首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Molecular Mechanisms of Urea Transport   总被引:6,自引:0,他引:6  
Physiologic data provided evidence for specific urea transporter proteins in red blood cells and kidney inner medulla. During the past decade, molecular approaches resulted in the cloning of several urea transporter cDNA isoforms derived from two gene families: UT-A and UT-B. Polyclonal antibodies were generated to the cloned urea transporter proteins, and their use in integrative animal studies resulted in several novel findings, including: (1) UT-B is the Kidd blood group antigen; (2) UT-B is also expressed in many non-renal tissues and endothelial cells; (3) vasopressin increases UT-A1 phosphorylation in rat inner medullary collecting duct; (4) the surprising finding that UT-A1 protein abundance and urea transport are increased in the inner medulla during conditions in which urine concentrating ability is reduced; and (5) UT-A protein abundance is increased in uremia in both liver and heart. This review will summarize the knowledge gained from studying molecular mechanisms of urea transport and from integrative studies into urea transporter protein regulation.  相似文献   

3.
Urea functions as a key osmolyte in the urinary concentrating mechanism of the inner medulla. The urea transporter UT-A1 is upregulated by antidiuretic hormone, facilitating faster equilibration of urea between the lumen and interstitium of the inner medullary collecting duct, resulting in the formation of more highly concentrated urine. New methods in dynamic nuclear polarization, providing ~50,000-fold enhancement of nuclear magnetic resonance signals in the liquid state, offer a novel means to monitor this process in vivo using magnetic resonance imaging. In this study, we detected significant signal differences in the rat kidney between acute diuretic and antidiuretic states, using dynamic (13)C magnetic resonance imaging following a bolus infusion of hyperpolarized [(13)C]urea. More rapid medullary enhancement was observed under antidiuresis, consistent with known upregulation of UT-A1.  相似文献   

4.
The UT-A1 urea transporter mediates rapid transepithelial urea transport across the inner medullary collecting duct and plays a major role in the urinary concentrating mechanism. To transport urea, UT-A1 must be present in the plasma membrane. The purpose of this study was to screen for UT-A1-interacting proteins and to study the interactions of one of the identified potential binding partners with UT-A1. Using a yeast two-hybrid screen of a human kidney cDNA library with the UT-A1 intracellular loop (residues 409-594) as bait, we identified snapin, a ubiquitously expressed SNARE-associated protein, as a novel UT-A1 binding partner. Deletion analysis indicated that the C-terminal coiled-coil domain (H2) of snapin is required for UT-A1 interaction. Snapin binds to the intracellular loop of UT-A1 but not to the N- or C-terminal fragments. Glutathione S-transferase pulldown experiments and co-immunoprecipitation studies verified that snapin interacts with native UT-A1, SNAP23, and syntaxin-4 (t-SNARE partners), indicating that UT-A1 participates with the SNARE machinery in rat kidney inner medulla. Confocal microscopic analysis of immunofluorescent UT-A1 and snapin showed co-localization in both the cytoplasm and in the plasma membrane. When we co-injected UT-A1 with snapin cRNA in Xenopus oocytes, urea influx was significantly increased. In the absence of snapin, the influx was decreased when UT-A1 was combined with t-SNARE components syntaxin-4 and SNAP23. We conclude that UT-A1 may be linked to the SNARE machinery via snapin and that this interaction may be functionally and physiologically important for urea transport.  相似文献   

5.
Urea transporters UT-A1 and UT-A3 are both expressed in the kidney inner medulla. However, the function of UT-A3 remains unclear. Here, we found that UT-A3, which comprises only the NH(2)-terminal half of UT-A1, has a higher urea transport activity than UT-A1 in the oocyte and that this difference was associated with differences in N-glycosylation. Heterologously expressed UT-A3 is fully glycosylated with two glycoforms of 65 and 45 kDa. By contrast, UT-A1 expressed in HEK293 cells and oocytes exhibits only a 97-kDa glycosylation form. We further found that N-glycans of UT-A3 contain a large amount of poly-N-acetyllactosamine. This highly glycosylated UT-A3 is more stable and is enriched in lipid raft domains on the cell membrane. Kifunensine, an inhibitor of α-mannosidase that inhibits N-glycan processing beyond high-mannose-type N-glycans, significantly reduced UT-A3 urea transport activity. We then examined the native UT-A1 and UT-A3 glycosylation states from kidney inner medulla and found the ratio of 65 to 45 kDa in UT-A3 is higher than that of 117 to 97 kDa in UT-A1. The highly stable expression of highly glycosylated UT-A3 on the cell membrane in kidney inner medulla suggests that UT-A3 may have an important function in urea reabsorption.  相似文献   

