposase by isolating transposase suppressors of IR mutations. These suppressors define two patches within the N-terminus of the protein. One class of suppressors, which rescued the majority of outer IR mutants tested, contained mutations in close proximity to an aspartate residue (D121) believed to form part of the catalytic DDE motif, suggesting that their suppressive effect is in the positioning of the catalytic site at the terminus of the transposon. The hypertransposition phenotype of mutant VA119 is also consistent with this hypothesis. The second class was more allele specific and preferentially suppressed a mutation at position 3 of the IR. Finally, we showed that mutations at the termini of the IR elevate the frequency of cointegrate formation by IS903. Other outer IR mutations did not have this effect. These data are consistent with the terminal bases of the transposon playing multiple and distinct roles in transposition.  相似文献   

6.
Binding of the Tn3 transposase to the inverted repeats of Tn3   总被引:4,自引:0,他引:4  
The transposase protein and the inverted repeat sequences of Tn3 are both essential for Tn3 cointegrate formation and transposition. We have developed two assays to detect site-specific binding of transposase to the inverted repeats: (1) a nitrocellulose filter binding assay in which transposase preferentially retains DNA fragments containing inverted repeat sequences, and (2) a DNase 1 protection assay in which transposase prevents digestion of the inverted repeats by DNase 1. Both assays show that transposase binds directly to linear, duplex DNA containing the inverted repeats. The right inverted repeat of Tn3 binds slightly more strongly than the left one. Site-specific binding requires magnesium but does not require a high energy cofactor.  相似文献   

7.
The frequencies of one-ended transposition and normal transposition of derivatives of Tn21 that contain mutant inverted-repeat sequences (IRs) have been measured. In general, there was a linear relationship between the log of the frequency of one-ended transposition of a mutant IR and the log of the frequency of normal transposition of an element flanked by a wild-type IR at one end and by the mutant IR at the other. This implied that one-ended and normal transposition share the rate-limiting step that determines the frequency of transposition and that both IRs are involved in the rate-limiting step in normal transposition. Surprisingly, it was found that only the outer 18 base pairs of the IR of Tn21 engaged accurately in both one-ended and normal transposition, at about 1% of the frequency of the wild-type IR.  相似文献   

8.
The complete (6,449-bp) nucleotide sequence of the first-described natural transposon of Listeria monocytogenes, designated Tn5422, was determined. Tn5422 is a transposon of the Tn3 family delineated by imperfect inverted repeats (IRs) of 40 bp. It contains two genes which confer cadmium resistance (M. Lebrun, A. Audurier, and P. Cossart, J. Bacteriol. 176:3040-3048, 1994) and two open reading frames that encode a transposase (TnpA) and a resolvase (TnpR) of 971 and 184 amino acids, respectively. The cadmium resistance genes and the transposition genes are transcribed in opposite directions and are separated by a putative recombination site (res). The structural elements presumed to be involved in transposition of Tn5422 (IRs, transposase, resolvase, and res) are very similar to those of Tn917, suggesting a common origin. The transposition genes were not induced by cadmium. Analysis of sequences surrounding Tn5422 in nine different plasmids of L. monocytogenes indicated that Tn5422 is a functional transposon, capable of intramolecular replicative transposition, generating deletions. This transposition process is probably the reason for the size diversity of the L. monocytogenes plasmids. Restriction analysis and Southern hybridization revealed the presence of Tn5422 in all the plasmid-mediated cadmium-resistant L. monocytogenes strains tested but not in strains encoding cadmium resistance on the chromosome.  相似文献   

9.
Like other transposons of the Tn3 family, Tn4430 exhibits target immunity, a process that prevents multiple insertions of the transposon into the same DNA molecule. Immunity is conferred by the terminal inverted repeats of the transposon and is specific to each element of the family, indicating that the transposase TnpA is directly involved in the process.However, the molecular mechanism whereby this protein promotes efficient transposition into permissive targets while preventing transposition into immune targets remains unknown. Here, we demonstrate that both functions of TnpA can be uncoupled from each other by isolating and characterizing mutants that are proficient in transposition (T+) but impaired in immunity (I-). The identified T+/I- mutations are clustered into separate structural and functional domains of TnpA, indicating that different activities of the protein contribute to immunity.Combination of separate mutations had synergistic effects on target immunity but contrasting effects on transposition. One class of mutations was found to stimulate transposition, whereas other mutations appeared to reduce TnpA activity. The data are discussed with respect to alternative models in which TnpA acts as a specific determinant to both establish and respond to immunity.  相似文献   

