首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rainbow trout (Oncorhynchus mykiss) were fed either a control diet containing fish oil or an essential fatty acid (EFA) deficient diet containing only hydrogenated coconut oil and palmitic acid as lipid source (93.4% saturated fatty acids) for 14 weeks and the fatty acid compositions of individual phospholipid classes from skin and opercular membrane (OM) determined. The permeability of skin and OM to water and the production of eicosanoids in skin and gills challenged with the Ca2+ ionophore A23187 were also measured. Phospholipid (PL) fatty acid compositions were substantially modified in EFA-deficient fish, with increased saturated fatty acids and decreased polyunsaturated fatty acids (PUFA), especially arachidonic acid (AA) and eicosapentaenoic acid (EPA), while docosahexaenoic acid (DHA) was largely retained. The onset of EFA deficiency was shown by the appearance of n-9 PUFA, particularly 20:3n-9. The main effects of EFA deficiency on phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were to increase saturated fatty acids and monoenes, especially 16:1 and 18:1, and to decrease EPA and DHA. The content of DHA in phosphatidylserine (PS) was high in control animals (40% in skin and 35% in opercular membrane) and was mostly retained in EFA deficient animals. Arachidonic acid (AA) was the most abundant PUFA esterified to phosphatidylinositol (PI) and was significantly reduced in EFA deficient animals (from 31% to 13% in skin), where a large amount of 20:3n-9 (9% in skin) was also present. Influxes and effluxes of water through skin and opercular membrane were measured in vitro. No differences were detected between rainbow trout fed the control or the EFA deficient diet. 12-Hydroxyeicosatetraenoic acid (12-HETE), 12-hydroxyeicosapentaenoic acid (12-HEPE) and 14-hydroxydocosahexaenoic acid (14-HDHE) could not be detected in skin from control or EFA deficient fish. There was no difference between control and EFA deficient trout in the levels of leukotriene C4 (LTC4) and leukotriene C5 (LTC5) in skin cells challenged with the calcium ionophore A23187, and of prostaglandin F (PGF), 12-HETE and 12-HEPE in gill cells challenged similarly. Prostaglandin F (PGF) production by ionophore stimulated gill cells was significantly reduced in fish fed the EFA-deficient diet. 14-HDHE produced by gill cells was 3.3 fold higher in EFA deficient fish compared to controls.  相似文献   

2.
Essential fatty acid (EFA) deficiency exerts an anti-inflammatory effect in several models of inflammation. In an effort to understand underlying mechanisms, the effect of EFA deficiency on the generation of eicosanoids and the elicitation of leukocytes in a model of acute inflammation was examined. Acute inflammation was induced by the i.p. injection of zymosan in mice. The injection of zymosan in normal mice was followed by a short burst of eicosanoid synthesis lasting 2 hr. Leukotriene (LT)B4, LTC4, LTD4, and LTE4, thromboxane B2, and 6-keto-prostaglandin F1 alpha were detected using high pressure liquid chromatography and specific radioimmunoassays. This initial phase of eicosanoid production was followed by a more prolonged infiltration of leukocytes (predominantly polymorphonuclear neutrophils (PMN)) lasting 48 hr with little eicosanoid synthesis. When challenged with zymosan, EFA-deficient mice exhibited a marked decrease in the production of eicosanoids during the early phase. No LTB could be detected at all. The number of resident peritoneal macrophages in EFA-deficient mice was also substantially decreased, and the influx of PMN during the inflammatory response was markedly diminished. In order to establish that the generation of eicosanoids during the early phase of this model of acute inflammation played a causal role in the later infiltration of PMN, the effect of the mixed lipoxygenase/cyclooxygenase inhibitor, BW755C, on LTB formation and PMN influx in this model of inflammation was assessed in control animals. BW755C completely blocked LTB synthesis and inhibited the subsequent influx of PMN. In conclusion, EFA deficiency inhibits eicosanoid generation, depresses levels of resident macrophages, and markedly diminishes the influx of PMN in the acute inflammatory response. The decrease in PMN influx appears to result from the inhibition of the antecedent generation of LTB.  相似文献   