6.
7.
Epithelial Na+ channels (ENaC) can be regulated by both mineralocorticoid and glucocorticoid hormones. In the mammalian kidney, effects of mineralocorticoids have been extensively studied, but those of glucocorticoids are complicated by metabolism of the hormones and cross-occupancy of mineralocorticoid receptors. Here, we report effects of dexamethasone, a synthetic glucocorticoid, on ENaC in the rat kidney. Infusion of dexamethasone (24 μg/day) for 1 wk increased the abundance of αENaC 2.26 ± 0.04-fold. This was not accompanied by an induction of Na+ currents (I(Na)) measured in isolated split-open collecting ducts. In addition, hormone treatment did not increase the abundance of the cleaved forms of either αENaC or γENaC or the expression of βENaC or γENaC protein at the cell surface. The absence of hypokalemia also indicated the lack of ENaC activation in vivo. Dexamethasone increased the abundance of the Na+ transporters Na+/H+ exchanger 3 (NHE3; 1.36 ± 0.07-fold), Na(+)-K(+)-2Cl(-) cotransporter 2 (NKCC2; 1.49 ± 0.07-fold), and Na-Cl cotransporter (NCC; 1.72 ± 0.08-fold). Surface expression of NHE3 and NCC also increased with dexamethasone treatment. To examine whether glucocorticoids could either augment or inhibit the effects of mineralocorticoids, we infused dexamethasone (60 μg/day) together with aldosterone (12 μg/day). Dexamethasone further increased the abundance of αENaC in the presence of aldosterone, suggesting independent effects of the two hormones on this subunit. However, I(Na) was similar in animals treated with dexamethasone+aldosterone and with aldosterone alone. We conclude that dexamethasone can occupy glucocorticoid receptors in cortical collecting duct and induce the synthesis of αENaC. However, this induction is not sufficient to produce an increase in functional Na+ channels in the apical membrane, implying that the abundance of αENaC is not rate limiting for channel formation in the kidney.  相似文献   

8.
UT-A1, the urea transporter present in the apical membrane of the inner medullary collecting duct, is crucial to the kidney's ability to concentrate urine. Phosphorylation of UT-A1 on serines 486 and 499 is important for plasma membrane trafficking. The effect of calcineurin on dephosphorylation of UT-A1 was investigated. Inner medullary collecting ducts from Sprague-Dawley rats were metabolically labeled and treated with tacrolimus to inhibit calcineurin or calyculin to inhibit protein phosphatases 1 and 2A. UT-A1 was immunoprecipitated, electrophoresed, blotted, and total UT-A1 phosphorylation was assessed by autoradiography. Total UT-A1 was determined by Western blotting. A phospho-specific antibody to pser486-UT-A1 was used to determine whether serine 486 can be hyperphosphorylated by inhibiting phosphatases. Inhibition of calcineurin showed an increase in phosphorylation per unit protein at serine 486. In contrast, inhibition of phosphatases 1 and 2A resulted in an increase in UT-A1 phosphorylation but no increase in pser486-UT-A1. In vitro perfusion of inner medullary collecting ducts showed tacrolimus-stimulated urea permeability consistent with stimulated urea transport. The location of phosphorylated UT-A1 in rats treated acutely and chronically with tacrolimus was determined using immunohistochemistry. Inner medullary collecting ducts of the acutely treated rats showed increased apical membrane association of phosphorylated UT-A1 while chronic treatment reduced membrane association of phosphorylated UT-A1. We conclude that UT-A1 may be dephosphorylated by multiple phosphatases and that the PKA-phosphorylated serine 486 is dephosphorylated by calcineurin. This is the first documentation of the role of phosphatases and the specific site of phosphorylation of UT-A1, in response to tacrolimus.  相似文献   

