首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome b(561) from bovine adrenal chromaffin vesicles contains two heme B prosthetic groups and transports electron equivalents across the vesicle membranes to convert intravesicular monodehydroascorbate radical to ascorbate. To elucidate the mechanism of the transmembrane electron transfer, effects of the treatment of purified cytochrome b(561) with diethyl pyrocarbonate, a reagent specific for histidyl residues, were examined. We found that when ascorbate was added to the oxidized form of diethyl pyrocarbonate-treated cytochrome b(561), less than half of the heme iron was reduced but with a very slow rate. In contrast, radiolytically generated monodehydroascorbate radical was oxidized rapidly by the reduced form of diethyl pyrocarbonate-modified cytochrome b(561), as observed for untreated cytochrome b(561). These results indicate that the heme center specific for the electron acceptance from ascorbate was perturbed by the modification of amino acid residues nearby. We identified the major modification sites by mass spectrometry as Lys85, His88, and His161, all of which are fully conserved and located on the extravesicular side of cytochrome b(561) in the membranes. We suggest that specific N-carbethoxylation of the histidyl ligands of the heme b at extravesicular side abolishes the electron-accepting ability from ascorbate.  相似文献   

2.
Planarians are one of the simplest animal groups with a central nervous system. Their primitive central nervous system produces large quantities of a variety of neuropeptides, of which many are amidated at their C terminus. In vertebrates, peptide amidation is catalyzed by two enzymes [peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxylglycine alpha-amidating lyase] acting sequentially. In mammals, both enzymatic activities are contained within a single protein that is encoded by a single gene. By utilizing PCR with degenerate oligonucleotides derived from conserved regions of PHM, we succeeded in cloning a full-length cDNA encoding planarian PHM. The deduced amino acid sequence showed full conservation of five His residues and one Met residue, which bind two Cu atoms that are essential for the activity of PHM. Northern blot analysis confirmed the expression of a PHM mRNA of the expected size. Distribution of the mRNA was analyzed by in situ hybridization, showing specific expression in neurons with two morphologically distinct structures, a pair of the ventral nerve cords and the brain. The distribution of PHM was very similar to that of cytochrome b561. This indicates that the ascorbate-related electron transfer system operates in the planarian central nervous system to support the PHM activity and that it predates the emergence of Plathelminthes in the evolutionary history.  相似文献   

3.
Adrenal cytochrome b(561) (cyt b(561)), a transmembrane protein that shuttles reducing equivalents derived from ascorbate, has two heme centers with distinct spectroscopic signals and reactivity towards ascorbate. The His54/His122 and His88/His161 pairs furnish axial ligands for the hemes, but additional amino acid residues contributing to the heme centers have not been identified. A computational model of human cyt b(561) (Bashtovyy, D., Berczi, A., Asard, H., and Pali, T. (2003) Protoplasma 221, 31-40) predicts that His92 is near the His88/His161 heme and that His110 abuts the His54/His122 heme. We tested these predictions by analyzing the effects of mutations at His92 or His110 on the spectroscopic and functional properties. Wild type cytochrome and mutants with substitutions in other histidine residues or in Asn78 were used for comparison. The largest lineshape changes in the optical absorbance spectrum of the high-potential (b(H)) peak were seen with mutation of His92; the largest changes in the low-potential (b(L)) peak lineshape were observed with mutation of His110. In the EPR spectra, mutation of His92 shifted the position of the g=3.1 signal (b(H)) but not the g=3.7 signal (b(L)). In reductive titrations with ascorbate, mutations in His92 produced the largest increase in the midpoint for the b(H) transition; mutations in His110 produced the largest decreases in DeltaA(561) for the b(L) transition. These results indicate that His92 can be considered part of the b(H) heme center, and His110 part of the b(L) heme center, in adrenal cyt b(561).  相似文献   