3.
Mouse peritoneal macrophages metabolize dihomogammalinolenic acid (20:3n-6) primarily to 15-hydroxy-8,11,13-eicosatrienoic acid (15-OH-20:3). Since the biological properties of this novel trienoic eicosanoid remain poorly defined, the effects of increasing concentrations of 15-OH-20:3 and its arachidonic acid (20:4n-6) derived analogue. 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE), on mouse macrophage 20:4n-6 metabolism were investigated. Resident peritoneal macrophages were prelabeled with [3H]-20:4n-6 and subsequently stimulated with zymosan in the presence of either 15-OH-20:3 or 15-HETE (1-30 microM). After 1 hr, the radiolabeled soluble metabolites were analyzed by reverse phase high performance liquid chromatography. 15-OH-20:3 inhibited zymosan-induced leukotriene C4 (IC50 = 2.4 microM) and 5-HETE (IC50 = 3.1 microM) synthesis. In contrast to the inhibition of macrophage 5-lipoxygenase, 15-OH-20:3 enhanced 12-HETE synthesis (5-30 microM) and had no measurable effect on cyclooxygenase metabolism (1-10 microM) i.e., 6-keto-prostaglandin F1 alpha and prostaglandin E2 synthesis. Addition of exogenous 15-HETE produced similar effects. These results suggest that the manipulation of macrophage 15-OH-20:3n-6 levels may provide a measure of cellular control over 20:4n-6 metabolism, specifically, leukotriene production.  相似文献   

4.
This study was aimed at redefining criteria for essential fatty acid (EFA) deficiency with the use of the direct transesterification procedure (1986. J. Lipid Res. 27: 114-120) and at determining whether a simple assay of total fatty acids (FA) is as predictive of EFA deficiency as the FA pattern from plasma, red cell, and platelet phospholipids. Fasting blood samples were taken from 163 cystic fibrosis (CF) patients who were encouraged to consume 35-40% of their calories as fat. Their mean (+/- SD) age was 9.6 +/- 4.8 yr. The control group consisted of 44 unaffected siblings aged 13.1 +/- 3.1 yr. The 20:3(n-9)/20:4(n-6) ratio in 77 (47%) CF children was more than 2 SD above the values (mean +/- SD) of 0.021 +/- 0.007 obtained in the 44 controls. Groups of EFA-sufficient (n = 10) and EFA-deficient (n = 7) subjects were selected for further studies. The plasma total FA 20:3(n-9)/20:4(n-6) ratios of 0.029 +/- 0.003 in EFA-sufficient and of 0.216 +/- 0.103 in EFA-deficient was as good a discriminant as FA in phospholipids from plasma, red cell PC, and platelets. Among the 21 individual fatty acids, 20:3(n-9), which was also found in controls, and 16:1(n-7) (palmitoleic) proved to be the most sensitive indices of EFA deficiency. They are equally reliable in plasma, red cells, and platelets, but the inverse linear relationship (r = -0.91) between the n-7 family and 18:2(n-6) proved to be more closely associated with EFA deficiency than the one (r = 0.66) between 20:3(n-9) and 20:4(n-6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Dietary polyunsaturated fatty acid manipulation exerts a strikingly protective effect in models of tissue inflammation and injury. A critical element of this effect appears to revolve around leukocyte trafficking but underlying mechanisms are ill understood. In the current study it was observed that essential fatty acid (EFA) deficiency markedly impaired the capacity of resident macrophages to spread and adhere. This effect was not a simple function of the alteration of membrane fatty acid composition. Elicited EFA-deficient macrophages were equally adherent to elicited control cells, despite the fact that they were equally EFA-deficient relative to resident EFA-deficient cells. With respect to the mechanism underlying defective macrophage adherence in EFA deficiency, no change in the expression of cell surface adherence molecules (Fc receptor, Mac-1, or LFA-1) was noted with the deficiency state. Also, an adherence defect could not be induced in normal cells pharmacologically with cyclooxygenase blockade, lipoxygenase blockade, or a platelet-activating factor receptor antagonist. In contrast, phospholipase inhibition was able to induce a spreading and adherence defect in resident macrophages similar to that seen with EFA deficiency. Using several phospholipase inhibitors, a correlation between phospholipase inhibition and impairment of adherence was observed. Adding back exogenous fatty acids to cells after phospholipase inhibition demonstrated that normal adherence was reconstituted with arachidonate. This alteration in macrophage spreading and adherence with EFA deficiency may be an important component of the anti-inflammatory effect of dietary polyunsaturated fatty acid manipulation. Additionally, these results suggest that arachidonate may be an intracellular mediator of leukocyte adherence.  相似文献   

