首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The bikunin proteins are composed of heavy chains (HCs) covalently linked to a chondroitin sulfate chain originating from Ser-10 of bikunin. Tumor necrosis factor stimulated gene-6 protein (TSG-6)/heavy chain 2 (HC2) cleaves this unique cross-link and transfers the HCs to hyaluronan and other glycosaminoglycans via a covalent HC•TSG-6 intermediate. In the present study, we have investigated if this reaction is evolutionary conserved based on the hypothesis that it is of fundamental importance. The results revealed that plasma/serum samples from mammal, bird, and reptile were able to form TSG-6 complexes suggesting the presence of proteins with the same function as the human bikunin proteins. To substantiate this, the complex forming protein from Gallus gallus (Gg) plasma was purified and identified as a Gg homolog of human HC2•bikunin. In addition, Gg pre-α-inhibitor and smaller amount of high molecular weight forms composed of bikunin and two HCs were purified. Like the human bikunin proteins, the purified Gg proteins were all stabilized by a protein–glycosaminoglycan–protein cross-link, i.e. the HCs were covalently attached to a chondroitin sulfate originating from bikunin. Furthermore, the complex formed between Gg HC2•bikunin and human TSG-6 appeared to be identical to that of the human proteins. Akin to human, Gg HC2 was further transferred to hyaluronan when present, and when incubated in vitro, Gg pre-α-inhibitor and TSG-6, failed to form the intermediate covalent complex, essential for HC transfer. Significantly, Gg HC2, analogous to human HC2, promoted complex formation between human HC3 and human TSG-6, substantiating the evolutionary conservation of these interactions. The present study demonstrates that the unique interactions between bikunin proteins, glycosaminoglycans, and TSG-6 are evolutionary conserved, emphasizing the physiological importance of the TSG-6/HC2-mediated HC-transfer reaction. In addition, the data show that the evolution of HC transfer is likely to predate the role of HC·HA complexes in female fertility and thus has evolved in the context of inflammation rather than fertility.  相似文献   

2.
The high molecular mass glycosaminoglycan hyaluronan (HA) can become modified by the covalent attachment of heavy chains (HCs) derived from the serum protein inter-alpha-inhibitor (IalphaI), which is composed of three subunits (HC1, HC2 and bikunin) linked together via a chondroitin sulfate moiety. The formation of HC.HA is likely to play an important role in the stabilization of HA-rich extracellular matrices in the context of inflammatory disease (e.g. arthritis) and ovulation. Here, we have characterized the complexes formed in vitro between purified human IalphaI and recombinant human TSG-6 (an inflammation-associated protein implicated previously in this process) and show that these complexes (i.e. TSG-6 x HC1 and TSG-6 x HC2) act as intermediates in the formation of HC x HA. This is likely to involve two transesterification reactions in which an ester bond linking an HC to chondroitin sulfate in intact IalphaI is transferred first onto TSG-6 and then onto HA. The formation of TSG-6 x HC1 and TSG-6 x C2 complexes was accompanied by the production of bikunin x HC2 and bikunin x HC1 by-products, respectively, which were observed to break down, releasing free bikunin and HCs. Both TSG-6 x HC formation and the subsequent HC transfer are metal ion-dependent processes; these reactions have a requirement for either Mg2+ or Mn2+ and are inhibited by Co2+. TSG-6, which is released upon the transfer of HCs from TSG-6 onto HA, was shown to combine with IalphaI to form new TSG-6 x HC complexes and thus be recycled. The finding that TSG-6 acts as cofactor and catalyst in the production of HC x HA complexes has important implications for our understanding of inflammatory and inflammation-like processes.  相似文献   