4.
Adrenal cytochrome b561 (cyt b561) is the prototypical member of an emerging family of proteins that are distributed widely in vertebrate, invertebrate and plant tissues. The adrenal cytochrome is an integral membrane protein with two b-type hemes and six predicted transmembrane helices. Adrenal cyt b561 is involved in catecholamine biosynthesis, shuttling reducing equivalents derived from ascorbate. We have developed an Escherichia coli system for expression, solubilization and purification of the adrenal cytochrome. The spectroscopic and redox properties of the purified recombinant protein expressed in this prokaryotic system confirm that the cytochrome retains a native, fully functional form over a wide pH range. Mass spectral analysis shows that the N-terminal signal peptide is intact. The new bacterial expression system for cyt b561 offers a sixfold improvement in yield and other substantial advantages over existing insect and yeast cell systems for producing the recombinant cytochrome for structure-function studies.  相似文献   

5.
Cytochromes b(561) are a family of transmembrane proteins found in most eukaryotic cells and contain two haem b prosthetic groups per molecule being coordinated with four His residues from four different transmembrane alpha-helices. Although cytochromes b(561) residing in the chromaffin vesicles has long been known to have a role for a neuroendocrine-specific transmembrane electron transfer from extravesicular ascorbate to intravesicular monodehydroascorbate radical to regenerate ascorbate, newly found members were apparently lacking in the sequence for putative ascorbate-binding site but exhibiting a transmembrane ferrireductase activity. We propose that cytochrome b(561) has a specific mechanism to facilitate the concerted proton/electron transfer from ascorbate by exploiting a cycle of deprotonated and protonated states of the N(delta1) atom of the axial His residue at the extravesicular haem center, as an initial step of the transmembrane electron transfer. This mechanism utilizes the well-known electrochemistry of ascorbate for a biological transmembrane electron transfer and might be operative for other type of electron transfer reactions from organic reductants.  相似文献   

6.
Cytochrome b561 is a transmembrane electron transport protein that is specific to a subset of secretory vesicles containing catecholamines and amidated peptides. This protein is thought to supply reducing equivalents to the intravesicular enzymes dopamine-beta-hydroxylase and alpha-peptide amidase. We have purified cytochrome b561 from bovine adrenal chromaffin granules by reverse phase chromatography and have determined internal amino acid sequences from peptides. Complementary oligonucleotides were used to isolate two cDNA clones from a bovine brain library. The structure predicted by the sequences of these cDNAs suggests a highly hydrophobic protein of 273 amino acids which spans the membrane six times with little extramembranous sequence. Cytochrome b561 is not homologous to any other cytochrome and thus represents a new class of electron carriers. RNA blotting experiments indicate that cytochrome b561 is expressed in the adrenal medulla and all brain regions of the cow, but not in visceral organs. This result agrees well with the putative function of this unique cytochrome and with the notion that this protein is localized to large dense-core synaptic vesicles.  相似文献   

7.
Cytochrome b561 from bovine adrenal medulla chromaffin granules has been purified by fast protein liquid chromatography chromatofocusing. The purified cytochrome was reconstituted into ascorbate-loaded phosphatidylcholine vesicles. With this reconstituted system transmembrane electron transfer for extravesicular soluble dopamine beta-hydroxylase activity was demonstrated. In accordance with the model proposed by Njus et al. (Njus, D., Knoth, J., Cook, C., and Kelley, P. M. (1983) J. Biol. Chem. 258, 27-30), catalytic amounts of a redox mediator were necessary to achieve electron transfer between cytochrome and soluble dopamine beta-hydroxylase. Our observations also showed that when membranous dopamine beta-hydroxylase was reconstituted on cytochrome containing vesicles, electron transfer occurred only in the presence of a redox mediator. Since cytochrome b561 has been found in secretory vesicles associated with peptidyl glycine alpha-amidating monooxygenase, electron transfer to this enzyme was also examined. Analogous to the results obtained for dopamine beta-hydroxylase, transmembrane electron transfer to peptidyl glycine alpha-amidating monooxygenase appears to require a redox mediator between cytochrome and this monooxygenase. These observations indicate that purified cytochrome b561 is capable of providing a transmembrane supply of electrons for both monooxygenases. Since no direct protein to protein electron transfer occurs, the results support the hypothesis that the ascorbate/semidehydroascorbate redox pair serves as a mediator for these enzymes in vivo.  相似文献   