6.
Decreased prostaglandin production by cholesterol-rich macrophages   总被引:2,自引:0,他引:2  
The regulation of prostaglandin production by macrophages enriched in cholesterol was examined. Mouse peritoneal macrophages were incubated for 18 h with 25 micrograms/ml of human acetyl-LDL (low density lipoprotein) and trace amounts of labeled arachidonic acid. After cholesterol enrichment, the cells were incubated with phorbol 12-myristate 13-acetate (PMA), calcium ionophore, or zymosan to stimulate endogenous arachidonic acid metabolism. A high performance liquid chromatography profile of the eicosanoids released revealed no qualitative differences between unmodified and modified macrophages. Cholesterol-rich cells, however, released less prostacyclin (PGI2) and prostaglandin E2 (PGE2) compared to unmodified cells, and products from the lipoxygenase pathway became the predominant metabolites. A decrease in the synthesis of PGI2 and PGE2 by cholesterol-rich macrophages was confirmed by radioimmunoassay and radiolabeled experiments. The activity of prostaglandin synthetase was modestly increased in the cholesterol-modified macrophages compared to controls. As an estimation of phospholipase activity, the release of labeled arachidonic acid from membrane phospholipids, however, was significantly decreased in cholesterol-rich macrophages. The phosphatidylinositol fraction was particularly resistant to arachidonate release in response to calcium ionophore and PMA in the modified cells. The measurement of membrane phospholipid fatty acid composition before and after calcium ionophore supported the observation that less arachidonate was released by cholesterol-enriched cells in response to the ionophore. Based on these observations, we propose that prostaglandin synthesis from endogenous arachidonate stores is decreased in the cholesterol-rich macrophage. A decrease in agonist-induced activation of the phospholipase activity is proposed as a mechanism for this effect.  相似文献   

7.
Dietary polyunsaturated fatty acid modulation exerts a beneficial effect in immune-mediated glomerulonephritis. To elucidate the mechanisms underlying this phenomenon, the effects of essential fatty acid (EFA) deficiency on the heterologous phase of nephrotoxic nephritis in rats (induced by the injection of a rabbit antiglomerular basement membrane antibody) were studied. The heterologous phase of nephrotoxic nephritis was characterized by an invasion of leukocytes into the glomerulus. Polymorphonuclear neutrophils predominated early on (3 h), whereas macrophages predominated at 24 and 72 h. EFA deficiency selectively prevented the influx of macrophages into the glomerulus. The invasion of polymorphonuclear neutrophils, in contrast, was unaffected. The influx of leukocytes into the glomerulus during nephritis was accompanied by a marked enhancement (10- to 40-fold) in glomerular thromboxane and leukotriene B4 production. EFA deficiency largely attenuated this change. Renal dysfunction during the heterologous phase of nephritis was manifested as azotemia, polyuria, sodium retention, and proteinuria. With EFA deficiency, polyuria, azotemia, and sodium retention were not seen. Proteinuria was reduced by approximately 85%. To address whether the lack of macrophage migration into the glomerulus in the context of nephritis with EFA deficiency might be due to a functional defect in macrophage migration, the chemotactic responsiveness of EFA-deficient macrophages was examined. EFA-deficient macrophages displayed normal chemotactic migration toward activated C. In sum, EFA deficiency prevents the invasion of macrophages into the glomerulus in nephrotoxic nephritis and attenuates the accompanying metabolic and functional alterations, but does not affect macrophage chemotactic responsiveness. Alterations in macrophage elicitation and lipid mediator generation by inflamed glomeruli thus appear to be central to the salutary effect of dietary polyunsaturated fatty acid modification on glomerulonephritis.  相似文献   

