共查询到20条相似文献,搜索用时 15 毫秒
1.
Translocation of botulinum neurotoxin light chain protease through the heavy chain channel 总被引:17,自引:0,他引:17
Clostridial botulinum neurotoxins (BoNTs) abort the process of neurotransmitter release at presynaptic motor nerve terminals, causing muscle paralysis. An enigmatic step in the intoxication process is the mechanism by which the neurotoxin heavy chain (HC) forms the conduit for the translocation of the light chain (LC) protease across the endosomal membrane into the cytosol, its site of action. Here we investigate the mechanism of LC translocation by using the combined detection of channel currents and substrate proteolysis, the two hallmark activities of BoNT. Our data are consistent with the translocation of the LC through the HC channel and show that the LC protease activity is retrieved in the trans compartment after translocation. We propose that the BoNT HC-LC complex embedded in the membrane is a transmembrane chaperone, a dynamic structural device that prevents aggregation and achieves translocation of the LC. In this regard, the complex is similar to the protein conducting/translocating channels of the endoplasmic reticulum, mitochondria and chloroplasts. 相似文献
2.
The zinc-endopeptidase light chain of botulinum A neurotoxin undergoes autocatalytic fragmentation that is accelerated by the presence of the metal cofactor, zinc [Ahmed, S. A. et al. (2001) J. Protein Chem. 20, 221-231]. We show in this paper that >95% fragmented light chain obtained in the absence of added zinc retained 100% of its original catalytic activity against a SNAP-25-derived synthetic peptide substrate. In the presence of zinc chloride, when >95% of the light chain had undergone autocatalytic fragmentation, the preparation retained 35% of its original catalytic activity. On the other hand, in the presence of glycerol, the light chain did not display autocatalysis and retained 100% of the original activity. These results suggest that the activity loss by incubation with zinc was not a direct consequence of autocatalysis and that the environment of the active site was not affected significantly by the fragmentation. The optimum pH 4.2-4.6 for autocatalysis was different than that (pH 7.3) for intrinsic catalytic activity. Inhibition of autocatalysis at low pH by a competitive inhibitor of catalytic activity rules out the presence of a contaminating protease but suggests a rate-limiting step of low pH-induced conformational change suitable for autocatalysis. Our results of LC concentration dependence of the fragmentation reaction indicate that the autocatalysis occurs by both intramolecular and intermolecular mechanisms. 相似文献
3.
M V Stepanova N S Bystrov N V Severtsova V G Korobko T I Bulatova T M Zubova V I Evstigneev E V Smirnov Iu V Vertiev 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1990,(6):11-14
To obtain the information on the genetic control of toxin production in the botulism causative agents, the oligonucleotides were synthesized as the molecular probes by translation of the amino acid sequence of the botulinic type A neurotoxin. The optimal conditions for hybridization of botulinic DNA with the synthetic DNA probes were determined and the probes specificity was demonstrated. The DNA fragments homologous to the probes used were shown to belong to bacterial genome, but not to bacteriophage one. 相似文献
4.
Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type A. 总被引:2,自引:0,他引:2
M Rigoni P Caccin E A Johnson C Montecucco O Rossetto 《Biochemical and biophysical research communications》2001,288(5):1231-1237
Botulinum neurotoxins (BoNTs) are metalloproteases which block neuroexocytosis via specific cleavage and inactivation of SNARE proteins. Such proteolysis accounts for the extreme toxicity of these neurotoxins and of their prolonged effect. The recently determined structures of BoNT/A and/B allows one to design active-site mutants to probe the role of specific residues in the proteolysis of SNARE proteins. Here we present the results of mutations of the second glutamyl residue involved in zinc coordination and of a tyrosine and a phenylalanine residues that occupy critical positions within the active site of BoNT/A. The spectroscopic properties of the purified mutants are closely similar to those of the wild-type molecule indicating the acquisition of a correct tertiary structure. Mutation of the Glu-262* nearly abolishes SNAP-25 hydrolysis as expected for a residue involved in zinc coordination. The Phe-266 and Tyr-366 mutants have reduced proteolytic activity indicating a direct participation in the proteolytic reaction, and their possible role in catalysis is discussed. 相似文献
5.