3.
During co-incubation of human inter-alpha-inhibitor (IalphaI) and human tumor necrosis factor-stimulated gene 6 protein (TSG-6) SDS-stable interactions are formed between the two proteins. We have analyzed the products of this reaction and characterized the mechanism of complex formation. Following the incubation seven new bands not previously identified were apparent in SDS-PAGE. Three of these bands did not contain TSG-6, including heavy chain (HC)1.bikunin, HC2.bikunin, and free bikunin. In addition high molecular weight complexes composed of the same components as I alpha I, including HC1, HC2, and bikunin, were formed. The formation of these complexes was prevented by the addition of hyaluronan. The cross-links stabilizing these complexes displaying properties similar to the protein-glycosaminoglycan-protein (PGP) cross-link. The TSG-6-containing SDS-stable complexes were composed of HC1.TSG-6 or HC2.TSG-6 exclusively. Both glycosylated and non-glycosylated TSG-6 participated in the complex formation. The HC.TSG-6 cross-links were different from the PGP cross-link and were determined to be ester bonds between the alpha-carbonyl of the C-terminal Asp of the heavy chain and most likely a hydroxyl group containing the TSG-6 residue. The mechanism involved cleaving the PGP cross-link of I alpha I during a transesterification reaction. A TSG-6 hydroxyl group reacts with the ester bond between the alpha-carbonyl of the C-terminal Asp residues of HC1 or HC2 and carbon-6 of an internal N-acetylgalactosamine of the chondroitin-4-sulfate chain. An intermediate is formed resulting in a partitioning of the reaction between HC(1 or 2).TSG-6 complexes and transfer of HC(1 or 2) to the chondroitin via competing pathways.  相似文献   

4.
Tumor necrosis factor-stimulated gene-6 protein (TSG-6) is involved in the transfer of heavy chains (HCs) from inter-alpha-inhibitor (IalphaI), pre-alpha-inhibitor, and as shown here HC2.bikunin to hyaluronan through the formation of covalent HC.TSG-6 intermediates. In contrast to IalphaI and HC2.bikunin, pre-alpha-inhibitor does not form a covalent complex in vitro using purified proteins but needs the presence of another factor (Rugg, M. S., Willis, A. C., Mukhopadhyay, D., Hascall, V. C., Fries, E., Fül?p, C., Milner, C. M., and Day, A. J. (2005) J. Biol. Chem. 280, 25674-25686). In the present study we purified the required component from human plasma and identified it as HC2. Proteins containing HC2 including IalphaI, HC2.bikunin, and free HC2 promoted the formation of HC3.TSG-6 and subsequently HC3.hyaluronan complexes. HC1 or HC3 did not possess this activity. The presented data reveal that both HC2 and TSG-6 are required for the transesterification reactions to occur.  相似文献   

5.
The heavy chain (HC) subunits of the bikunin proteins are covalently attached to a single chondroitin sulfate (CS) chain originating from bikunin and can be transferred to different hyaluronan (HA) molecules by TSG-6/HC2. In the present study, we demonstrate that HCs transferred to HA may function as HC donors in subsequent transfer reactions, and we show that the CS of bikunin may serve as an HC acceptor, analogous to HA. Our data suggest that TSG-6/HC2 link HCs randomly on the CS chain of bikunin, in contrast to the ordered attachment observed during the biosynthesis. Moreover, the results show that the transfer activity is indifferent to the new HC position, and the relocated HCs are thus prone to further TSG-6/HC2-induced transfer reactions. The data suggest that HCs may be transferred directly from HA to HA without the involvement of the bikunin CS chain. The results demonstrate reversibility of the interactions between HCs and glycosaminoglycans and suggest that a dynamic shuffling of the HCs occur in vivo.  相似文献   

