首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

One of the challenges with modeling the temporal progression of biological signals is dealing with the effect of noise and the limited number of replicates at each time point. Given the rising interest in utilizing predictive mathematical models to describe the biological response of an organism or analysis such as clustering and gene ontology enrichment, it is important to determine whether the dynamic progression of the data has been accurately captured despite the limited number of replicates, such that one can have confidence that the results of the analysis are capturing important salient dynamic features.  相似文献   

2.

Background  

Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering.  相似文献   

3.

Background  

Many methods have been developed to test the enrichment of genes related to certain phenotypes or cell states in gene sets. These approaches usually combine gene expression data with functionally related gene sets as defined in databases such as GeneOntology (GO), KEGG, or BioCarta. The results based on gene set analysis are generally more biologically interpretable, accurate and robust than the results based on individual gene analysis. However, while most available methods for gene set enrichment analysis test the enrichment of the entire gene set, it is more likely that only a subset of the genes in the gene set may be related to the phenotypes of interest.  相似文献   

4.

Background  

A common clustering method in the analysis of gene expression data has been hierarchical clustering. Usually the analysis involves selection of clusters by cutting the tree at a suitable level and/or analysis of a sorted gene list that is obtained with the tree. Cutting of the hierarchical tree requires the selection of a suitable level and it results in the loss of information on the other level. Sorted gene lists depend on the sorting method of the joined clusters. Author proposes that the clusters should be selected using the gene classifications.  相似文献   

5.

Background  

Data clustering analysis has been extensively applied to extract information from gene expression profiles obtained with DNA microarrays. To this aim, existing clustering approaches, mainly developed in computer science, have been adapted to microarray data analysis. However, previous studies revealed that microarray datasets have very diverse structures, some of which may not be correctly captured by current clustering methods. We therefore approached the problem from a new starting point, and developed a clustering algorithm designed to capture dataset-specific structures at the beginning of the process.  相似文献   

6.

Background  

Hierarchical clustering is a widely applied tool in the analysis of microarray gene expression data. The assessment of cluster stability is a major challenge in clustering procedures. Statistical methods are required to distinguish between real and random clusters. Several methods for assessing cluster stability have been published, including resampling methods such as the bootstrap.  相似文献   

7.

Background  

Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data analysis, little attention has been paid to uncertainty in the results obtained.  相似文献   

8.

Background  

External stimulations of cells by hormones, cytokines or growth factors activate signal transduction pathways that subsequently induce a re-arrangement of cellular gene expression. The analysis of such changes is complicated, as they consist of multi-layered temporal responses. While classical analyses based on clustering or gene set enrichment only partly reveal this information, matrix factorization techniques are well suited for a detailed temporal analysis. In signal processing, factorization techniques incorporating data properties like spatial and temporal correlation structure have shown to be robust and computationally efficient. However, such correlation-based methods have so far not be applied in bioinformatics, because large scale biological data rarely imply a natural order that allows the definition of a delayed correlation function.  相似文献   

9.

Background  

Time series gene expression data analysis is used widely to study the dynamics of various cell processes. Most of the time series data available today consist of few time points only, thus making the application of standard clustering techniques difficult.  相似文献   

10.

Background  

Genes work coordinately as gene modules or gene networks. Various computational approaches have been proposed to find gene modules based on gene expression data; for example, gene clustering is a popular method for grouping genes with similar gene expression patterns. However, traditional gene clustering often yields unsatisfactory results for regulatory module identification because the resulting gene clusters are co-expressed but not necessarily co-regulated.  相似文献   

11.

Motivation

It has been proposed that clustering clinical markers, such as blood test results, can be used to stratify patients. However, the robustness of clusters formed with this approach to data pre-processing and clustering algorithm choices has not been evaluated, nor has clustering reproducibility. Here, we made use of the NHANES survey to compare clusters generated with various combinations of pre-processing and clustering algorithms, and tested their reproducibility in two separate samples.

Method

Values of 44 biomarkers and 19 health/life style traits were extracted from the National Health and Nutrition Examination Survey (NHANES). The 1999–2002 survey was used for training, while data from the 2003–2006 survey was tested as a validation set. Twelve combinations of pre-processing and clustering algorithms were applied to the training set. The quality of the resulting clusters was evaluated both by considering their properties and by comparative enrichment analysis. Cluster assignments were projected to the validation set (using an artificial neural network) and enrichment in health/life style traits in the resulting clusters was compared to the clusters generated from the original training set.

