首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
It is known that alcoholic fermentation is important for survival of plants under anaerobic conditions. Acetaldehyde, one of the intermediates of alcoholic fermentation, is not only reduced by alcohol dehydrogenase but also can be oxidized by aldehyde dehydrogenase (ALDH). To determine whether ALDH plays a role in anaerobic metabolism in rice (Oryza sativa L. cv Nipponbare), we characterized a cDNA clone encoding mitochondrial ALDH from rice (Aldh2a). Analysis of sub-cellular localization of ALDH2a protein using green fluorescent protein and an in vitro ALDH assay using protein extracts from Escherichia coli cells that overexpressed ALDH2a indicated that ALDH2a functions in the oxidation of acetaldehyde in mitochondria. A Southern-blot analysis indicated that mitochondrial ALDH is encoded by at least two genes in rice. We found that the Aldh2a mRNA was present at high levels in leaves of dark-grown seedlings, mature leaf sheaths, and panicles. It is interesting that expression of the rice Aldh2a gene, unlike the expression of the tobacco (Nicotiana tabacum) Aldh2a gene, was induced in rice seedlings by submergence. Experiments with ruthenium red, which is a blocker of Ca(2+) fluxes in rice as well as maize (Zea mays), suggest that the induction of expression of Adh1 and Pdc1 by low oxygen stress is regulated by elevation of the cytosolic Ca(2+) level. However, the induction of Aldh2a gene expression may not be controlled by the cytosolic Ca(2+) level elevation. A possible involvement of ALDH2a in the submergence tolerance of rice is discussed.  相似文献   

2.
The catabolism of phenylalanine to 2-phenylethanol and of tryptophan to tryptophol were studied by (13)C NMR spectroscopy and gas chromatography-mass spectrometry. Phenylalanine and tryptophan are first deaminated (to 3-phenylpyruvate and 3-indolepyruvate, respectively) and then decarboxylated. This decarboxylation can be effected by any of Pdc1p, Pdc5p, Pdc6p, or Ydr380wp; Ydl080cp has no role in the catabolism of either amino acid. We also report that in leucine catabolism Ydr380wp is the minor decarboxylase. Hence, all amino acid catabolic pathways studied to date use a subtly different spectrum of decarboxylases from the five-membered family that comprises Pdc1p, Pdc5p, Pdc6p, Ydl080cp, and Ydr380wp. Using strains containing all possible combinations of mutations affecting the seven AAD genes (putative aryl alcohol dehydrogenases), five ADH genes, and SFA1, showed that the final step of amino acid catabolism (conversion of an aldehyde to a long chain or complex alcohol) can be accomplished by any one of the ethanol dehydrogenases (Adh1p, Adh2p, Adh3p, Adh4p, Adh5p) or by Sfa1p (formaldehyde dehydrogenase.)  相似文献   

3.

Background  

The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied.  相似文献   

4.
A multicopy plasmid carrying the PDC1 gene (encoding pyruvate decarboxylase; Pdc) was introduced in Saccharomyces cerevisiae CEN.PK113-5D. The physiology of the resulting prototrophic strain was compared with that of the isogenic prototrophic strain CEN.PK113-7D and an empty-vector reference strain. In glucose-grown shake-flask cultures, the introduction of the PDC1 plasmid caused a threefold increase in the Pdc level. In aerobic glucose-limited chemostat cultures growing at a dilution rate of 0.10 h−1, Pdc levels in the overproducing strain were 14-fold higher than those in the reference strains. Levels of glycolytic enzymes decreased by ca. 15%, probably due to dilution by the overproduced Pdc protein. In chemostat cultures, the extent of Pdc overproduction decreased with increasing dilution rate. The high degree of overproduction of Pdc at low dilution rates did not affect the biomass yield. The dilution rate at which aerobic fermentation set in decreased from 0.30 h−1 in the reference strains to 0.23 h−1 in the Pdc-overproducing strain. In the latter strain, the specific respiration rate reached a maximum above the dilution rate at which aerobic fermentation first occurred. This result indicates that a limited respiratory capacity was not responsible for the onset of aerobic fermentation in the Pdc-overproducing strain. Rather, the results indicate that Pdc overproduction affected flux distribution at the pyruvate branch point by influencing competition for pyruvate between Pdc and the mitochondrial pyruvate dehydrogenase complex. In respiratory cultures (dilution rate, <0.23 h−1), Pdc overproduction did not affect the maximum glycolytic capacity, as determined in anaerobic glucose-pulse experiments.  相似文献   