6.
TSG-6, the secreted product of tumor necrosis factor-stimulated gene-6, is not constitutively expressed but is up-regulated in various cell-types during inflammatory and inflammation-like processes. The mature protein is comprised largely of contiguous Link and CUB modules, the former binding several matrix components such as hyaluronan (HA) and aggrecan. Here we show that this domain can also associate with the glycosaminoglycan heparin/heparan sulfate. Docking predictions and site-directed mutagenesis demonstrate that this occurs at a site distinct from the HA binding surface and is likely to involve extensive electrostatic contacts. Despite these glycosaminoglycans binding to non-overlapping sites on the Link module, the interaction of heparin can inhibit subsequent binding to HA, and it is possible that this occurs via an allosteric mechanism. We also show that heparin can modify another property of the Link module, i.e. its potentiation of the anti-plasmin activity of inter-alpha-inhibitor (IalphaI). Experiments using the purified components of IalphaI indicate that TSG-6 only binds to the bikunin chain and that this is at a site on the Link module that overlaps the HA binding surface. The association of heparin with the Link module significantly increases the anti-plasmin activity of the TSG-6.IalphaI complex. Changes in plasmin activity have been observed previously at sites of TSG-6 expression, and the results presented here suggest that TSG-6 is likely to contribute to matrix remodeling, at least in part, through down-regulation of the protease network, especially in locations containing heparin/heparan sulfate proteoglycans. The differential effects of HA and heparin on TSG-6 function provide a mechanism for its regulation and functional partitioning in particular tissue microenvironments.  相似文献   

7.
Under inflammatory conditions and in the matrix of the cumulus-oocyte complex, the polysaccharide hyaluronan (HA) becomes decorated covalently with heavy chains (HCs) of the serum glycoprotein inter-α-inhibitor (IαI). This alters the functional properties of the HA as well as its structural role within extracellular matrices. The covalent transfer of HCs from IαI to HA is catalyzed by TSG-6 (tumor necrosis factor-stimulated gene-6), but TSG-6 is also known as a HA cross-linker that induces condensation of the HA matrix. Here, we investigate the interplay of these two distinct functions of TSG-6 by studying the ternary interactions of IαI and TSG-6 with well defined films of end-grafted HA chains. We demonstrate that TSG-6-mediated cross-linking of HA films is impaired in the presence of IαI and that this effect suppresses the TSG-6-mediated enhancement of HA binding to CD44-positive cells. Furthermore, we find that the interaction of TSG-6 and IαI in the presence of HA gives rise to two types of complexes that independently promote the covalent transfer of heavy chains to HA. One type of complex interacts very weakly with HA and is likely to correspond to the previously reported covalent HC·TSG-6 complexes. The other type of complex is novel and binds stably but noncovalently to HA. Prolonged incubation with TSG-6 and IαI leads to HA films that contain, in addition to covalently HA-bound HCs, several tightly but noncovalently bound molecular species. These findings have important implications for understanding how the biological activities of TSG-6 are regulated, such that the presence or absence of IαI will dictate its function.  相似文献   

8.
Inter alpha inhibitor (IαI) is an abundant serum protein consisting of three polypeptides: two heavy chains (HC1 and HC2) and bikunin, a broad-specificity Kunitz-type proteinase inhibitor. The complex is covalently held together by chondroitin sulfate but during inflammation IαI may interact with TNF-stimulated gene 6 protein (TSG-6), which supports transesterification of heavy chains to hyaluronan. Recently, IαI was shown to inhibit mouse complement in vivo and to protect from complement-mediated lung injury but the mechanism of such activity was not elucidated. Using human serum depleted from IαI, we found that IαI is not an essential human complement inhibitor as was reported for mice and that such serum has unaltered hemolytic activity. However, purified human IαI inhibited classical, lectin and alternative complement pathways in vitro when added in excess to human serum. The inhibitory activity was dependent on heavy chains but not bikunin and detected at the level of initiating molecules (MBL, properdin) in the lectin/alternative pathways or C4b in the classical pathway. Furthermore, IαI affected formation and assembly of the C1 complex and prevented assembly of the classical pathway C3-convertase. Presence and putative interactions with TSG-6 did not affect the ability of IαI to inhibit complement thus implicating IαI as a potentially important complement inhibitor once enriched onto hyaluronan moieties in the course of local inflammatory processes. In support of this, we found a correlation between IαI/HC-containing proteins and hemolytic activity of synovial fluid from patients suffering from rheumatoid arthritis.  相似文献   