9.
10.
Urea transport in MDCK cells that are stably transfected with UT-A1   总被引:2,自引:0,他引:2  
Progress in understanding the cell biology of urea transporter proteins has been hampered by the lack of an appropriate cell culture system. The goal of this study was to create a polarized epithelial cell line that stably expresses the largest of the rat renal urea transporter UT-A isoforms, UT-A1. The gene for UT-A1 was cloned into pcDNA5/FRT and transfected into Madin-Darby canine kidney (MDCK) cells with an integrated Flp recombination target site. The cells from a single clone were grown to confluence on collagen-coated membranes until the resistance was >1,500 ·cm2. Transepithelial [14C]urea fluxes were measured at 37°C in a HCO3/CO2 buffer, pH 7.4, with 5 mM urea. The baseline fluxes were not different between unstimulated UT-A1-transfected MDCK cells and nontransfected or sham-transfected MDCK cells. However, only in the UT-A1-transfected cells was UT-A1 protein expressed (as measured by Western blot analysis) and urea transport stimulated by forskolin or arginine vasopressin. Forskolin and arginine vasopressin also increased the phosphorylation of UT-A1. Thionicotinamide, dimethylurea, and phloretin inhibited the forskolin-stimulated [14C]urea fluxes in the UT-A1-transfected MDCK cells. These characteristics mimic those seen in rat terminal inner medullary collecting ducts. This new polarized epithelial cell line stably expresses UT-A1 and reproduces several of the physiological responses observed in rat terminal inner medullary collecting ducts. urea transporter-A1; arginine vasopressin; collecting duct; Madin-Darby canine kidney cells  相似文献   

11.
The UT-A2 urea transporter is involved in the recycling of urea through the kidney, a process required to maintain high osmotic gradients. Dehydration increases UT-A2 expression in vivo. The tissue distribution of UT-A2 suggested that hyperosmolarity, and not vasopressin, might mediate this effect. We have analyzed the regulation of UT-A2 expression by ambiant osmolarity both in vitro (mIMCD3 cell line) and in vivo (rat kidney medulla). The UT-A2 mRNA was found to be synergistically up-regulated by a combination of NaCl and urea. Curiously, the UT-A2 protein was undetectable in this hypertonic culture condition, or after transfection of the UT-A2 cDNA, whereas it could be detected in HEK-293 transfected cells. Treating rats with furosemide, a diuretic which decreases the kidney interstitium osmolarity without affecting vasopressin levels, led to decreased levels of the UT-A2 protein. Our results show that the UT-A2 urea transporter is regulated by hyperosmolarity both in vitro and in vivo.  相似文献   

12.
Urea transport in the kidney is mediated by a family of transporter proteins, including renal urea transporters (UT-A) and erythrocyte urea transporters (UT-B). We aimed to determine whether hydration status affects the subcellular distribution of urea transporters. Male Sprague-Dawley rats were divided into three groups: dehydrated rats (WD) given minimum water, hydrated rats (WL) given 3% sucrose in water for 3 days before death, and control rats given free access to water. We labeled kidney sections with antibodies against UT-A1 and UT-A2 (L194), UT-A3 (Q2), and UT-B using preembedding immunoperoxidase and immunogold methods. In control animals, UT-A1 and UT-A3 immunoreactivities were observed throughout the cytoplasm in inner medullary collecting duct (IMCD) cells, and weak labeling was observed on the basolateral plasma membrane. UT-A2 immunoreactivity in the descending thin limbs (DTL) was observed mainly on the apical and basolateral membranes of type I epithelium, and very faint labeling was observed in the long-loop DTL at the border between the outer and inner medulla. UT-A1 immunoreactivity intensity was markedly lower, and UT-A3 immunoreactivity was higher in IMCD of WD vs. controls. UT-A2 immunoreactivity intensities in the plasma membrane and cytoplasm of type I, II, and III epithelia of DTL were greater in WD vs. controls. In contrast, UT-A1 expression was greater and UT-A2 and UT-A3 expressions were lower in WL vs. controls. The subcellular distribution of UT-A in DTL or IMCD did not differ between control and experimental animals. UT-B was expressed in the plasma membrane of the descending vasa recta of both control and experimental animals. UT-B intensity was higher in WD and lower in WL vs. controls. These data indicate that changes in hydration status over 3 days affected urea transporter protein expression without changing its subcellular distribution.  相似文献   

13.
Growing evidence implicates a key role for extracellular nucleotides in cellular regulation, including of ion channels and renal function, but the mechanisms for such actions are inadequately defined. We investigated purinergic regulation of the epithelial Na+ channel (ENaC) in mammalian collecting duct. We find that ATP decreases ENaC activity in both mouse and rat collecting duct principal cells. ATP and other nucleotides, including UTP, decrease ENaC activity via apical P2Y2 receptors. ENaC in collecting ducts isolated from mice lacking this receptor have blunted responses to ATP. P2Y2 couples to ENaC via PLC; direct activation of PLC mimics ATP action. Tonic regulation of ENaC in the collecting duct occurs via locally released ATP; scavenging endogenous ATP and inhibiting P2 receptors, in the absence of other stimuli, rapidly increases ENaC activity. Moreover, ENaC has greater resting activity in collecting ducts from P2Y2-/- mice. Loss of collecting duct P2Y2 receptors in the knock-out mouse is the primary defect leading to increased ENaC activity based on the ability of direct PLC stimulation to decrease ENaC activity in collecting ducts from P2Y2-/- mice in a manner similar to ATP in collecting ducts from wild-type mice. These findings demonstrate that locally released ATP acts in an autocrine/paracrine manner to tonically regulate ENaC in mammalian collecting duct. Loss of this intrinsic regulation leads to ENaC hyperactivity and contributes to hypertension that occurs in P2Y2 receptor-/- mice. P2Y2 receptor activation by nucleotides thus provides physiologically important regulation of ENaC and electrolyte handling in mammalian kidney.  相似文献   