8.
Attempts at a better understanding of the cell membrane organization and functioning need to assess the physical properties which partly depend (i) on the positional distribution of the fatty acids in the membrane phospholipids (PLs) and (ii) on the way by which the PL molecular species are affected by exogenous fatty acids. To do that, the effects of essential (polyunsaturated) fatty acid (EFA) deficiency and enrichment were studied in the liver microsomes of piglets feeding on either an EFA-deficient diet or an EFA-enriched diet containing hydrogenated coconut oil or a mixture of soya + corn oils, respectively. After derivatization, the diacylated forms of choline and ethanolamine PLs were analyzed using a combination of chromatographic techniques and fast-atom bombardment-mass spectrometry. The dinitrobenzoyl-diacylglycerol derivatives corresponding to the molecular species of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were identified. It appears that three factors brought about a marked apparent relative retention: the nature of (i) the base of the polar head, (ii) fatty acids at the sn-1 position and (iii) fatty acids at the sn-2 position. The highest apparent relative retentions were displayed by the 18:0-20:5(n-3)-PE and 16:0-22:6(n-3)-PE. It is noteworthy that the behavior of 20:3 n-9--which is synthesized during the EFA-deficient diet by the same bioconversion system as 20:4 n-6--was very similar to that of 20:4 n-6 during the formation of PC and PE molecular species and that the molecular species of PE containing 20:4(n-6) and 20:3(n-9), gathered together as metabolical homologues, were also apparently retained, particularly in association with 16:0. Present observations are consistent with some others showing retention or preferential distribution of EFA in PE and suggest that specific acyltransferase(s), ethanolamine phosphotransferase and methyltransferase would be mainly involved for PE and PC formation in liver endoplasmic reticulum. Fast-atom bombardment-mass spectrometry of intact phospholipids enables us to show that there is no very long chain dipolyunsaturated phospholipid in liver endoplasmic reticulum.  相似文献   

9.
Essential fatty acid (EFA) deficiency induces fat malabsorption, but the pathophysiological mechanism is unknown. Bile salts (BS) and EFA-rich biliary phospholipids affect dietary fat solubilization and chylomicron formation, respectively. We investigated whether altered biliary BS and/or phospholipid secretion mediate EFA deficiency-induced fat malabsorption in mice. Free virus breed (FVB) mice received EFA-containing (EFA(+)) or EFA-deficient (EFA(-)) chow for 8 wk. Subsequently, fat absorption, bile flow, and bile composition were determined. Identical dietary experiments were performed in multidrug resistance gene-2-deficient [Mdr2((-/-))] mice, secreting phospholipid-free bile. After 8 wk, EFA(-)-fed wild-type [Mdr2((+/+))] and Mdr2((-/-)) mice were markedly EFA deficient [plasma triene (20:3n-9)-to-tetraene (20:4n-6) ratio >0.2]. Fat absorption decreased (70.1 +/- 4.2 vs. 99.1 +/- 0.3%, P < 0.001), but bile flow and biliary BS secretion increased in EFA(-) mice compared with EFA(+) controls (4.87 +/- 0.36 vs. 2.87 +/- 0.29 microl x min(-1) x 100 g body wt(-1), P < 0.001, and 252 +/- 30 vs. 145 +/- 20 nmol x min(-1) x 100 g body wt(-1), P < 0.001, respectively). BS composition was similar in EFA(+)- and EFA(-)-fed mice. Similar to EFA(-) Mdr2((+/+)) mice, EFA(-) Mdr2((-/-)) mice developed fat malabsorption associated with twofold increase in bile flow and BS secretion. Fat malabsorption in EFA(-) mice is not due to impaired biliary BS or phospholipid secretion. We hypothesize that EFA deficiency affects intracellular processing of dietary fat by enterocytes.  相似文献   