10.
gamma delta, a prokaryotic transposon, encodes a transposase that is essential for its transposition. We show here, by DNase I protection experiments, that purified gamma delta transposase binds at the transposon's inverted repeats (IRs). Immediately adjacent to each transposase binding site (and within gamma delta DNA) we have identified a binding site for an additional protein factor, the Escherichia coli-encoded integration host factor (IHF). The binding of transposase and IHF to these adjacent sites is mutually cooperative. An IHF binding-site was also found in the original target DNA, just outside one of the ends of gamma delta. The affinity of IHF for this flanking site is reduced by transposase. These results demonstrate that gamma delta transposase binds at the IRs of gamma delta, and suggest that IHF may be involved in forming a transposase-DNA complex and/or influencing the target site selection during the transposition of gamma delta.  相似文献   

11.
12.
Sleeping Beauty (SB) is the most active Tc1/mariner-like transposon in vertebrate species. Each of the terminal inverted repeats (IRs) of SB contains two transposase-binding sites (DRs). This feature, termed the IR/DR structure, is conserved in a group of Tc1-like transposons. The DNA-binding region of SB transposase, similar to the paired domain of Pax proteins, consists of two helix-turn-helix subdomains (PAI + RED = PAIRED). The N-terminal PAI subdomain was found to play a dominant role in contacting the DRs. Transposase was able to bind to mutant sites retaining the 3' part of the DRs; thus, primary DNA binding is not sufficient to determine the specificity of the transposition reaction. The PAI subdomain was also found to bind to a transpositional enhancer-like sequence within the left IR of SB, and to mediate protein-protein interactions between transposase subunits. A tetrameric form of the transposase was detected in solution, consistent with an interaction between the IR/DR structure and a transposase tetramer. We propose a model in which the transpositional enhancer and the PAI subdomain stabilize complexes formed by a transposase tetramer bound at the IR/DR. These interactions may result in enhanced stability of synaptic complexes, which might explain the efficient transposition of Sleeping Beauty in vertebrate cells.  相似文献   

13.
The effects of DNA methyltransferases on Tn3 transposition were investigated. The E. coli dam (deoxyadenosine methylase) gene was found to have no effect on Tn3 transposition. In contrast, Tn3 was found to transpose more frequently in dcm+ (deoxycytosine methylase) cells than in dcm- mutants. When the EcoRII methylase gene was introduced into dcm- cells (E. coli strain GM208), the frequency of Tn3 transposition in GM208 was dramatically increased. The EcoRII methylase recognizes and methylates the same sequence as does the dcm methylase. These results suggest that deoxycytosine methylase modified DNA may be a preferred target for Tn3 transposition. Experiments were also performed to determine whether the Tn3 transposase was involved in DNA modification. Plasmid DNA isolated from dcm- E. coli containing the Tn3 transposase gene was susceptible to ApyI digestion but resistant to EcoRI digestion, suggesting that Tn3 transposase modified the dcm recognition sequence. In addition, restriction enzymes TaqI, AvaII, BglI and HpaII did not digest this DNA completely, suggesting that the recognition sequences of TaqI, AvaII, BglI and HpaII were modified by Tn3 transposase to a certain degree. The type(s), the extent and mechanism(s) of this modification remain to be investigated.  相似文献   

14.
J. Sakai  N. Kleckner 《Genetics》1996,144(3):861-870
Tn10 transposition requires IS10 transposase and essential sequences at the two ends of the element. Mutations in terminal basepairs 6-13 confer particularly strong transposition defects. We describe here the identification of transposase mutations that suppress the transposition defects of such terminus mutations. These mutations are named ``SEM'''' for suppression of ends mutations. All of the SEM mutations suppress more than a single terminus mutation and thus are not simple alterations of transposase/end recognition specificity. The mutations identified fall into two classes on the basis of genetic tests, location within the protein and nature of the amino acid substitution. Class I mutations, which are somewhat allele specific, appear to define a small structural and functional domain of transposase in which hydrophobic interactions are important at an intermediate stage of the transposition reaction, after an effective interaction between the ends but before transposon excision. Class II mutations, which are more general in their effects, occur at a single residue in a small noncritical amino-terminal proteolytic domain of transposase and exert their affects by altering a charge interaction; these mutations may affect act early in the reaction, before or during establishment of an effective interaction between the ends.  相似文献   