9.
10.
We present data that hyaluronan (HA) polysaccharides, about 14–86 monosaccharides in length, are capable of accepting only a single heavy chain (HC) from inter-α-inhibitor via transfer by tumor necrosis factor-stimulated gene 6 (TSG-6) and that this transfer is irreversible. We propose that either the sulfate groups (or the sulfation pattern) at the reducing end of the chondroitin sulfate (CS) chain of bikunin, or the core protein itself, enables the bikunin proteoglycan (PG) to accept more than a single HC and permits TSG-6 to transfer these HCs from its relatively small CS chain to HA. To test these hypotheses, we investigated HC transfer to the intact CS chain of the bikunin PG, and to the free chain of bikunin. We observed that both the free CS chain and the intact bikunin PG were only able to accept a single HC from inter-α-inhibitor via transfer by TSG-6 and that HCs could be swapped from the bikunin PG and its free CS chain to HA. Furthermore, a significant portion of the bikunin PG was unable to accept a single heavy chain. We discuss explanations for these observations, including the intracellular assembly of inter-α-inhibitor. In summary, these data demonstrate that the sulfation of the CS chain of bikunin and/or its core protein promote HC transfer by TSG-6 to its relatively short CS chain, although they are insufficient to enable the CS chain of bikunin to accept more than one HC in the absence of other cofactors.  相似文献   

11.
TSG-6 (TNF-α-stimulated gene/protein 6), a hyaluronan (HA)-binding protein, has been implicated in the negative regulation of inflammatory tissue destruction. However, little is known about the tissue/cell-specific expression of TSG-6 in inflammatory processes, due to the lack of appropriate reagents for the detection of this protein in vivo. Here, we report on the development of a highly sensitive detection system and its use in cartilage proteoglycan (aggrecan)-induced arthritis, an autoimmune murine model of rheumatoid arthritis. We found significant correlation between serum concentrations of TSG-6 and arthritis severity throughout the disease process, making TSG-6 a better biomarker of inflammation than any of the other arthritis-related cytokines measured in this study. TSG-6 was present in arthritic joint tissue extracts together with the heavy chains of inter-α-inhibitor (IαI). Whereas TSG-6 was broadly detectable in arthritic synovial tissue, the highest level of TSG-6 was co-localized with tryptases in the heparin-containing secretory granules of mast cells. In vitro, TSG-6 formed complexes with the tryptases murine mast cell protease-6 and -7 via either heparin or HA. In vivo TSG-6-tryptase association could also be detected in arthritic joint extracts by co-immunoprecipitation. TSG-6 has been reported to suppress inflammatory tissue destruction by enhancing the serine protease-inhibitory activity of IαI against plasmin. TSG-6 achieves this by transferring heavy chains from IαI to HA, thus liberating the active bikunin subunit of IαI. Because bikunin is also present in mast cell granules, we propose that TSG-6 can promote inhibition of tryptase activity via a mechanism similar to inhibition of plasmin.  相似文献   

12.
During development of ovarian follicles in mammals, cumulus cells and the oocyte form a mucoelastic mass that detaches itself from peripheral granulosa cell layers upon an ovulatory surge. The integrity of this cumulus-oocyte complex (COC) relies on the cohesiveness of a hyaluronan (HA)-enriched extracellular matrix (ECM). We previously identified a serum glycoprotein, inter-alpha-inhibitor (IalphaI), that is critical in organizing and stabilizing this matrix. Following an ovulatory stimulus, IalphaI diffuses into the follicular fluid and becomes integrated in the ECM through its association with HA. TSG-6 (the secreted product of the tumor necrosis factor-stimulated gene 6), another HA binding protein, forms a complex with IalphaI in synovial fluid. The purpose of this study was to investigate whether TSG-6 is involved in the ECM organization of COCs. Immunolocalization of TSG-6 and IalphaI in mouse COCs at different ovulatory stages was analyzed by immunofluorescence and laser confocal microscopy. IalphaI, TSG-6, and HA colocolized in the cumulus ECM. Western blot analyses were consistent with the presence of both TSG-6 and TSG-6/IalphaI complexes in ovulated COCs. These results suggest that TSG-6 has a structural role in COC matrix formation possibly mediating cross-linking of separate HA molecules through its binding to IalphaI.  相似文献   