Clostridial botulinum neurotoxins (BoNTs) cause neuroparalysis by blocking neurotransmitter release at the neuromuscular junctions. While the toxin's heavy chain (HC) is involved in binding and internalization, the light chain (LC) acts as a unique Zn(2+)-endopeptidase against a target protein in the exocytotic docking/fusion machinery. During the translocation of the LC to the cytosol, it is exposed to the endosomal low pH. Low pH showed a dramatic change in the BoNT/A LC polypeptide folding as indicated by differential heat denaturation. Furthermore, binding of 1-anilinonaphthalenesulfonate (ANS) revealed exposure of hydrophobic domains of BoNT/A LC at low pH. Low-pH-induced structural (and by implication the endopeptidase activity) changes were completely reversible. Exposure of BoNT/A LC to low pH (4.7) did not, however, evoke the loss of Zn(2+) bound to its active site. Implications of these observations to the delivery of active BoNT/A LC to the nerve cell are discussed. We further analyzed the nature of low-pH-induced change in the polypeptide folding of BoNT/A LC by Trp fluorescence measurements. The Trp fluorescence peak was observed at 322 nm, and the two fluorescence lifetime components estimated at 2.1 ns (88%) and 0.6 ns (12%) did not change much at low pH. These observations suggested that the two Trp residues are buried and constrained in a hydrophobic environment, and it is likely that the core of the BoNT/A LC protein matrix does not participate in the low-pH-induced structural alteration. This conclusion was further supported by the near-UV circular dichroism spectra under two pH conditions. 相似文献
6.
The seven serotypes (A-G) of botulinum neurotoxins (BoNTs) block neurotransmitter release through their specific proteolysis of one of the three proteins of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) complex. BoNTs have stringent substrate specificities that are unique for metalloprotease in that they require exceptionally long substrates (1). To understand the molecular reasons for the unique specificities of the BoNTs, we determined the crystal structure of the catalytic light chain (LC) of Clostridium botulinum neurotoxin type G (BoNT/G-LC) at 2.35 A resolution. The structure of BoNT/G-LC reveals a C-terminal beta-sheet that is critical for LC oligomerization and is unlike that seen in the other LC structures. Its structural comparison with thermolysin and the available pool of LC structures reveals important serotype differences that are likely to be involved in substrate recognition of the P1' residue. In addition, structural and sequence analyses have identified a potential exosite of BoNT/G-LC that recognizes a SNARE recognition motif of VAMP. 相似文献
7.
Botulinum neurotoxin light chain (BoNT LC, 50 kDa) is responsible for the zinc endopeptidase activity specific for proteins of neuroexocytosis apparatus. We describe the expression of recombinant type A BoNT LC in Escherichia coli as well as the purification and characterization of the recombinant protein. A high level of expression of BoNT/A LC was obtained by an extended postinduction time of 15 h at 30 degrees C. Recombinant BoNT/A LC was isolated from an Ni(2+) column. Due to its high pI ( approximately 8.7), purification was achieved by a single step of passing the protein through anion-exchange chromatography at pH 8.0 without the need of elution. The purified recombinant BoNT/A LC retained proteolytic activity and had a secondary structure similar to that of native LC determined by CD measurement. 相似文献
8.