14.
E Prostanoid (EP) receptors play an important role in urinary Na+ excretion. In the kidney, the epithelial sodium channel (ENaC) is the rate-limiting-step for Na+ reabsorption. We hypothesized that activation of EP1/EP3 regulates the expression of ENaC in the face of renin-angiotensin-aldosterone-system (RAAS) activation. In primary cultures of inner medullary collecting duct (IMCD) cells, sulprostone (EP1 > EP3 agonist, 1 μM) and 17 Phenyl trinor (17 Pt, EP1 agonist, 10 μM) prevented the up-regulation of αENaC mRNA induced by aldosterone (10 nM). In Sprague-Dawley rats infused with angiotensin II (0.4 μg/kg/min), αENaC expression was up-regulated in renal cortex and medulla coincidently with high plasma aldosterone levels. Sulprostone and/or 17 Pt prevented this effect in renal medulla but not in cortex. Immunocytochemistry demonstrated that IMCD cells express EP1. Our results suggest that specific activation of EP1 receptor during RAAS activation antagonizes the action of aldosterone on αENaC expression in the renal medulla.  相似文献   

15.
Developmental regulation of ENaC subunit mRNA levels in rat kidney   总被引:2,自引:0,他引:2  
To assess therole of distal nephron apical Na channel (ENaC) gene expression in Nawasting by the immature kidney, ENaC -, -, and -subunit mRNAlevels were examined in the rat by RT-PCR. In microdissected nephronsegments, all three ENaC subunit mRNAs were detected in the distalconvoluted tubule, connecting tubule, cortical collecting duct, andouter medullary collecting duct. The inner medullary collecting ductand all other nephron segments were consistently negative. The mRNAlevels were quantified in kidneys at different developmental stages bymultiplex RT-PCR with "primer dropping," with endoplasmicreticulum-specific cyclophilin mRNA as an internal standard. All threeENaC mRNA levels were low or undetectable on gestationalday 16 and only slightly higher 3 daysbefore birth. A sharp rise was observed between 3 days before and1-3 days after birth; the levels at postnataldays 1-3 were already similar tothose of adult kidneys. The results suggest that ENaC subunit geneexpression is not a limiting factor in the full-term newborn ratkidney, but low levels of expression may limit distal Na absorption inmore immature kidneys, such as those of very premature human infants.

  相似文献   

16.
Chloroquine, a widely used anti-malaria drug, has gained popularity for the treatment of rheumatoid arthritis, systemic lupus erythematosus (SLE), and human immunodeficiency virus (HIV). Unfortunately, chloroquine may also negatively impact renal function for patients whose fluid and electrolyte homeostasis is already compromised by diseases. Chronic administration of chloroquine also results in polyuria, which may be explained by suppression of the antidiuretic response of vasopressin. Several of the transporters responsible for concentrating urine are vasopressin-sensitive including the urea transporters UT-A1 and UT-A3, the water channel aquaporin-2 (AQP2), and the Na(+)-K(+)-2Cl(-) cotransporter (NKCC2). To examine the effect of chloroquine on these transporters, Sprague-Dawley rats received daily subcutaneous injections of 80 mg·kg(-1)·day(-1) of chloroquine for 4 days. Twenty-four hour urine output was twofold higher, and urine osmolality was decreased by twofold in chloroquine-treated rats compared with controls. Urine analysis of treated rats detected the presence chloroquine as well as decreased urine urea and cAMP levels compared with control rats. Western blot analysis showed a downregulation of AQP2 and NKCC2 transporters; however, UT-A1 and UT-A3 abundances were unaffected by chloroquine treatment. Immunohistochemistry showed a marked reduction of UT-A1 and AQP2 in the apical membrane in inner medullary collecting ducts of chloroquine-treated rats. In conclusion, chloroquine-induced polyuria likely occurs as a result of lowered cAMP production. These findings suggest that chronic chloroquine treatment would exacerbate the already compromised fluid homeostasis observed in diseases like chronic kidney disease.  相似文献   