10.
Essential fatty acid (EFA) deficiency, induced by elimination of the dietary (n-6) fatty acids, has been shown to limit inflammatory cell influx and consequent enhanced eicosanoid production in experimental glomerulonephritis and hydronephrosis. To determine whether EFA-deficiency exerts anti-inflammatory effects following left ventricular myocardial infarction (LVMI), male weanling rabbits were fed EFA-deficient diet for 3 months prior to 60 minutes of distal left circumflex coronary artery occlusion followed by reperfusion. One and 4 days later, corresponding to infiltration of cardiac tissue with polymorphonuclear (PMN) and mononuclear leukocytes respectively, infarcted hearts were buffer perfused and stimulated to produce eicosanoids with f-met-leu-phe or bradykinin. One day following LVMI, the hearts of EFA-deficient rabbits demonstrated a marked suppression of PMN infiltration and eicosanoid production relative to controls. Four days following myocardial infarction, no differences were observed in mononuclear cell invasion, collagen deposition, or eicosanoid production between EFA-deficient and normal hearts. Our data show that EFA-deficiency inhibits PMN influx and consequent enhanced eicosanoid production without affecting the later appearance of mononuclear cells, collagen deposition, or eicosanoid production. Recent studies have shown that suppression of PMN invasion limits the extent of tissue damage following LVMI. Selective inhibition of PMN infiltration is possible and may be useful in the management of acute myocardial infarction.  相似文献   

11.
The effects of eicosapentaenoic acid (EPA, 20: 5n-3) on essential fatty acid (EFA)-deficient rats were studied. After low growth and scaly dermatitis in the hind legs due to dietary EFA deficiency were induced by feeding rats an EFA-free 25 % casein diet (25C) containing 30 % hydrogenated coconut oil with 1 % cholesterol (HCO ? CHOL) for 8 weeks, they received the 25C diet with 0.19 or 0.57 % EPA ethyl ester concentrate added, or 0.02 % or 0.38 % linoleic acid (LA, 18: 2n-6) concentrate (Exp. I), and the HCO ? CHOL meal including any one of 0.25, 0.50, or 1.00 % EPA concentrate, and 0.12 and 0.48 % LA concentrate (Exp. II) for an additional 6 weeks. When EFA-deficient rats were fed the EPA in both experiments, body weight was gained to almost reach those of the 0.38 or 0.48 % LA-fed group (control), and the dermal symptoms of the hind legs were relieved, though the degree of healing was less than those of the controls. The ratios of eicosatrienoic acid (20: 3n-9) to arachidonic acid (20: 4n-6) characteristically increased due to EFA deficiency were reduced to the level of the control in the liver and heart by addition of the EPA concentrate.  相似文献   