8.
Su D  Asard H 《The FEBS journal》2006,273(16):3722-3734
Cytochromes b(561) are a family of transmembrane proteins found in most eukaryotic cells. Three evolutionarily closely related mammalian cytochromes b(561) (chromaffin granule cytochrome b, duodenal cytochrome b, and lysosomal cytochrome b) were expressed in a Saccharomyces cerevisiaeDeltafre1Deltafre2 mutant, which lacks almost all of its plasma membrane ferrireductase activity, to study their ability to reduce ferric iron (Fe(3+)). The expression of each of these cytochromes b(561) was able to rescue the growth defect of the Deltafre1Deltafre2 mutant cells in iron-deficient conditions, suggesting their involvement in iron metabolism. Plasma membrane ferrireductase activities were measured using intact yeast cells. Each cytochrome b(561) showed significant FeCN and Fe(3+)-EDTA reductase activities that were dependent on the presence of intracellular ascorbate. Site-directed mutagenesis of lysosomal cytochrome b was conducted to identify amino acids that are indispensable for its activity. Among more than 20 conserved or partially conserved amino acids that were investigated, mutations of four His residues (H47, H83, H117 and H156), one Tyr (Y66) and one Arg (R67) completely abrogated the FeCN reductase activity, whereas mutations of Arg (R149), Phe (F44), Ser (S115), Trp (W119), Glu (E196), and Gln (Q131) affected the ferrireductase activity to some degree. These mutations may affect the heme coordination, ascorbate binding, and/or ferric substrate binding. Possible roles of these residues in lysosomal cytochrome b are discussed. This study demonstrates the ascorbate-dependent transmembrane ferrireductase activities of members of the mammalian cytochrome b(561) family of proteins.  相似文献   

9.
Bovine adrenal chromaffin granule cytochrome (cyt) b561 is a transmembrane hemoprotein that plays a key role in transporting reducing equivalents from ascorbate to dopamine-beta-hydroxylase for catecholamine synthesis. We have developed procedures for expression and purification of functional bovine adrenal cyt b561 in insect and yeast cell systems. The bovine cyt b561 coding sequence, with or without a hexahistidine-tag sequence at the C-terminus, was cloned into the pVL1392 transfer vector under the control of the polyhedrin promoter to generate recombinant baculovirus for protein expression in Sf9 insect cells (approximately 0.5 mg detergent-solubilized cyt b561/L culture). For the yeast system, the cyt b561 cDNA was modified with a hexahistidine-tag sequence at the C-terminus, and inserted into the pPICZB vector under the control of the alcohol oxidase promoter. The recombinant plasmid was transformed into Pichia pastoris GS115 competent cells to give methanol-inducible cyt b561 expression (approximately 0.7 mg detergent-solubilized cyt b561/L culture). Recombinant His-tagged cyt b561 expressed in Sf9 or Pichia cells was readily solubilized from membrane fractions with dodecyl maltoside and purified to electrophoretic homogeneity by one-step chromatography on Ni-NTA affinity resin. The purified recombinant cytochrome from both systems had a heme to protein ratio close to two and was fully functional, as judged by comparison with the spectroscopic and kinetic parameters of the endogenous cytochrome from chromaffin granules. A novel procedure for isolation of chromaffin granule membranes was developed to utilize frozen adrenal glands instead of fresh tissue.  相似文献   

10.
11.
The topological arrangement of cytochrome b561 in the bovine adrenal medullary chromaffin granule membrane was investigated by radiolabeling and immunoprecipitation techniques using antibody raised against the purified cytochrome. The first labeling procedure involved a membrane-permeable amino group labeling reagent, ethyl acetimidate, and two membrane-nonpermeable amino group labeling reagents, isethionyl acetimidate and trinitrobenzenesulfonic acid. The second radiolabeling procedure involved lactoperoxidase-catalyzed iodination of the exposed tyrosines on the membrane-bound proteins. The labeled cytochrome b561 was isolated by immunoprecipitating detergent extracts of treated membranes, followed by electrophoresis of the precipitated cytochrome in polyacrylamide-dodecyl sulfate. From the analysis of both labeling techniques, cytochrome b561 appeared to be a transmembrane protein and a major portion of this protein was cytoplasmically exposed.  相似文献   