5.
Rice seedlings (Oryza sativa L.) were incubated at 5-30 degrees C for 48 h and the effect of temperature on ethanolic fermentation in the seedlings was investigated in terms of low-temperature adaptation. Activities of alcohol dehydrogenase (ADH, EC 1.1.1.1) and pyruvate decarboxylase (PDC, EC 4.1.1.1) in roots and shoots of the seedlings were low at temperatures of 20-30 degrees C, whereas temperatures of 5, 7.5 and 10 degrees C significantly increased ADH and PDC activities in the roots and shoots. Temperatures of 5-10 degrees C also increased ethanol concentrations in the roots and shoots. The ethanol concentrations in the roots and shoots at 7.5 degrees C were 16- and 12-times greater than those in the roots and shoots at 25 degrees C, respectively. These results indicate that low temperatures (5-10 degrees C) induced ethanolic fermentation in the roots and shoots of the seedlings. Ethanol is known to prevent lipid degradation in plant membrane, and increased membrane-lipid fluidization. In addition, an ADH inhibitor, 4-methylpyrazole, decreased low-temperature tolerance in roots and shoots of rice seedlings and this reduction in the tolerance was recovered by exogenous applied ethanol. Therefore, production of ethanol by ethanolic fermentation may lead to low-temperature adaptation in rice plants by altering the physical properties of membrane lipids.  相似文献   

6.
Three enzyme activities involved in fatty acid beta-oxidation, i.e., those of enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-oxoacyl-CoA thiolase, are exhibited by one multienzyme complex (HDT) composed of two molecules each of two peptides in Pseudomonas fragi. Using specific antisera against the two subunits of HDT, we isolated the genes encoding the subunits of HDT and designated them "faoA" (for the alpha-subunit) and "faoB" (for the beta-subunit). Their complete nucleotide sequences were determined and it was revealed that faoA and faoB, both with individual putative S.D. sequences at suitable positions, formed a cluster, in that order. The amino acid sequences deduced from the nucleotide sequences of the two genes indicated that the alpha-subunit, encoded by faoA, is a polypeptide of 715 amino acid residues, and that the beta-subunit, encoded by faoB, consists of 390 amino acid residues lacking the first methionine of the primary product encoded by faoB. Immunoblotting of cell lysates prepared from Escherichia coli transformants carrying plasmids which possess the faoA and/or faoB gene with antisera against the subunits of HDT showed that both the faoA and faoB genes were transcribed and translated in E. coli. The overall activities of 2-enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase were increased in the E. coli cells transformed with the plasmid possessing the faoA gene, suggesting that both the hydratase and dehydrogenase activities may be exhibited by the alpha-subunit of HDT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Expression of a pyruvate decarboxylase (Pdc) pathway in metabolically versatile thermophilic bacteria could create novel ethanologenic organisms, but no suitable thermostable Pdc is available. We have demonstrated that Pdc from Zymomonas mobilis can be expressed in an active form in Geobacillus thermoglucosidasius at up to 52 degrees C, while expression of Pdc polypeptides up to 54 degrees C was evident from Western blotting. By using an unstable lactate dehydrogenase (ldh) mutant of G. thermoglucosidasius, indirect evidence of Pdc activity in vivo was also obtained.  相似文献   

8.
Ability of metabolic adaptation in upland and lowland rice (Oryza sativa L.) seedlings to flooding stress was compared. Flooding stress increased alcohol dehydrogenase (ADH) activity and ethanol concentration in shoots and roots of the upland and lowland rice seedlings. The difference in ADH activity and ethanol concentration in shoots between the upland and lowland rice was not apparent. However, both ADH activity and ethanol concentration in roots of the lowland rice were 2-fold greater than those in roots of the upland rice, suggesting that flooding-induction of ethanolic fermentation in lowland rice roots may be significantly greater than that in the upland rice roots. Since flooding often causes the anaerobic conditions in rooting zone than aerial part of plants and ethanolic fermentation is essential to survive in the anaerobic conditions, the ability of metabolic adaptation in lowland rice seedlings to flooding stress may be greater than that in upland rice seedlings.  相似文献   

9.
The catalytic direction of pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP; EC 2.7.1.90) in coleoptiles of rice ( Oryza sativa L.) seedlings subjected to anoxia stress is discussed. The stress greatly induced ethanol synthesis and increased activities of alcohol dehydrogenase (ADH; EC 1.1.1.1) and pyruvate decarboxylase (PDC; EC 4.1.1.1) in the coleoptiles, whereas the elevated PDC activity was much lower than the elevated ADH activity, suggesting that PDC may be one of the limiting factors for ethanolic fermentation in rice coleoptiles. Anoxic stress decreased concentrations of fructose 6-phosphate (Fru-6-P) and glucose 6-phosphate, and increased concentration of fructose 1,6-bisphosphate (Fru-1,6-bisP) in the coleoptiles. PFP activity in rice coleoptiles was low in an aerobic condition and increased during the stress, whereas no significant increase was found in ATP:fructose-6-phosphate 1-phosphotransferase (PFK; EC 2.7.1.11) activity in stressed coleoptiles. Fructose 2,6-bisphosphate concentration in rice coleoptiles was increased by the stress and pyrophosphate concentration was above the Km for the forward direction of PFP and was sufficient to inhibit the reverse direction of PFP. Under stress conditions the potential of carbon flux from Fru-6-P toward ethanol through PFK may be much lower than the potential of carbon flux from pyruvate toward ethanol through PDC. These results suggest that PFP may play an important role in maintaining active glycolysis and ethanolic fermentation in rice coleoptiles in anoxia.  相似文献   