12.
Essential fatty acid (EFA) deficiency is an important tool in probing the role of arachidonic acid (20:4(n-6] in pathophysiologic processes, but requires stringent and prolonged deprivation of (n-6) fatty acids. The present study investigated whether induction of the delta 9 desaturase, which is responsible for the synthesis of oleate, the precursor of 20:3(n-9) which uniquely accumulates in the deficiency state, might serve to accelerate the biochemical and biological effects of EFA deficiency. By alternately fasting and feeding animals a fat-free diet, it was possible to induce markedly the delta 9 desaturase selectively in liver. This dietary manipulation in consequence led to dramatic and rapid changes in hepatic phospholipid fatty acid composition. Within 2 weeks, 20:3(n-9) to 20:4(n-6) ratios in liver phospholipids were several fold greater than those seen in animals fed a fat-free diet alone. These changes, however, contrasted with those seen in the serum and other tissues. The mol% of 20:3(n-9) in serum was not increased by delta 9 desaturase induction and the 20:3(n-9) to 20:4(n-6) ratio was only modestly increased. The effects of delta 9 desaturase induction were even more attenuated in tissues other than the liver. Desaturase induction led to a doubling in the 20:3(n-9) to 20:4(n-6) ratio in phosphatidylcholine in renal cortex and heart, although the ratio in the other phospholipids was unaffected. The 20:3(n-9) to 20:4(n-6) ratio in peritoneal macrophage phospholipids was unaffected by desaturase induction. Thus, delta 9 desaturase induction greatly augments the synthesis of (n-9) fatty acids within the liver and leads to the rapid and substantial accumulation of the abnormal fatty acid, 20:3(n-9). This markedly augmented synthesis of hepatic 20:3(n-9), however, is not reflected in increased plasma levels of 20:3(n-9), and thus the effects of delta 9 desaturase induction are attenuated in tissues other than the liver. These data underscore the notable ability of the liver to maintain polyunsaturated fatty acid homeostasis.  相似文献   

13.
We report here the finding that normal, young cartilages, in distinction from all other tissues examined, have unusually high levels of n-9 eicosatrienoic (20:3 cis-delta 5,8,11) acid and low levels of n-6 polyunsaturated fatty acids (n-6 PUFA). This pattern is identical to that found in tissues of animals subjected to prolonged depletion of nutritionally essential n-6 polyunsaturated fatty acids (EFA). This apparent deficiency is consistently observed in cartilage of all species so far studied (young chicken, fetal calf, newborn pig, rabbit, and human), even though levels of n-6 PUFA in blood and all other tissues is normal. The n-9 20:3 acid is particularly abundant in phosphatidylethanolamine, phosphatidylinositol, and the free fatty acid fractions from the young cartilage. Several factors appear to contribute to the reduction in n-6 PUFA and the appearance of high levels of the n-9 20:3 acid in cartilage: 1) limited access to nutritional sources of EFA due to the impermeability and avascularity of cartilage, 2) rapid metabolism of n-6 PUFA to prostanoids by chondrocytes, and 3) a unique fatty acid metabolism by cartilage. Evidence is presented that each of these factors contributes. Previously, EFA deficiency has been shown to greatly suppress the inflammatory response of leukocytes and rejection of tissues transplanted into allogeneic recipients. Because eicosanoids, which are derived from EFA, have been implicated in the inflammatory responses associated with arthritic disease, reduction of n-6 PUFA and accumulation of the n-9 20:3 acid in cartilage may be important for maintaining normal cartilage structure.  相似文献   

14.
To delineate the metabolism of gammalinolenic acid (18:3(n-6] by macrophages, primary cultures of resident mouse peritoneal macrophages were incubated with [14C]18:3(n-6). At 3, 6 or 20 h, the majority (greater than 85%) of the radiolabel was recovered in cell phospholipids. With increasing time of incubation, a relative reduction of 14C in glycerophosphocholine (ChoGpl, 58.1% to 46.2%) was noted. This was offset by a corresponding increase in glycerophosphoethanolamine (EtnGpl) labeling (from 8.8% to 18.9%). There was also a time-dependent redistribution of 14C from diacyl to ether-containing phospholipid subclasses in ChoGpl and EtnGpl. Analysis of cell extracts by reverse-phae HPLC following transmethylation demonstrated that 18:3(n-6) was extensively elongated (greater than 80%) to dihomogammalinolenic acid (20:3(n-6] by 3 h. The major radiolabeled phospholipid molecular species in the diacyl (PtdCho) and alkylacylglycerophosphocholine (PakCho) subclasses was 16:0-20:3(n-6). In contrast, diacyl (PtdEtn) and alkenylacylglycerophosphoethanolamine (PlsEtn) subclasses contained primarily [14C]18:0-20:3(n-6) and 16:0-20:3(n-6), respectively. Macrophages prelabeled with [14C]18:3(n-6) for 20 h and stimulated with calcium ionophore A23187 or zymosan synthesized [14C]prostaglandin E1 (PGE1). These data demonstrate that macrophages possess an active long chain polyunsaturated fatty acid elongase capable of converting 18:3(n-6) to 20:3(n-6) which can, upon stimulation, be converted to PGE1.  相似文献   