12.
Rate constants for reduction of cytochrome b561 by internal ascorbate (k0A) and oxidation by external ferricyanide (k1F) were determined as a function of pH from rates of steady-state electron transfer across chromaffin-vesicle membranes. The pH dependence of electron transfer from cytochrome b561 to ferricyanide (k1F) may be attributed to the pH dependence of the membrane surface potential. The rate constant for reduction by internal ascorbate (k0A), like the previously measured rate constant for reduction by external ascorbate (k-1A), is not very pH-dependent and is not consistent with reduction of cytochrome b561 by the ascorbate dianion. The rate at which ascorbate reduces cytochrome b561 is orders of magnitude faster than the rate at which it reduces cytochrome c, despite the fact that midpoint reduction potentials favor reduction of cytochrome c. Moreover, the rate constant for oxidation of cytochrome b561 by ferricyanide (k1F) is smaller than the previously measured rate constant for oxidation by semidehydroascorbate, despite the fact that ferricyanide has a higher midpoint reduction potential. These results may be reconciled by a mechanism in which electron transfer between cytochrome b561 and ascorbate/semidehydroascorbate is accelerated by concerted transfer of a proton. This may be a general property of biologically significant electron transfer reactions of ascorbic acid.  相似文献   

13.
Two polyclonal antibodies were raised to synthetic peptides corresponding to amino acids Ser21-Tyr35 and Lys247-Phe261 of cytochrome b561. These antibodies were used to test the native orientation of the amino and carboxyl termini of this transmembrane electron transport protein. Carboxyl-terminal epitopes were lost when intact chromaffin granules were treated with Pronase. This result indicates that the carboxyl terminus is cytoplasmically exposed and confirms a theoretical prediction obtained from hydropathy plots. Epitopes that were recognized by an amino-terminal antipeptide antibody were not removed under the same conditions. This finding implied that the amino terminus was not proteolytically accessible on the exterior of the granule. The abundance of threonine and serine residues in the amino-terminal region suggested that the amino terminus could be held in the membrane by covalent fatty acylation. Treatment of purified delipidated cytochrome b561 with hydroxylamine resulted in the release of a fatty acid hydroxamate. Sulfhydryl analysis of purified cytochrome b561 showed that all 3 cysteine residues were in the free sulfhydryl form. These observations indicate that cytochrome b561 is covalently fatty acylated and that the lipid is bound through ester linkages of serine or threonine residues.  相似文献   

14.
Cytochrome b561 catalyzes transmembrane electron transfer   总被引:1,自引:0,他引:1  
Purified cytochrome b561 from bovine adrenal medulla chromaffin vesicles has been reconstituted into phosphatidylcholine vesicles by a detergent-dialysis method. When the reconstituted cytochrome-containing vesicles were preloaded with ascorbic acid and cytochrome c was added to the external medium, the internal ascorbic acid was able to reduce the external cytochrome c. This reduction of cytochrome c was dependent on the presence of cytochrome b561 in the membrane and was not due to leakage of ascorbate from the vesicles. These results demonstrate that cytochrome b561 catalyzes a transmembrane electron transfer.  相似文献   

15.
Bashtovyy D  Bérczi A  Asard H  Páli T 《Protoplasma》2003,221(1-2):31-40
Summary.  Atomic models possessing the common structural features identified for the cytochrome b 561 (cyt b 561) protein family are presented. A detailed and extensive sequence analysis was performed in order to identify and characterize protein sequences in this family of transmembrane electron transport proteins. According to transmembrane helix predictions, all sequences contain 6 transmembrane helices of which 2–6 are located closely in the same regions of the 26 sequences in the alignment. A mammalian (Homo sapiens) and a plant (Arabidopsis thaliana) sequence were selected to build 3-dimensional structures at atomic detail using molecular modeling tools. The main structural constraints included the 2 pairs of heme-ligating His residues that are fully conserved in the family and the lipid-facing sides of the helices, which were also very well conserved. The current paper proposes 3-dimensional structures which to our knowledge are the first ones for any protein in the cyt b 561 family. The highly conserved His residues anchoring the two hemes on the cytoplasmic side and noncytoplasmic side of the membrane are in all proteins located in the transmembrane helices 2, 4 and 3, 5, respectively. Several highly conserved amino acids with aromatic side chain are identified between the two heme ligation sites. These residues may constitute a putative transmembrane electron transport pathway. The present study demonstrates that the structural features in the cyt b 561 family are well conserved at both the sequence and the protein level. The central 4-helix core represents a transmembrane electron transfer architecture that is highly conserved in eukaryotic species. Received May 12, 2002; accepted September 20, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Institute of Biophysics, Biological Research Centre, P.O. Box 521, 6701 Szeged, Hungary. E-mail: tpali@nucleus.szbk.u-szeged.hu  相似文献   