10.
Ethanolic fermentation and anoxia tolerance in four rice cultivars   总被引:1,自引:0,他引:1  
The relationship between coleoptile elongation and ethanolic fermentation was investigated in rice (Oryza sativa L.) coleoptiles of four cultivars subjected to a 48-h anoxic stress. The coleoptile elongation of all cultivars was suppressed by anoxic stress; however, the elongation of cvs Yukihikari and Nipponbare was much greater than that of cvs Leulikelash and Asahimochi. The stress did not significantly increase lactate dehydrogenase (LDH) activity or lactate concentration, but increased alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) activities, as well as ethanol concentration in the coleoptiles of all cultivars. The elevated ADH and PDC activities and ethanol concentration in cvs Yukihikari and Nipponbare were much greater than those of cvs Leulikelash and Asahimochi, suggesting that ethanolic fermentation is likely more active in cvs Yukihikari and Nipponbare than in cvs Leulikelash and Asahimochi. ATP concentration in cvs Yukihikari and Nipponbare in anoxia was also greater than that in cvs Leulikelash and Asahimochi in anoxia. The ethanol concentration in the coleoptiles was correlated with anoxia tolerance with respect to the ATP concentration and coleoptile elongation. These results suggest that the ability to increase ethanolic fermentation may be one of the determinants in anoxia tolerance of rice coleoptiles.  相似文献   

11.
水稻杂种一代与亲本幼苗基因表达差异的分析   总被引:49,自引:0,他引:49  
杂种优势是一种普遍存在的生物学现象,其形成的原因十分复杂。本世纪初,Bruce和Shull相继提出的杂种优势形成的显性互补假设和超亲优势假设至今仍作为一种理论模型而缺乏实验证实。水稻杂种优势的利用自70年代三系配套技术建立得到了广泛的应用,但水稻杂种优势形成的遗传学基础目前还知之甚少。在水稻杂种优势形成机理研究中,分别从生理生化代谢、同工酶分析、DNA限制性片段多态性和DNA含量差异进行了分析,但杂种优势形成的分子机理仍未得到阐明。杂种优势的形成是与异质化相关的过程,它涉及到两个遗传背景不同的体系的相互作用。因此,在相互作用过程中,亲本基因的表达与调控就决定了杂种一代的基因表达类型和特性。因此,我们从分析基因表达与调控入手,运用mRNA差异展示技术分析了玉米杂种一代与亲本基因表达的差异,揭示了不少有意义的现象。本研究以水稻籼型杂交组合(汕优63:珍汕97A×明恢63)为材料,探讨水稻杂种一代与亲本基因表达的差异,揭示了杂种优势形成过程中的一些重要现象。  相似文献   

12.
Low-temperature stress was shown to cause a rapid increase in steady-state levels of alcohol dehydrogenase-1 message (Adh1) and protein activity (ADH1) in maize (Zea mays) (B37N, A188) and rice (Oryza sativa) (Taipei 309, Calmochi 101) seedlings. Maize roots and rice shoots and roots from 7-day seedlings shifted to low temperature (10°C) contained as much as 15-fold more Adh1 mRNA and 8-fold more ADH1 protein activity than the corresponding tissues from untreated seedlings. Time-course studies showed that these tissues accumulated Adh1 mRNA and ADH1 activity severalfold within 4- to 8-hour, levels plateaued within 20 to 24 hours, and remained elevated at 4 days of cold treatment. Within 24 hours of returning cold-stressed seedlings to ambient temperature, Adh1 mRNA and ADH1 activity decreased to pretreatment levels. Histochemical staining of maize and rice tissue imprints showed that ADH activity was enhanced along the lengths of cold-stressed maize primary roots and rice roots, and along the stems and leaves of rice shoots. Our observations suggest that short-term cold stress induces Adh1 gene expression in certain plant tissues, which, reminiscient of the anaerobic response, may reflect a fundamental shift in energy metabolism to ensure tissue survival during the stress period.  相似文献   