15.
Adrenocortical cells were prepared from rats maintained on essential fatty acid-deficient diets and control litter mates. Cells from control rats had high concentrations of essential fatty acids in the cholesteryl ester fraction of which approximately 22% was arachidonate. In contrast, cells from EFA-deficient rats had only 2.5% arachidonate in the cholesteryl esters, even though the total esterified cholesterol level was comparable to that of controls. In place of the essential fatty acids, the cholesteryl esters of these cells were rich in 20:3(n--9) and 22:3(n--9). When cells from EFA-deficient rats were incubated with ACTH or dibutyryl cyclic AMP, the output of corticosterone was the same as in controls. Also sterol esters were hydrolyzed to the same extent as in controls despite the unusual composition of the fatty acid esters. The phospholipids in both control and EFA-deficient cells contained high levels of arachidonate but were not hydrolyzed in either type of cell during incubation with ACTH or dibutyryl cyclic AMP. The results indicate that high levels of the prostaglandin precursors, namely linoleate and arachidonate, are not a sine qua non for the steroidogenic action of ACTH or cyclic AMP.  相似文献   

16.
Oxidized low density lipoproteins (LDL) are now considered to be one of the atherogenic lipoproteins in vivo and to play an important role in the pathogenesis of atherosclerosis. We previously demonstrated in mouse peritoneal macrophages that oxidized LDL stimulated prostaglandin (PG) E2 synthesis when incorporated into the cells [Yokode, M. et al. (1988) J. Clin. Invest. 81, 720-729]. In this study, we investigated arachidonate metabolism in macrophages after foam cell transformation. The cells were incubated with 100 micrograms/ml of oxidized LDL for 18 h, then stimulated with zymosan. Lipid-enriched macrophages which had taken up oxidized LDL produced much less eicosanoids, such as PGE2, 6-keto-PGF1 alpha, and leukotriene C4 than control cells. After labeling of the cells with [14C]arachidonic acid, they were stimulated with zymosan and the phospholipase activity was determined. The activity of lipid-enriched cells was about two-thirds of that of control cells. Then we investigated the fatty acid composition of their phospholipid fraction to clarify arachidonic acid content and mobilization. Percent of arachidonic acid of lipid-enriched cells decreased and less arachidonic acid mobilization was observed after stimulation with zymosan. These data suggest that impaired arachidonate metabolism in lipid-enriched macrophages can be explained by their decreased phospholipase activity and changes in their fatty acid composition.  相似文献   

17.
Heat shock has a profound influence on the metabolism and behavior of eukaryotic cells. We have examined the effects of heat shock on the release from cells of arachidonic acid and its bioactive eicosanoid metabolites, the prostaglandins and leukotrienes. Heat shock (42-45 degrees) increased the rate of arachidonic acid release from human, rat, murine, and hamster cells. Arachidonate accumulation appeared to be due, at least partially, to stimulation of a phospholipase A2 activity by heat shock and was accompanied by the accumulation of lysophosphatidyl-inositol and lysophosphatidylcholine in membranes. Induction of arachidonate release by heat did not appear to be mediated by an increase in cell Ca++. Stimulation of arachidonate release by heat shock in hamster fibroblasts was quantitatively similar to the receptor-mediated effects of alpha thrombin and bradykinin. The effects of heat shock and alpha thrombin on arachidonate release were inhibited by glucocorticoids. Increased arachidonate release in heat-shocked cells was accompanied by the accelerated accumulation of cyclooxygenase products prostaglandin E2 and prostaglandin F2 alpha and by 5-lipoxygenase metabolite leukotriene B4. Elevated concentrations of arachidonic acid and metabolites may be involved in the cytotoxic effects of hyperthermia, in homeostatic responses to heat shock, and in vascular and inflammatory reactions to stress.  相似文献   