16.
The involvement of cytochrome b561, an integral membrane protein, in electron transfer across chromaffin-vesicle membranes is confirmed by changes in its redox state observed as changes in the absorption spectrum occurring during electron transfer. In ascorbate-loaded chromaffin-vesicle ghosts, cytochrome b561 is nearly completely reduced and exhibits an absorption maximum at 561 nm. When ferricyanide is added to a suspension of these ghosts, the cytochrome becomes oxidized as indicated by the disappearance of the 561 nm absorption. If a small amount of ferricyanide is added, it becomes completely reduced by electron transfer from intravesicular ascorbate. When this happens, cytochrome b561 returns to its reduced state. If an excess of ferricyanide is added, the intravesicular ascorbate becomes exhausted and the cytochrome b561 remains oxidized. The spectrum of these absorbance changes correlates with the difference spectrum (reduced-oxidized) of cytochrome b561. Cytochrome b561 becomes transiently oxidized when ascorbate oxidase is added to a suspension of ascorbate-loaded ghosts. Since dehydroascorbate does not oxidize cytochrome b561, it is likely that oxidation is caused by semidehydroascorbate generated by ascorbate oxidase acting on free ascorbate. This suggests that cytochrome b561 can reduce semidehydroascorbate and supports the hypothesis that the function of cytochrome b561 in vivo is to transfer electrons into chromaffin vesicles to reduce internal semidehydroascorbate to ascorbate.  相似文献   

17.
Cytochrome b561 family was characterized by the presence of "b561 core domain" that forms a transmembrane four helix bundle containing four totally conserved His residues, which might coordinate two heme b groups. We conducted BLAST and PSI-BLAST searches to obtain insights on structure and functions of this protein family. Analyses with CLUSTAL W on b561 sequences from various organisms showed that the members could be classified into 7 subfamilies based on characteristic motifs; groups A (animals/neuroendocrine), B (plants), C (insects), D (fungi), E (animals/TSF), F (plants+DoH), and G (SDR2). In group A, both motif 1, {FN(X)HP(X)2M(X)2G(X)5G(X)ALLVYR}, and motif 2, {YSLHSW(X)G}, were identified. These two motifs were also conserved in group B. There was no significant features characteristic to groups C and D. A modified version of motif 1, {LFSWHP(X)2M(X)3F(X)3M(X)EAIL(X)SP(X)2SS}, was found in group E with a high degree of conservation. Both motif 3, {DP(X)WFY(L)H(X)3Q}, and motif 4, {K(X)R(X)YWN(X)YHH(X)2G(R/Y)} ,were found in group F at different regions from those of motifs 1 and 2. The "DoH" domain common to the NH2-terminal region of dopamine beta-hydroxylase was found to form fusion proteins with the b561 core domains in groups F and G. Based on these results, we proposed a hypothesis regarding structures and functions of the 7 subfamilies of cytochrome b561.  相似文献   