13.
Summary In order to analyze expression of the maize alcohol dehydrogenase 1 gene (Adh1), its promoter was fused with the gusA reporter gene and introduced into rice by protoplast transformation. Histochemical analysis of transgenic plants and their progeny showed that the maize Adh1 promoter is constitutively expressed in root caps, anthers, anther filaments, pollen, scutellum, endosperm and shoot and root meristem of the embryo. Induction of expression by the Adh1 promoter was examined using seedlings derived from selfed progeny of the transgenic plants. The results showed that expression of the Adh1 promoter was strongly induced (up to 81-fold) in roots of seedlings after 24 h of anaerobic treatment, concomitant with an increase in the level of gusA mRNA. 2,4-D also induced Adh1 promoter-directed expression of gusA to a similar extent. In contrast, little induction by anaerobic treatment was detected in transformed calli, leaves or roots of primary transformants or shoots of seedlings. A detailed examination of seedling roots during anaerobic treatment revealed that the induction started first at the meristem and after 3 h there was strong induction in the elongation zone which is located 1–2 mm above the meristem; the induction then progressed upward from this region. Our results suggest that transgenic rice plants carring the gusA reporter gene fused with promoters are useful for the study of anaerobic regulation of genes derived from graminaceous species.  相似文献   

14.
Rice (Oryza sativa L.) seedlings were subjected to hypoxic pretreatment (H-PT; incubated in 5% O2 atmosphere) for various lengths of time followed by an anoxic stress. Anoxia tolerance of rice roots was improved with increasing duration of H-PT, but longer H-PT than 12 h gave no additional improvement. Concentrations of ATP and ethanol, and activities of pyruvate decarboxylase (EC 4.1.1.1) and alcohol dehydrogenase (EC 1.1.1.1) in the roots were increased by H-PT, and the times and patterns of increasing in these concentrations and activities were similar to those of increasing in the anoxia tolerance. These results suggest that the H-PT may increase anoxia tolerance due to maintenance of ATP levels with rapid induction of ethanolic fermentation, and hypoxic acclimation may occur within 12 h.  相似文献   

15.
Ethanolic fermentation is classically associated with flooding tolerance when plant cells switch from respiration to anaerobic fermentation. However, recent studies have suggested that fermentation also has important functions in the presence of oxygen, mainly in germinating pollen and during abiotic stress. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we characterize the PDC gene family in Arabidopsis. PDC is encoded by four closely related genes. By using real-time quantitative polymerase chain reaction, we determined the expression levels of each individual gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental stress conditions. We show that PDC1 is the only gene induced under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other environmental stresses. We also characterize the expression of the aldehyde dehydrogenase (ALDH) gene family. None of the three genes is induced by anoxia but ALDH2B7 reacts strongly to ABA application and dehydration, suggesting that ALDH may play a role in aerobic detoxification of acetaldehyde. We discuss the possible role of ethanolic fermentation as a robust back-up energy production pathway under adverse conditions when mitochondrial function is disturbed.  相似文献   

16.
17.
18.
We have isolated and sequenced a partial tomato alcohol dehydrogenase (Adh) cDNA clone. Expression of tomato Adh was studied at the messenger RNA level in seedlings, roots, and fruit. High induction was observed under hypoxic conditions, both in tomato seedlings and in roots. In addition, the Adh mRNA was present at the mature green and pink stage of the tomato fruit, and was highly induced in late ripening. Moreover, an artificial ripening treatment resulted in at least 50-fold induction compared to the mature green mRNA level. Genomic DNA gel blotting suggested the presence of a multigene family for Adh in tomato.  相似文献   

19.
Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen-specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild-type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen-specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen-pistil interaction.  相似文献   

20.
Although most cereal roots cannot elongate under anoxic conditions, primary roots of three-day-old rice (Oryza sativa L.) seedlings were able to elongate during a 24-h period of anoxia. Hypoxic pretreatment (H-PT) increased the elongation of their roots. Sucrose synthase (EC 2.4.1.13), glucokinase (EC 2.7.1.2), fructokinase (EC 2.7.1.4), pyruvate decarboxylase (EC 4.1.1.1) and alcohol dehydrogenase (EC 1.1.1.1) activities were increased by anoxia in both H-PT and non-pretreated (N-PT) roots. However, these activities were greater in the H-PT roots than in the N-PT roots. The average rate of production of ethanol for the initial 6h after the onset of anoxia was 3.7 and 1.4 micromolg(-1) fresh weight h(-1) for the H-PT and N-PT roots, respectively, suggesting that ethanolic fermentation may increase more quickly in the H-PT roots than in the N-PT roots. Roots of the seedlings lost ATP and total adenine nucleotides in anoxia, however, the H-PT roots maintained higher levels of ATP and total adenine nucleotides compared to the N-PT roots. These results show that rice roots are able to utilize the set of enzymes involved in the metabolism of soluble sugars under anoxia. The ability to maintain an active fermentative metabolism for production of ATP by fueling the glycolytic pathway with fermentable carbohydrate is probably greater in H-PT than in N-PT roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号