共查询到20条相似文献,搜索用时 62 毫秒
1.
经典Wnt信号通路是参与胚胎及器官发育的四大信号传导途径之一,在牙齿发育中扮演了重要的角色。本文对其中的β-catenin,Left,Ape,Axin2这4个关键因子在牙齿发育中研究的新进展做了简要的概述:β-catenin在间充质中会调控多个信号,影响牙上皮和间充质相互作用;Left会和Tcf家族一道调控上皮细胞命运;Ape能抑制多余牙齿的形成;Axin2在牙晚期发育中影响牙本质的形成。通过这些因子的研究,希望人们能在牙齿再生等生物医学工程上有新的突破。 相似文献
2.
王也李汉梁林丽娣林鑫王冰梅 《现代生物医学进展》2011,11(13):2575-2577
经典Wnt信号通路是参与胚胎及器官发育的四大信号传导途径之一,在牙齿发育中扮演了重要的角色。本文对其中的β-catenin,Lef1,Apc,Axin2这4个关键因子在牙齿发育中研究的新进展做了简要的概述:β-catenin在间充质中会调控多个信号,影响牙上皮和间充质相互作用;Lef1会和Tcf家族一道调控上皮细胞命运;Apc能抑制多余牙齿的形成;Axin2在牙晚期发育中影响牙本质的形成。通过这些因子的研究,希望人们能在牙齿再生等生物医学工程上有新的突破。 相似文献
3.
Wnt蛋白是一类分泌型糖蛋白家族,Wnt信号蛋白与细胞表面的多种受体相互作用,参与诸多生命过程。对神经系统发育的研究表明,Wnt信号通路在神经发生,神经祖细胞增值、分化,神经干细胞的自我更新,轴突导向等过程中起重要调控作用。多项研究已经证实,Wnt通路失调与诸多神经系统疾病有密切关系。Wnt信号通路的突变或异常,将会引起神经系统发育缺陷。然而,对Wnt非经典信号通路的研究,尤其是新受体Ryk的调控作用的认识迄今仍不全面。根据国内外相关研究,阐述了经典Wnt信号通路Wnt/β-catenin途径的同时也对Wnt/Ryk非经典信号途径这一研究新领域做了讨论。在非经典信号通路中,Ryk-ICD的剪接对于前体细胞的神经分化起重要作用。本文分析了Wnt/β-catenin和Wnt/Ryk信号通路在神经发育中的作用,有助于深入理解神经发育过程中Wnt信号通路的作用机制。然而,Ryk-ICD引导因子、分子机制等问题仍待进一步研究,而这将有利于理解神经干细胞分化机理。 相似文献
4.
通过研究Sonic hedgehog(Shh)信号通路成分在局灶缺血性脑卒中大鼠侧脑室下带(subventricular zone,SVZ)的动态表达,初步探讨该通路在局灶性缺血性脑卒中后神经再生的调控作用.将84只健康成年雄性SD大鼠随机分为正常组(n=12)、假手术组(n=12)、缺血6、12、24 h和3、7 d,共7组(n=12).采用线栓法制备大鼠右侧大脑中动脉阻断(middle cerebral artery occlussion,MCAO)模型.分别应用逆转录聚合酶链反应(RT-PCR)、免疫组化、免疫印迹法检测局灶脑缺血大鼠侧脑室下带Shh、Gli1 mRNA和蛋白变化.与正常组比较,Shh、Gli1mRNA和蛋白在假手术组表达变化不明显(P>0.05),模型组6 h表达增高(P<0.01),24 h达峰值(P<0.01),3 d时接近正常水平(P>0.05),7 d表达又升高(P<0.01).缺血性脑卒中可以上调Shh信号通路成分在SVZ区的表达,提示Shh信号通路可能参与卒中后神经再生机制的调控. 相似文献
5.
Wnt信号通路抑制因子SFRP1在肿瘤中的研究进展 总被引:2,自引:0,他引:2
定位于染色体8p11.2上的分泌型卷曲相关蛋白1(secreted frizzled related protein 1,SFRP1)基因,是近来发现的新的抑癌基因。因其编码Wnt信号通路抑制因子SFRP1,SFRP1基因失活可导致Wnt信号转导途径的紊乱,影响肿瘤的发生发展。近年来国内外对SFRP1在恶性肿瘤的失活机制进行了一系列的研究,现对这方面的工作进展进行综述。 相似文献
6.
7.