13.
Inter-α-inhibitor is a proteoglycan of unique structure. The protein consists of three subunits, heavy chain 1, heavy chain 2, and bikunin covalently joined by a chondroitin sulfate chain originating at Ser-10 of bikunin. Inter-α-inhibitor interacts with an inflammation-associated protein, tumor necrosis factor-inducible gene 6 protein, in the extracellular matrix. This interaction leads to transfer of the heavy chains from the chondroitin sulfate of inter-α-inhibitor to hyaluronan and consequently to matrix stabilization. Divalent cations and heavy chain 2 are essential co-factors in this transfer reaction. In the present study, we have investigated how divalent cations in concert with the chondroitin sulfate chain influence the structure and stability of inter-α-inhibitor. The results showed that Mg2+ or Mn2+, but not Ca2+, induced a conformational change in inter-α-inhibitor as evidenced by a decrease in the Stokes radius and a bikunin chondroitin sulfate-dependent increase of the thermodynamic stability. This structure was shown to be essential for the ability of inter-α-inhibitor to participate in extracellular matrix stabilization. In addition, the data revealed that bikunin was positioned adjacent to both heavy chains and that the two heavy chains also were in close proximity. The chondroitin sulfate chain interacted with all protein components and inter-α-inhibitor dissociated when it was degraded. Conventional purification protocols result in the removal of the Mg2+ found in plasma and because divalent cations influence the conformation and affect function it is important to consider this when characterizing the biological activity of inter-α-inhibitor.  相似文献   

14.
Recently, we reported HC-HA, a covalent complex formed between heavy chains (HCs) of inter-α-inhibitor (IαI) and hyaluronan (HA) by the catalytic action of tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6), is responsible for human amniotic membrane (AM) anti-inflammatory, anti-scarring, and anti-angiogenic actions. At the present time, the only well characterized source of IαI is serum being produced by the liver. This study showed that AM epithelial and stromal cells and stromal matrix all stained positively for HA, HC 1, 2, and 3, bikunin, and TSG-6. TSG-6 mRNA and protein were constitutively expressed by cultured AM epithelial and stromal cells without being up-regulated by TNF. In serum-free conditions, these cells expressed IαI, leading to the formation of HC-HA complex that contained both HC1 and HC2. In contrast, only HC1 was found in the HC-HA complex purified from AM. Local production of IαI, the HC-TSG-6 intermediate complex, and HC-HA were abolished when cells were treated with siRNA to HC1, HC2, bikunin (all of which impair the biosynthesis of IαI), or TSG-6 but not to HC3. Collectively, these results indicate that AM is another tissue in addition to the liver to constitutively produce IαI and that the HC-HA complex made by this tissue is different from that found at inflammatory sites (e.g. in asthma and arthritis) and in the matrix of the cumulus oocyte complex.  相似文献   

15.
Tumor necrosis factor-stimulated gene-6 (TSG-6) encodes a 35-kDa protein, which is comprised of contiguous Link and CUB modules. TSG-6 protein has been detected in the articular joints of osteoarthritis (OA) patients, with little or no constitutive expression in normal adult tissues. It interacts with components of cartilage matrix (e.g. hyaluronan and aggrecan) and thus may be involved in extracellular remodeling during joint disease. In addition, TSG-6 has been found to have anti-inflammatory properties in models of acute and chronic inflammation. Here we have mapped the human TSG-6 gene to 2q23.3, a region of chromosome 2 linked with OA. A single nucleotide polymorphism was identified that involves a non-synonymous G --> A transition at nucleotide 431 of the TSG-6 coding sequence, resulting in an Arg to Gln alteration in the CUB module (at residue 144 in the preprotein). Molecular modeling of the CUB domain indicated that this amino acid change might lead to functional differences. Typing of 400 OA cases and 400 controls revealed that the A(431) variant identified here is the major TSG-6 allele in Caucasians (with over 75% being A(431) homozygotes) but that this polymorphism is not a marker for OA susceptibility in the patients we have studied. Expression of the Arg(144) and Gln(144) allotypes in Drosophila Schneider 2 cells, and functional characterization, showed that there were no significant differences in the ability of these full-length proteins to bind hyaluronan or form a stable complex with inter-alpha-inhibitor.  相似文献   