18.
Cytochrome b(561) in adrenal chromaffin vesicle membranes conveys electron equivalents from extravesicular ascorbate to the intravesicular monodehydroascorbate radical. We conducted a stopped-flow study on the reaction of ascorbate with purified cytochrome b(561) in the detergent-solubilized state for the first time. The time course of the reduction of oxidized cytochrome b(561) with ascorbate could not be fitted with a single exponential but with a linear combination of at least four exponential functions. This result is consistent with the notion that cytochrome b(561) contains two hemes b, each having a distinct redox potential and a function upon reactions with ascorbate and monodehydroascorbate radical. The fastest phase, which was assigned to the first one-electron donation from ascorbate to heme b on the extravesicular side, was further analyzed by transient phase kinetics employing a two-step bi-uni sequential ordered mechanism. The result showed K(s) = 2.2 mM for ascorbate at pH6.0. At a region below pH5.5, there was a significant lag before the reduction of hemes b occurred. This time lag was interpreted as due to a pH-dependent transient state before the first electron transfer to take place. The fastest phase was completely lost by N-carbethoxylation of heme-coordinating histidyl residues (His88 and His161) and Lys85 upon treatment with diethylpyrocarbonate. The presence of ascorbate during the treatment inhibited the N-carbethoxylation of the histidyl residues and, thereby, restored the final reduction level of hemes b. But the reduction rate was still only one-twentieth of the native form. This result suggested an important role of the conserved Lys85 for the interaction with ascorbate.  相似文献   

19.
Cytochromes b561 (Cyts b561) are a family of intrinsic membrane proteins involved in ascorbate-mediated transmembrane electron transport. The chromaffin granule Cyt b561 (CGCytb) is believed to transport electrons donated by extravesicular ascorbate (ASC) across the membrane to intravesicular monodehydroascorbate (MDA) supporting catecholamine synthesis in neuroendocrine tissues. Another isoform, the duodenal Cyt b561 (Dcytb), was reported to have ferric reductase activity, possibly facilitating intestinal iron uptake. Herein, a new Cyt b561 homologue, LCytb (for lysosomal Cytb561) was found expressed in the late endosomal-lysosomal membrane. LCytb shared high sequence similarity with CGCytb (45% identity) and Dcytb (42% identity). Moreover, four heme-coordinating His residues, and putative ASC and MDA binding sites were highly conserved. Recombinant LCytb exhibited an ASC-reducible b-type Cyt absorbance spectrum with alpha-band maximum at 561 nm in the spectrum of the reduced protein. Northern blots and Western blots revealed that LCytb was predominantly expressed in lung, spleen, thymus, testis and placenta. In situ hybridization and immunofluorescence studies further demonstrated that the protein was expressed in the alveolar macrophages of the lung, in the white pulp of the spleen, widespread in the thymus, and in the Sertoli cells of the testis. Sequence analysis indicated the presence of a (DE)XXXL(LI)-type signal in the C-terminal of the protein, predicting a late endosomal-lysosomal subcellular localization. This localization was confirmed by double labeling experiments in RAW264.7 and 293 cells, stably transfected with LCytb.  相似文献   

20.
Kamensky Y  Liu W  Tsai AL  Kulmacz RJ  Palmer G 《Biochemistry》2007,46(29):8647-8658
Cytochrome (cyt) b561 transports electrons across the membrane of chromaffin granules (CG) present in the adrenal medulla, supporting the biosynthesis of norepinephrine in the CG matrix. We have conducted a detailed characterization of cyt b561 using electron paramagnetic resonance (EPR) and optical spectroscopy on the wild-type and mutant forms of the cytochrome expressed in insect cells. The gz = 3.7 (low-potential heme) and gz = 3.1 (high-potential heme) signals were found to represent the only two authentic hemes of cyt b561; models that propose smaller or greater amounts of heme can be ruled out. We identified the axial ligands to hemes in cyt b561 by mutating four conserved histidines (His54 and His122 at the matrix-side heme center and His88 and His161 at the cytoplasmic-side heme center), thus confirming earlier structural models. Single mutations of any of these histidines produced a constellation of spectroscopic changes that involve not one but both heme centers. We hypothesize that the two hemes and their axial ligands in cyt b561 are integral parts of a structural unit that we term the "kernel". Histidine to glutamine substitutions in the cytoplasmic-side heme center but not in the matrix-side heme center led to the retention of a small fraction of the low-potential heme with gz = 3.7. We provisionally assign the low-potential heme to the matrix side of the membrane; this arrangement suggests that the membrane potential modulates electron transport across the CG membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号