Wnt和MAPK信号通路在生物进化过程中高度保守,参与调控胚胎发育和细胞增殖、分化及凋亡等。Wnt和MAPK信号通路调控失常可导致胚胎发育异常和肿瘤形成。近年来发现这两条信号通路在肿瘤发生发展中存在着大量串话(crosstalk),彼此之间相互调节,共同发挥促癌或抑癌作用,因此,更好地了解两条通路是如何在肿瘤形成中发生交叉对话对于将来肿瘤治疗非常有价值。 相似文献
8.
9.
Wnt信号通路与哺乳动物生殖 总被引:5,自引:0,他引:5
Wnt蛋白及其受体、调节蛋白等一起组成了复杂的信号通路,调控细胞的分化,参与发育的多个重要过程.近来的研究表明:Wnt信号通路也是调节哺乳动物生殖系统正常发育所必需.它主要参与了缪勒氏管及其派生器官的形成,调控卵泡的发育、排卵及黄体化,另外与正常妊娠的建立以及妊娠过程中乳腺的变化也有关. 相似文献
10.
Wnt信号通路参与外周免疫调节的研究进展 总被引:1,自引:0,他引:1
Wnt信号通路最初是由于其在动物胚胎发育和形态发生过程中的作用而引起了人们的注意。过去二十多年来,人们又发现Wnt通路参与干细胞的分化及多种疾病的发生,这使它成为研究的一个热点。近年来的研究表明,Wnt通路与免疫系统也有密切的联系,不仅参与各种免疫细胞的发育分化,还能调控外周免疫细胞的功能。该文就对Wnt信号通路在外周免疫系统中的研究进展作一综述。 相似文献
11.
Li C Hu L Xiao J Chen H Li JT Bellusci S Delanghe S Minoo P 《Developmental biology》2005,287(1):86-97
The role of WNT signaling and its interactions with other morphogenetic pathways were investigated during lung development. Previously, we showed that targeted disruption of Wnt5a results in over-branching of the epithelium and thickening of the interstitium in embryonic lungs. In this study, we generated and characterized transgenic mice with lung-specific over-expression of Wnt5a from the SpC promoter. Over-expression of Wnt5a interfered with normal epithelial-mesenchymal interactions resulting in reduced epithelial branching and dilated distal airways. During early lung development, over-expression of Wnt5a in the epithelium resulted in increased Fgf10 in the mesenchyme and decreased Shh in the epithelium. Both levels and distribution of SHH receptor, Ptc were reduced in SpC-Wnt5a transgenic lungs and were reciprocally correlated to changes of Fgf10 in the mesenchyme, suggesting that SHH signaling is decreased by over-expression of Wnt5a. Cultured mesenchyme-free epithelial explants from SpC-Wnt5a transgenic lungs responded abnormally to recombinant FGF10 supplied uniformly in the Matrigel with dilated branch tips that mimic the in vivo phenotype. In contrast, chemotaxis of transgenic epithelial explants towards a directional FGF10 source was inhibited. These suggest that over-expression of Wnt5a disrupts epithelial-response to FGF10. In conclusion, Wnt5a regulates SHH and FGF10 signaling during lung development. 相似文献
12.
The Shh signalling pathway in early tooth development. 总被引:7,自引:0,他引:7
Z Hardcastle C C Hui P T Sharpe 《Cellular and molecular biology, including cyto-enzymology》1999,45(5):567-578
The Sonic Hedgehog (Shh) signalling pathway has been proposed to play an important role in mammalian tooth development. We describe the spatial and temporal expression of genes in this pathway during early tooth development and interpret these patterns in terms of the likely roles of Shh signalling. We show that the two putative receptors of the Shh ligand, Ptc and Ptch-2, localise in different cells, suggesting Shh may function in different ways as an epithelial and mesenchymal signal. Shh signalling has previously been shown, in other organs, to stimulate cell proliferation. In this paper we analyse the Fgf signalling pathway in Gli-2 mutants and propose a mechanism as to how Gli-2 may regulate cell proliferation in tooth development. 相似文献
14.
非洲爪蟾是脊椎动物胚胎发育研究中的几种重要模式生物之一,为揭示早期胚胎发育中的分子调控机制做出了显著的贡献.其中一个重要的发现就是细胞信号通路在胚胎发育中起到非常关键的调控作用.本文简单介绍Wnt信号在爪蟾早期胚胎发育不同时期的几种调控作用. 相似文献
15.