16.
TSG-6 protein (the secreted product of the tumor necrosis factor-stimulated gene-6), a hyaluronan-binding protein comprised mainly of a Link and CUB module arranged in a contiguous fashion, has been shown previously to be a potent inhibitor of neutrophil migration in an in vivo model of acute inflammation (Wisniewski, H. G., Hua, J. C., Poppers, D. M., Naime, D., Vilcek, J., and Cronstein, B. N. (1996) J. Immunol. 156, 1609-1615). It was hypothesized that this activity of TSG-6 was likely to be mediated by its potentiation of inter-alpha-inhibitor anti-plasmin activity (causing a down-regulation of the protease network), which was reliant on these proteins forming a stable, probably covalent approximately 120-kDa complex. Here we have shown that the recombinant Link module from human TSG-6 (Link_TSG6; expressed in Escherichia coli) has an inhibitory effect on neutrophil influx into zymosan A-stimulated murine air pouches, equivalent to that of full-length protein (which we produced in a Drosophila expression system). The active dose of 1 microg of Link_TSG6 per mouse (administered intravenously) also resulted in a significant reduction in the concentrations of various inflammatory mediators (i.e. tumor necrosis factor-alpha, KC, and prostaglandin E(2)) in air pouch exudates. Link_TSG6, although unable to form a stable complex with inter-alpha-inhibitor (under conditions that promote maximum complex formation with the full-length protein), could potentiate its anti-plasmin activity. This demonstrates that formation of an approximately 120-kDa TSG-6.inter-alpha-inhibitor complex is not required for TSG-6 to enhance the serine protease inhibitory activity of inter-alpha-inhibitor. Six single-site Link_TSG6 mutants (with wild-type folds) were compared for their abilities to inhibit neutrophil migration in vivo, bind hyaluronan, and potentiate inter-alpha-inhibitor. These experiments indicate that all of the inhibitory activity of TSG-6 resides within the Link module domain, and that this anti-inflammatory property is not related to either its hyaluronan binding function or its potentiation of the anti-plasmin activity of inter-alpha-inhibitor.  相似文献   

17.
TSG-6 protein, up-regulated in inflammatory lesions and in the ovary during ovulation, shows anti-inflammatory activity and plays an essential role in female fertility. Studies in murine models of acute inflammation and experimental arthritis demonstrated that TSG-6 has a strong anti-inflammatory and chondroprotective effect. TSG-6 protein is composed of the N-terminal link module that binds hyaluronan and a C-terminal CUB domain, present in a variety of proteins. Interactions between the isolated link module and hyaluronan have been studied extensively, but little is known about the binding of full-length TSG-6 protein to hyaluronan and other glycosaminoglycans. We show that TSG-6 protein and hyaluronan, in a temperature-dependent fashion, form a stable complex that is resistant to dissociating agents. The formation of such stable complexes may underlie the activities of TSG-6 protein in inflammation and fertility, e.g. the TSG-6-dependent cross-linking of hyaluronan in the cumulus cell-oocyte complex during ovulation. Because adhesion to hyaluronan is involved in cell trafficking in inflammatory processes, we also studied the effect of TSG-6 on cell adhesion. TSG-6 binding to immobilized hyaluronan did not interfere with subsequent adhesion of lymphoid cells. In addition to immobilized hyaluronan, full-length TSG-6 also binds free hyaluronan and all chondroitin sulfate isoforms under physiological conditions. These interactions may contribute to the localization of TSG-6 in cartilage and to its chondroprotective and anti-inflammatory effects in models of arthritis.  相似文献   