Results

The clusters obtained with different pre-processing and clustering combinations differed both in terms of cluster quality measures and in terms of reproducibility of enrichment with health/life style properties. Z-score normalization, for example, dramatically improved cluster quality and enrichments, as compared to unprocessed data, regardless of the clustering algorithm used. Clustering diabetes patients revealed a group of patients enriched with retinopathies. This could indicate that routine laboratory tests can be used to detect patients suffering from complications of diabetes, although other explanations for this observation should also be considered.

Conclusions

Clustering according to classical clinical biomarkers is a robust process, which may help in patient stratification. However, optimization of the pre-processing and clustering process may be still required.  相似文献   

12.

Background  

Commonly employed clustering methods for analysis of gene expression data do not directly incorporate phenotypic data about the samples. Furthermore, clustering of samples with known phenotypes is typically performed in an informal fashion. The inability of clustering algorithms to incorporate biological data in the grouping process can limit proper interpretation of the data and its underlying biology.  相似文献   

13.

Background  

DNA microarrays, which determine the expression levels of tens of thousands of genes from a sample, are an important research tool. However, the volume of data they produce can be an obstacle to interpretation of the results. Clustering the genes on the basis of similarity of their expression profiles can simplify the data, and potentially provides an important source of biological inference, but these methods have not been tested systematically on datasets from complex human tissues. In this paper, four clustering methods, CRC, k-means, ISA and memISA, are used upon three brain expression datasets. The results are compared on speed, gene coverage and GO enrichment. The effects of combining the clusters produced by each method are also assessed.  相似文献   

14.

Background  

In recent years, clustering algorithms have been effectively applied in molecular biology for gene expression data analysis. With the help of clustering algorithms such as K-means, hierarchical clustering, SOM, etc, genes are partitioned into groups based on the similarity between their expression profiles. In this way, functionally related genes are identified. As the amount of laboratory data in molecular biology grows exponentially each year due to advanced technologies such as Microarray, new efficient and effective methods for clustering must be developed to process this growing amount of biological data.  相似文献   

15.

Background  

Microarray chips are being rapidly deployed as a major tool in genomic research. To date most of the analysis of the enormous amount of information provided on these chips has relied on clustering techniques and other standard statistical procedures. These methods, particularly with regard to cancer patient prognosis, have generally been inadequate in providing the reduced gene subsets required for perfect classification.  相似文献   

16.

Background  

Microarray gene expression data are often analyzed together with corresponding physiological response and clinical metadata of biological subjects, e.g. patients' residual tumor sizes after chemotherapy or glucose levels at various stages of diabetic patients. Current clustering analysis cannot directly incorporate such quantitative metadata into the clustering heatmap of gene expression. It will be quite useful if these clinical response data can be effectively summarized in the high-dimensional clustering display so that important groups of genes can be intuitively discovered with different degrees of relevance to target disease phenotypes.  相似文献   

17.

Background  

The Gene Ontology (GO) is used to describe genes and gene products from many organisms. When used for functional annotation of microarray data, GO is often slimmed by editing so that only higher level terms remain. This practice is designed to improve the summarizing of experimental results by grouping high level terms and the statistical power of GO term enrichment analysis.  相似文献   

18.

Background  

Gene set enrichment analysis (GSEA) is a microarray data analysis method that uses predefined gene sets and ranks of genes to identify significant biological changes in microarray data sets. GSEA is especially useful when gene expression changes in a given microarray data set is minimal or moderate.  相似文献   

19.

Background  

The use of clustering methods for the discovery of cancer subtypes has drawn a great deal of attention in the scientific community. While bioinformaticians have proposed new clustering methods that take advantage of characteristics of the gene expression data, the medical community has a preference for using "classic" clustering methods. There have been no studies thus far performing a large-scale evaluation of different clustering methods in this context.  相似文献   

20.

Background  

Clustering techniques are routinely used in gene expression data analysis to organize the massive data. Clustering techniques arrange a large number of genes or assays into a few clusters while maximizing the intra-cluster similarity and inter-cluster separation. While clustering of genes facilitates learning the functions of un-characterized genes using their association with known genes, clustering of assays reveals the disease stages and subtypes. Many clustering algorithms require the user to specify the number of clusters a priori. A wrong specification of number of clusters generally leads to either failure to detect novel clusters (disease subtypes) or unnecessary splitting of natural clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号