Induction of early pituitary progenitors is achieved through combined activities of signals from adjacent embryonic tissues. Previous studies have identified a requirement for oral ectoderm derived Sonic Hedgehog (Shh) in specification and/or proliferation of early pituitary progenitors, however how different Gli genes mediate Shh signaling to control pituitary progenitor development has not yet been determined. Here we show that Gli2, which encodes a major Gli activator, is required for proliferation of specific groups of pituitary progenitors but not for initial dorsoventral patterning. We further show that the action of Gli2 occurs prior to the closure of Rathke' pouch. Lastly, we show that Shh/Gli2 signaling controls the diencephalic expression of Bone morphogenetic protein 4 (Bmp4) and Fibroblast growth factor 8 (Fgf8), two genes that are known to play critical roles in patterning and growth of Rathke's pouch. Our results therefore suggest both cell-autonomous and non-cell-autonomous requirements for Gli2 in regulation of pituitary progenitor specification, proliferation and differentiation. 相似文献
16.
17.
《Developmental neurobiology》2017,77(11):1239-1259
The vertebrate central nervous system (CNS) is comprised of vast number of distinct cell types arranged in a highly organized manner. This high degree of complexity is achieved by cellular communication, including direct cell‐cell contact, cell‐matrix interactions, and cell‐growth factor signaling. Among the several developmental signals controlling the development of the CNS, Wnt proteins have emerged as particularly critical and, hence, have captivated the attention of many researchers. With Wnts' evolutionarily conserved function as primordial symmetry breaking signals, these proteins and their downstream effects are responsible for simultaneously establishing cellular diversity and tissue organization. With their expansive repertoire of secreted agonists and antagonists, cell surface receptors, signaling cascades and downstream biological effects, Wnts are ideally suited to control the complex processes underlying vertebrate neural development. In this review, we will describe the mechanisms by which Wnts exert their potent effects on cells and tissues and highlight the many roles of Wnt signaling during neural development, starting from the initial induction of the neural plate, the subsequent patterning along the embryonic axes, to the intricately organized structure of the CNS. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1239–1259, 2017 相似文献
18.
19.
Ying Yin Nan Zhou Hui Zhang Xiuliang Dai Xianhui Lv Ning Chen Dengshun Miao Qingang Hu 《Journal of cellular and molecular medicine》2021,25(9):4195-4203
To determine whether the deletion of p16 can correct tooth and mandible growth retardation caused by Bmi1 deficiency, we compared the tooth and mandible phenotypes of homozygous p16-deficient (p16−/−) mice, homozygous Bmi1-deficient (Bmi1−/−) mice, double homozygous Bmi1 and p16-deficient (Bmi1−/−p16−/−) mice to those of their wild-type littermates at 4 weeks of age by radiograph, histochemistry and immunohistochemistry. Results showed that compared to Bmi1−/− mice, the dental mineral density, dental volume and dentin sialoprotein immunopositive areas were increased, whereas the ratio of the predentin area to total dentin area and that of biglycan immunopositive area to dentin area were decreased in Bmi1−/−p16−/− mice. These results indicate that the deletion of p16 can improve tooth development in Bmi1 knockout mice. Compared to Bmi1−/− mice, the mandible mineral density, cortical thickness, alveolar bone volume, osteoblast number and activity, alkaline phosphatase positive area were all increased significantly in Bmi1−/−p16−/− mice. These results indicate that the deletion of p16 can improve mandible growth in Bmi1 knockout mice. Furthermore, the protein expression levels of cyclin D, CDK4 and p53 were increased significantly in p16−/− mice compared with those from wild-type mice; the protein expression levels of cyclin D and CDK4 were decreased significantly, whereas those of p27 and p53 were increased significantly in Bmi1−/− mice; these parameters were partly rescued in Bmi1−/−p16−/− mice compared with those from Bmi1−/− mice. Therefore, our results indicate that Bmi1 plays roles in regulating tooth and mandible development by inhibiting p16 signal pathway which initiated entry into cell cycle. 相似文献
20.
In the vertebrate embryo, spinal cord elongation requires FGF signaling that promotes the continuous development of the posterior nervous system by maintaining a stem zone of proliferating neural progenitors. Those escaping the caudal neural stem zone, which is expressed to Shh signal, initiate ventral patterning in the neural groove before starting neuronal differentiation in the neural tube. Here we investigated the integration of D-type cyclins, known to govern cell cycle progression under the control of extracellular signals, in the program of spinal cord maturation. In chicken embryo, we find that cyclin D2 is preferentially expressed in the posterior neural plate, whereas cyclin D1 appears in the neural groove. We demonstrated by loss- and gain-of-function experiments that FGF signaling maintains cyclin D2 in the immature caudal neural epithelium, while Shh activates cyclin D1 in the neural groove. Moreover, forced maintenance of cyclin D1 or D2 in the neural tube favors proliferation at the expense of neuronal differentiation. These results contribute to our understanding of how the cell cycle control can be linked to the patterning programs to influence the balance between proliferation and neuronal differentiation in discrete progenitors domains. 相似文献