Type A botulinum neurotoxin (BoNT/A) is a zinc endopeptidase that contains the consensus sequence HEXXH (residues 223-227) in the toxic light chain (LC). The X-ray structure of the toxin has predicted that the two histidines of this motif are two of the three zinc-coordinating ligands and that the glutamate is a crucial amino acid involved in catalysis. The functional implication of E224 in the motif of LC was investigated by replacing the residue with glutamine and aspartate using site-directed mutagenesis. Substitution of Glu-224 with Gln (E224Q) resulted in a total loss of the endopeptidase activity, whereas substitution with Asp (E224D) retained about 1.4% of the enzymatic activity (k(cat) 140 vs 1.9 min(-1), respectively). However, K(m) values for wild-type and E224D BoNT/A LC were similar, 42 and 50 microM, respectively. Global structure, in terms of secondary structure content and topography of aromatic amino residues, Zn(2+) content, and substrate binding ability are retained in the enzymatically inactive mutants. Titration of Zn(2+) to EDTA-treated wild-type and mutant proteins indicated identical enthalpy for Zn(2+) binding. These results suggest an essential and direct role of the carboxyl group of Glu-224 in the hydrolysis of the substrate. The location of the carboxyl group at a precise position is critical for the enzymatic activity, as replacement of Glu-224 with Asp resulted in almost total loss of the activity. 相似文献
9.
Baldwin MR Bradshaw M Johnson EA Barbieri JT 《Protein expression and purification》2004,37(1):187-195
Botulinum neurotoxin type A (BoNT/A) is the etiological agent responsible for botulism, a disease characterized by peripheral neuromuscular blockade. BoNT/A is produced by Clostridium botulinum as a single chain protein that is activated by proteolytic cleavage to form a 50 kDa light chain (LC, 448 amino acids) and a disulfide bond-linked 100 kDa heavy chain (HC, 847 amino acids). Whilst HC comprises the receptor binding and translocation domains, LC is a Zn2+-endopeptidase that cleaves at a single glutaminyl-arginine bond corresponding to residues 197 and 198 at the C-terminus of SNAP25. Cleavage of SNAP25 uncouples the neural exocytosis docking/fusion machinery. LC/A (LC 1-448) and several C-terminal deletion proteins of LC/A were engineered and expressed as His-tagged fusion proteins in Escherichia coli. LC 1-448 was purified, but precipitated upon storage. Approximately 40% of LC 1-448 was a covalent dimer due to the formation of inter-chain disulfide bond formation at Cys430. Conversion of Cys430 to Ser abolished dimer formation of LC 1-448, but did not improve solubility. Three C-terminal deletion peptides were engineered; LC 1-425 and LC 1-418 were expressed and could be purified as soluble and stable proteins, whilst LC 1-398 was soluble, but not stable to storage. Kinetic studies showed that LC 1-448 and LC 1-425 efficiently cleaved GST-SNAP25 and the fluorescent substrate SNAPtide, while LC 1-418 catalyzed the cleavage of both the SNAP25 and the fluorescent substrate SNAPtide with a similar Km, but at a 10-fold slower kcat. Thus, regions within the C-terminus of LC/A contribute to solubility, stability, and catalysis. 相似文献
10.
Adekar SP Takahashi T Jones RM Al-Saleem FH Ancharski DM Root MJ Kapadnis BP Simpson LL Dessain SK 《PloS one》2008,3(8):e3023
Background
Botulinum neurotoxins (BoNT) are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC), a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored.Methods and Findings
We used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A). The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for the HC. In Neuro-2a neuroblastoma cells, the 4LCA antibody prevented the cleavage of the BoNT/A proteolytic target, SNAP-25. Unlike an antibody specific for the HC, the 4LCA antibody did not block entry of BoNT/A into cultured cells. Instead, it was taken up into synaptic vesicles along with BoNT/A. The 4LCA antibody also directly inhibited BoNT/A catalytic activity in vitro.Conclusions
An antibody specific for the BoNT/A LC can potently inhibit BoNT/A in vivo and in vitro, using mechanisms not previously associated with BoNT-neutralizing antibodies. Antibodies specific for BoNT LC may be valuable components of an antibody antidote for BoNT exposure. 相似文献11.
12.