15.
gamma delta, a member of the Tn3 family of prokaryotic transposons, encodes a transposase that binds to the 35-base pair (bp) terminal inverted repeats (IRs) which define the transposing DNA segment. The gamma delta transposase has been overexpressed, identified by molecular weight determination and by immunoblotting, and purified to homogeneity. Production of soluble transposase required the presence of Mg2+ prior to cell lysis. Fractions from a Sephacryl S-300 column contained levels of IR-binding activity that parallel the concentration of transposase, indicating that transposase alone is sufficient for binding to the ends of gamma delta. Hydroxyl radical footprinting indicated that transposase binds to one face of the DNA helix. The protected region extends across the IR and up to 17 bp into the flanking DNA. Integration host factor (IHF), which binds adjacent to transposase, also protects one face of the DNA helix and is shifted about 70 degrees around the helical axis from the transposase protection. Analysis of transposase-DNA complexes by electrophoresis on nondenaturing gels indicated that three complexes, two within the gel and one trapped at the well, result from specific interactions with the IR. The complex in the well and one complex in the gel were analyzed by methylation interference experiments. The results indicate that transposase interacts with specific base pairs between positions 10 and 37 of the IR, a region encompassing three consecutive major and minor grooves. Methylated bases at the very end of the transposon (positions 1-9) and in the flanking DNA did not inhibit transposase binding. Thus, although transposase seems to be in intimate contact throughout the IR of gamma delta and 17 bp of flanking DNA, specific base pair recognition needed for binding appears to be determined by the inner three-quarters of the IR.  相似文献   

16.
Role of the IS50 R proteins in the promotion and control of Tn5 transposition   总被引:19,自引:0,他引:19  
IS50R, the inverted repeat sequence of Tn5 which is responsible for supplying functions that promote and control Tn5 transposition, encodes two polypeptides that differ at their N terminus. Frameshift, in-frame deletion, nonsense, and missense mutations within the N terminus of protein 1 (which is not present in protein 2) were isolated and characterized. The properties of these mutations demonstrate that protein 1 is absolutely required for Tn5 transposition. None of these mutations affected the inhibitory activity of IS50, confirming that protein 2 is sufficient to mediate inhibition of Tn5 transposition. The effects on transposition of increasing the amount of protein 2 (the inhibitor) relative to protein 1 (the transposase) were also analyzed. Relatively large amounts of protein 2 were required to see a significant decrease in the transposition frequency of an element. In addition, varying the co-ordinate synthesis of the IS50 R proteins over a 30-fold range had little effect on the transposition frequency. These studies suggest that neither the wild-type synthesis rate of protein 2 relative to protein 1 nor the amount of synthesis of both IS50 R proteins is the only factor responsible for controlling the transposition frequency of a wild-type Tn5 element in Escherichia coli.  相似文献   

17.
J Amemura-Maekawa  E Ohtsubo 《Gene》1991,103(1):11-16
Bacterial transposon Tn3 has a 38-bp terminal inverted repeat (IR) sequence. The IR sequence has been divided into two domains, A and B, of which domain B is bound by transposase, and domain A is not Here, we defined the two domains more precisely by constructing three IR mutants with a 2-bp substitution at relevant sites within the IR sequence, followed by examination of the binding of transposase to the fragments containing these IR mutants: domain A was located at bp 1-11, whereas domain B was at bp 12-38. To see if the two domains in the IR are functionally distinct, we constructed mini-Tn3 derivatives flanked by two IRs with various 2-bp substitutions within domain A or B, and analyzed their ability to mediate cointegration. The mini-Tn3 derivatives flanked by IR(A+ B+) and IR(A- B+) [or IR(A+ B-)] and those flanked by IR(A-B+) and IR(A+ B-) mediate cointegration more efficiently than the mini-Tn3 derivatives flanked by two IR(A- B+)s or by two IR(A+ B-)s. These results and others presented here indicate that the two domains of IR are functionally distinct in promoting cointegration.  相似文献   

18.
19.
Effect of dam methylation on Tn5 transposition   总被引:27,自引:0,他引:27  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号