17.
CLC-K1, a kidney-specific chloride channel, has been demonstrated to be involved in the urine concentration mechanism. Here, we investigated the developmental expression of CLC-K1 in the rat kidney. Using immunohistochemistry, we showed that CLC-K1 was not present in the thin ascending limb of Henle's loop during the early prenatal stages but was significantly expressed during the adult stage. CLC-K1 started to appear at day 5 and its expression increased during further development. In developing rats this increase coincided with the increase in the urine-concentrating capacity as the animals matured. We also investigated the expressions of other channels and transporters, including NKCC2, AQP-1, and AQP-2. NKCC2 was strongly expressed throughout the inner medulla in neonatal rat kidneys but was entirely undetectable at the adult stage. The decline in its expression took the form of a gradual recession from the inner medulla together with reciprocal increases in the expression of CLC-K1. AQP-1 was weakly expressed in the inner medulla during early development and showed a rapid increase in expression at a later stage. The collecting duct cells significantly expressed AQP-2 even at birth and maintained its expression throughout the development. These results suggest that CLC-K1 expression is one of the major determinants of the urine-concentrating capacity of the developing rat kidney.  相似文献   

18.
19.
The process of NaCl reabsorption in the distal nephron allows freshwater fishes to excrete hypotonic urine and seawater fishes to excrete urine containing high concentrations of divalent ions; the relevant transporters, however, have not yet been identified. In the mammalian distal nephron, NaCl absorption is mediated by Na(+)-K(+)-Cl(-) cotransporter 2 (NKCC2, Slc12a1) in the thick ascending limb, Na(+)-Cl(-) cotransporter (NCC, Slc12a3) in the distal convoluted tubule, and epithelial sodium channel (ENaC) in the collecting duct. In this study, we compared the expression profiles of these proteins in the kidneys of euryhaline and seawater pufferfishes. Mining the fugu genome identified one NKCC2 gene and one NCC gene, but no ENaC gene. RT-PCR and in situ hybridization analyses demonstrated that NKCC2 was highly expressed in the distal tubules and NCC was highly expressed in the collecting ducts of euryhaline pufferfish (mefugu, Takifugu obscurus). On the other hand, the kidney of seawater pufferfish (torafugu, Takifugu rubripes), which lacked distal tubules, expressed very low levels of NCC, and, in the collecting ducts, high levels of NKCC2. Acclimation of mefugu to seawater resulted in a 2.7× decrease in NCC expression, whereas NKCC2 expression was not markedly affected. Additionally, internalization of NCC from the apical surface of the collecting ducts was observed. These results suggest that NaCl reabsorption in the distal nephron of the fish kidney is mediated by NCC and NKCC2 in freshwater and by NKCC2 in seawater.  相似文献   

20.
To investigate regional aspects of hypoxic regulation of adrenomedullin (AM) in kidneys, we mapped the distribution of AM in the rat kidney after hypoxia (normobaric hypoxic hypoxia, carbon monoxide, and CoCl(2) for 6 h), anemia (hematocrit lowered by bleeding) and after global transient ischemia for 1 h (unilateral renal artery occlusion and reperfusion for 6 and 24 h) and segmental infarct (6 and 24 h). AM expression and localization was determined in normal human kidneys and in kidneys with arterial stenosis. Hypoxia stimulated AM mRNA expression significantly in rat inner medulla (CO 13 times, 8% O(2) 6 times, and CoCl(2) 8 times), followed by the outer medulla and cortex. AM mRNA level was significantly elevated in response to anemia and occlusion-reperfusion. Immunoreactive AM was associated with the thin limbs of Henle's loop, distal convoluted tubule, collecting ducts, papilla surface epithelium, and urothelium. AM labeling was prominent in the inner medulla after CO and in the outer medulla after occlusion-reperfusion. The infarct border zone was strongly labeled for AM. In cultured inner medullary collecting duct cells, AM mRNA was significantly increased by hypoxia. AM mRNA was equally distributed in human kidney and AM was localized as in the rat kidney. In human kidneys with artery stenosis, AM mRNA was not significantly enhanced compared with controls, but AM immunoreactivity was observed in tubules, vessels, and glomerular cells. In summary, AM expression was increased in the rat kidney in response to hypoxic and ischemic hypoxia in keeping with oxygen gradients. AM was widely distributed in the human kidney with arterial stenosis. AM may play a significant role to counteract hypoxia in the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号