Summary The secondary and tertiary structural features of botulinum neurotoxin (NT) serotype A, a dichain protein (Mr 145 000), and its two subunits, the heavy (H) and light (L) chains (Mr 97 000 and 53 000, respectively) were examined using circular dichroism and fluorescence spectorscopy. Nearly 70% of the amino acid residues in each of the three polypeptide preparations were found in ordered structure (sum of helix, sheet and turns). Also, the helix, sheet, turns and random coil contents of the dichain NT were nearly equal to the weighted mean of each of these secondary structure parameters of the L and H chains; e.g., sum of helix of L chain (22%) and H chain (18.7%), as weighted mean, 19.8% was similar to that of NT (20%). These agreements suggested that the secondary structures of the subunits of the dichain NT do not significantly change when they are separated as isolated L and H chains. Fluorescence emission maximum of L chain, 4 nm less (blue shift) than that of H chain, suggested relatively more hydrophobic environment of fluorescent tryptophan residue(s) of L chain. Tryptophan fluorescence quantum yields of L chain, H chain and the NT, 0.072, 0.174 and 0.197, respectively, suggested that a) an alteration in the micro-environment of the tryptophan residues was possibly caused by interactions of L and H chain subunits of the NT and b) quantum yields for L and H chains were altered when they are together as subunits of the NT. Possible implications of structural features of the L and H chains, their interactions and the molecular mechanism of action of botulinum NT are assessed. 相似文献
13.
Sebastian Miethe Christine Rasetti-Escargueil Yvonne Liu Siham Chahboun Thibaut Pelat Arnaud Avril Andrè Frenzel Thomas Schirrmann Philippe Thullier Dorothea Sesardic Michael Hust 《MABS-AUSTIN》2014,6(2):446-459
Botulinum toxins (BoNTs) are among the most toxic substances on earth, with serotype A toxin being the most toxic substance known. They are responsible for human botulism, a disease characterized by flaccid muscle paralysis that occurs naturally through food poisoning or the colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNT has been classified as a category A agent by the Centers for Disease Control, and it is one of six agents with the highest potential risk of use as bioweapons. Human or human-like neutralizing antibodies are thus required for the development of anti-botulinum toxin drugs to deal with this possibility. In this study, Macaca fascicularis was hyperimmunized with a recombinant light chain of BoNT/A. An immune phage display library was constructed and, after multistep panning, several scFv with nanomolar affinities that inhibited the endopeptidase activity of BoNT/A1 in vitro as scFv-Fc, with a molar ratio (ab binding site:toxin) of up to 1:1, were isolated. The neutralization of BoNT/A-induced paralysis by the SEM120-IID5, SEM120-IIIC1 and SEM120-IIIC4 antibodies was demonstrated in mouse phrenic nerve-hemidiaphragm preparations with the holotoxin. The neutralization observed is the strongest ever measured in the phrenic nerve-hemidiaphragm assay for BoNT/A1 for a monoclonal antibody. Several scFv-Fc inhibiting the endopeptidase activity of botulinum neurotoxin A were isolated. For SEM120-IID5, SEM120-IIIC1, and SEM120-IIIC4, inhibitory effects in vitro and protection against the toxin ex vivo were observed. The human-like nature of these antibodies makes them promising lead candidates for further development of immunotherapeutics for this disease. 相似文献
14.