18.
The present study has employed two approaches to address the question of whether there are specific phospholipid sources of arachidonate used for leukotriene biosynthesis in the human neutrophil. Firstly, g.c.-m.s. analysis indicated that arachidonate was lost from all major arachidonate-containing phospholipid subclasses during cell activation with ionophore A23187. On a molar basis, the rank order of breakdown among the three major phospholipids was: 1-alk-1-enyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine greater than 1-alkyl-2-arachidonoyl-sn-3-phosphocholine greater than 1-acyl-2-arachidonyl-sn-3-phosphoinositol. Leukotrienes released into the supernatant fluid accounted for only 10-35% of the total arachidonate depletion. Phospholipid sources were also identified in labelling experiments where the specific radioactivity of arachidonate in phospholipid subclasses, as well as leukotrienes produced during cell activation, was measured. The specific radioactivity of arachidonate within 1-acyl-linked molecular species of phosphatidylcholine and phosphatidylinositol was initially high relative to the leukotrienes and decreased rapidly with stimulation. By contrast, the specific radioactivity of arachidonate in all three subclasses of phosphatidylethanolamine, 1-acyl, 1-alkyl, and 1-alk-1-enyl, was 3-5-fold below that of the leukotrienes throughout cell activation. Of the six major arachidonate-containing subclasses, only in the case of 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine did the specific radioactivity correlate well with that of leukotriene B4 and 20-hydroxyleukotriene B4. These data strongly suggest that 1-ether-linked phospholipids are an important source of arachidonate used for leukotriene biosynthesis.  相似文献   

19.
Two groups of female rats were fed a diet with high (5.9 cal % of linoleate + linolenate) or low (0.78 cal % of linoleate + linolenate) essential fatty acid (EFA) concentration. The effects of the EFA concentration during gestation on liver lipid and fatty acid composition were studied in the fetuses at 15 and 20 days of intrauterine life. Fetal and liver weights were identical in the two groups; at day 20 the contents of proteins, total cholesterol, phospholipids and glycolipids were significantly decreased (p less than 0.01) with the low EFA diet while at day 15 only total cholesterol was affected (p less than 0.05). At both gestational ages the triacylglycerol content was increased in the low EFA group (day 15 p less than 0.05, day 20 p less than 0.01). The maternal EFA deficiency resulted in higher levels of 16:1 n-7 in the phospholipid fractions and 16:1 n-7 and 18:1 n-7 in the neutral lipids. The increase in these monoenoic derivatives partially compensated the decrease of the polyunsaturated species 18:2 n-6 and 20:4 n-6. In conclusion the low EFA diet results in important modifications of the fetal hepatic lipids during intrauterine development.  相似文献   

20.
Rat peritoneal macrophages were cultured in either eicosatetraenoic acid (20:4(n-6) ) or eicosapentaenoic acid (20:5(n-3) ) and the effects on phospholipid fatty acids, prostaglandin synthesizing capacity and the ability of the macrophages to show chemiluminescence were examined. Chemiluminescence is an activity resulting from the synthesis of reactive oxygen species. It has been reported that prostaglandins inhibit this activity. The fatty acid profile of the four major phospholipids reflected the fatty acid component of the medium. Macrophages cultured in 20:4(n-6) synthesized twice the prostaglandin produced by controls and those cultured in 20:5(n-3) synthesized 10% that of controls and 5% that of 20:4(n-6)-cultured cells. Macrophages cultured with 20:4(n-6) for 12 h showed half the chemiluminescence of those cultured with 20:5(n-3), while those cultured with 20:4(n-6) for 24 h showed 10% the chemiluminescence of 20:5(n-3)-cultured cells. Addition of the prostaglandin synthase inhibitor, indomethacin, had no effect on chemiluminescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号