18.
One of the major sulfated proteins secreted by rat hepatocytes contains a low-sulfated chondroitin sulfate chain and its apparent molecular mass upon sodium dodecyl sulfate/polyacrylamide gel electrophoresis shifts from 40 to 28 kDa upon chondroitinase ABC treatment (E. M. Sj?berg and E. Fries, 1990, Biochem. J. 272, 113-118). These properties suggest that this protein is the rat homologue of the major trypsin inhibitor of human urine which was recently named bikunin. In serum, bikunin occurs mainly as a subunit of the pre-alpha-inhibitor and the inter-alpha-inhibitor; in these proteins it is covalently linked to the other polypeptides through its chondroitin sulfate chain. Bikunin has been shown to be synthesized by liver cells as a 42-kDa precursor, in which it is linked to alpha 1-microglobulin by two basic amino acids. We have isolated bikunin from rat urine and prepared antibodies against it. In rat hepatocytes pulse-labeled with [35S]methionine, these antibodies precipitated a labeled protein of 42 kDa. Upon chase, three different labeled proteins were recognized by the antibodies in the medium: one protein of 40 kDa (free bikunin), one of 125 kDa (presumably pre-alpha-inhibitor), and one greater than 240 kDa (possibly a protein related to the inter-alpha-inhibitor). Pulse-chase experiments with [35S]sulfate showed that these proteins occurred intracellularly as precursors containing alpha 1-microglobulin. These results demonstrate that the completion of the chondroitin sulfate chain and its coupling to other polypeptide chains occur before the cleavage of the alpha 1-microglobulin/bikunin precursor.  相似文献   

19.
Inter-alpha-inhibitor (IalphaI) and pre-alpha-inhibitor (PalphaI) are the main members of a set of multichain serine proteinase inhibitors. Present in human plasma, they may be involved in control of the inflammatory process. They are composed of homologous heavy chains (H1 and H2 for IalphaI; H3 for PalphaI) covalently linked by a protein-glycosaminoglycan-protein cross-link to bikunin, which is a chondroitin 4-sulfate proteoglycan. During the acute-phase response, biosynthesis of IalphaI and PalphaI is downregulated and upregulated, respectively. In this work, we provide evidence that, in inflammatory diseases, the chondroitin sulfate chain of bikunin increases in size proportionally to the severity of the inflammatory response. As a consequence, all IalphaI-related components that contain bikunin are structurally modified. Therefore, the changes in glycosylation of the acute-phase proteins are not restricted to N-linked glycans but also affect glycosaminoglycans. The implications of these findings are discussed with regard to biosynthesis and biological role, especially the anti-inflammatory effects of IalphaI-related proteinase inhibitors.  相似文献   

20.
Pre-alpha-inhibitor is a serum protein consisting of two polypeptides named bikunin and heavy chain 3 (H3). Both polypeptides are synthesized in hepatocytes and while passing through the Golgi complex, bikunin, which carries a chondroitin sulfate chain, becomes covalently linked to the COOH-terminal amino acid residue of H3 via its polysaccharide. Immediately prior to this reaction, a COOH-terminal propeptide of 33 kDa is cleaved off from the heavy chain. Using COS-1 cells transfected with rat H3, we found that in the absence of bikunin, the cleaved propeptide remained bound to the heavy chain and that H3 lacking the propeptide sequence did not become linked to coexpressed bikunin. Sequencing of H3 secreted from COS-1 cells showed that part of the molecules had a 12-amino acid residue long NH2-terminal propeptide. Cleavage of this propeptide, which occurred in the endoplasmic reticulum, was found to require basic amino acid residues at P1, P2, and P6 suggesting that it is mediated by a Golgi enzyme in transit. Deletion of the NH2-terminal propeptide or blocking of its release affected neither transport nor coupling of the heavy chain to bikunin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号