《MABS-AUSTIN》2013,5(2):446-459
Botulinum toxins (BoNTs) are among the most toxic substances on earth, with serotype A toxin being the most toxic substance known. They are responsible for human botulism, a disease characterized by flaccid muscle paralysis that occurs naturally through food poisoning or the colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNT has been classified as a category A agent by the Centers for Disease Control, and it is one of six agents with the highest potential risk of use as bioweapons. Human or human-like neutralizing antibodies are thus required for the development of anti-botulinum toxin drugs to deal with this possibility. In this study, Macaca fascicularis was hyperimmunized with a recombinant light chain of BoNT/A. An immune phage display library was constructed and, after multistep panning, several scFv with nanomolar affinities that inhibited the endopeptidase activity of BoNT/A1 in vitro as scFv-Fc, with a molar ratio (ab binding site:toxin) of up to 1:1, were isolated. The neutralization of BoNT/A-induced paralysis by the SEM120-IID5, SEM120-IIIC1 and SEM120-IIIC4 antibodies was demonstrated in mouse phrenic nerve-hemidiaphragm preparations with the holotoxin. The neutralization observed is the strongest ever measured in the phrenic nerve-hemidiaphragm assay for BoNT/A1 for a monoclonal antibody. Several scFv-Fc inhibiting the endopeptidase activity of botulinum neurotoxin A were isolated. For SEM120-IID5, SEM120-IIIC1, and SEM120-IIIC4, inhibitory effects in vitro and protection against the toxin ex vivo were observed. The human-like nature of these antibodies makes them promising lead candidates for further development of immunotherapeutics for this disease. 相似文献
15.
Kadkhodayan S Knapp MS Schmidt JJ Fabes SE Rupp B Balhorn R 《Protein expression and purification》2000,19(1):125-130
A truncated but functional form of the botulinum neurotoxin A light chain (Tyr 9-Leu 415) has been cloned into the three bacterial expression vectors, pET 28, pET 30, and PGEX-2T, and produced as fusion proteins. This 406-amino-acid light chain was expressed with 1 six-histidine tag (LC-pET28), 2 six histidine tags and a S-tag (LC-pET30), or a six-histidine tag and a glutathione S-transferase tag (LC-pGEX-2T). The three fusion proteins have been overexpressed in Escherichia coli, purified in a soluble form, and tested for protease activity. All three recombinant proteins were found to have similar enzymatic activity, comparable to the light chain purified from the whole toxin. The LC-pET30 protein was the most soluble and stable of the three fusion proteins, and it could be purified using a one-step affinity chromatography protocol. The purified protein was determined to be 98% pure as assessed by SDS-polyacrylamide gel. This protein has been crystallized and initial X-ray data show that the crystals diffract to 1.8 A. 相似文献
16.
Clostridial neurotoxins are zinc endopeptidases, and each contains one Zn(2+)/molecule. To investigate the structural/functional role of Zn(2+) in botulinum neurotoxin light chain (the enzymatic subunit of the neurotoxin), the effect of the removal of zinc on protein folding and enzyme kinetics was investigated. The active site Zn(2+), which was easily displaced from the active site by ethylenediaminetetraacetate, reversibly binds to the BoNT/A light chain (LC) in a stoichiometric manner. Enzymatic activity was completely abolished in the zinc-depleted light chain (apo-LC). However, Zn(2+) replenishment partially restored the activity in the re-Zn(2+)-LC (k(cat) = 72 min(-)(1)) compared to the holo-LC (k(cat) = 140 min(-)(1)). Comparable K(m) values in the holo- and re-Zn(2+)-LC were observed (41 and 55 microM, respectively), indicating a similar substrate binding ability. We investigated the structural basis of a 3-fold difference in the catalytic efficiency of the native holo-LC and re-Zn(2+)-LC by analyzing secondary and tertiary structural parameters. Removal of the zinc causes irreversible tertiary structural change while the secondary structure remains unchanged. Zinc binding leads to enhanced thermal stability of the LC, which is not identical in the native holo-LC and re-Zn(2+)-LC. 相似文献
17.
Agarwal R Eswaramoorthy S Kumaran D Dunn JJ Swaminathan S 《Protein expression and purification》2004,34(1):95-102
The catalytic activity of the highly potent botulinum neurotoxins are confined to their N-terminal light chains ( approximately 50kDa). A full-length light chain for the type E neurotoxin with a C-terminal 6x His-tag, BoNT/E-LC, has been cloned in a pET-9c vector and over-expressed in BL21 (DE3) cells. BoNT/E-LC was purified to homogeneity by affinity chromatography on Ni-NTA agarose followed by exclusion chromatography using a Superdex-75 sizing column. The purified protein has very good solubility and can be stored stably at -20 degrees C; however, it seems to undergo auto-proteolysis when stored at temperature #10878;4-10 degrees C. BoNT/E-LC is active on its natural substrate, the synaptosomal associated 25kDa protein, SNAP-25, indicating that it retains a native-like conformation and therefore can be considered as a useful tool in studying the structure/function of the catalytic light chain. Recombinant BoNT/E-LC has been crystallized under five different conditions and at various pHs. Crystals diffract to better than 2.1A. 相似文献
18.
Y Ochiai A Handa S Watabe K Hashimoto 《The International journal of biochemistry》1990,22(10):1097-1103
1. Fast skeletal myosin subfragment 1 (S1) was separated into two isozymes, S1(A1) and S1(A2), based on the associated alkali light chain, and their thermostabilities were compared. 2. Inactivation rate constants of Ca2(+)-ATPase (at 30 and 35 degrees C) were higher and heat-induced turbidity increase at 340 nm (at 40 degrees C) was faster with S1(A1) than with S1(A2), indicating a higher stability of S1(A2). 3. When S1 isozymes were incubated in the presence of excess alkali light chain, turbidity increase was markedly reduced, depending on the amount of light chain added. 4. Results obtained strongly suggest that alkali light chains are involved in the maintenance of myosin head structure. 相似文献
19.
Burnett JC Schmidt JJ McGrath CF Nguyen TL Hermone AR Panchal RG Vennerstrom JL Kodukula K Zaharevitz DW Gussio R Bavari S 《Bioorganic & medicinal chemistry》2005,13(2):333-341
Botulinum neurotoxins (BoNTs) are the most potent of the known biological toxins, and consequently are listed as category A biowarfare agents. Currently, the only treatments against BoNTs include preventative antitoxins and long-term supportive care. Consequently, there is an urgent need for therapeutics to counter these enzymes--post exposure. In a previous study, we identified a number of small, nonpeptidic lead inhibitors of BoNT serotype A light chain (BoNT/A LC) metalloprotease activity, and we identified a common pharmacophore for these molecules. In this study, we have focused on how the dynamic movement of amino acid residues in and surrounding the substrate binding cleft of the BoNT/A LC might affect inhibitor binding modes. The X-ray crystal structures of two BoNT/A LCs (PDB refcodes=3BTA and 1E1H) were examined. Results from these analyses indicate that the core structural features of the examined BoNT/A LCs, including alpha-helices and beta-sheets, remained relatively unchanged during 1 ns dynamics trajectories. However, conformational flexibility was observed in surface loops bordering the substrate binding clefts in both examined structures. Our analyses indicate that these loops may possess the ability to decrease the solvent accessibility of the substrate binding cleft, while at the same time creating new residue contacts for the inhibitors. Loop movements and conformational/positional analyses of residues within the substrate binding cleft are discussed with respect to BoNT/A LC inhibitor binding and our common pharmacophore for inhibition. The results from these studies may aid in the future identification/development of more potent small molecule inhibitors that take advantage of new binding contacts in the BoNT/A LC. 相似文献
20.
Partial amino acid sequence of the heavy and light chains of botulinum neurotoxin type A 总被引:3,自引:0,他引:3
J J Schmidt V Sathyamoorthy B R DasGupta 《Biochemical and biophysical research communications》1984,119(3):900-904
The dichain (nicked) type A botulinum neurotoxin is a protein (mol. wt. 145,000) composed of a heavy and a light chain (mol. wt. 97,000 and 53,000, respectively) that are held together by disulfide bond(s). We report here the sequence of the first 17 amino acid residues of the light chain, and the first 10 residues of the heavy chain. The heavy chain was isolated from the neurotoxin by two different methods, while the light chain was isolated by the only available method. The identical amino acid sequence was found in both preparations of heavy chain. Two samples of the light chain isolated from two separately prepared batches of the neurotoxin also had identical sequences. 相似文献