首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Mechanical loading can counteract inflammatory pathways induced by IL-1beta by inhibiting *NO and PGE2, catabolic mediators known to be involved in cartilage degradation. The current study investigates the potential of dynamic compression, in combination with the anti-inflammatory cytokine, IL-4, to further abrogate the IL-1beta induced effects. The data presented demonstrate that IL-4 alone can inhibit nitrite release in the presence and absence of IL-1beta and partially reverse the IL-1beta induced PGE2 release. When provided in combination, IL-4 and dynamic compression could further abrogate the IL-1beta induced nitrite and PGE2 release. IL-1beta inhibited [3H]thymidine incorporation and this effect could be reversed by IL-4 or dynamic strain alone or both in combination. By contrast, 35SO4 incorporation was not influenced by IL-4 and/or dynamic strain in IL-1beta stimulated constructs. IL-4 and mechanical loading may therefore provide a potential protective mechanism for cartilage destruction as observed in OA.  相似文献   

2.
Osteoarthritis (OA) is an age-related disease with poorly understood pathogenesis. Recent studies have demonstrated that miRNA might play a key role in OA initiation and development. We reviewed recent publications and elucidated the connection between miRNA and OA cartilage anabolic and catabolic signals, including four signaling pathways: TGF-β/Smads and BMPs signaling, associated with cartilage anabolism; and MAPK and NF-KB signaling, associated with cartilage catabolism. We also explored the relationships with MMP, ADAMTS and NOS (NitricOxide Synthases) families, as well as with the catabolic cytokines IL-1 and TNF-α. The potential role of miRNAs in biological processes such as cartilage degeneration, chondrocyte proliferation, and differentiation is discussed. Collective evidence indicates that miRNAs play a critical role in cartilage degeneration. These findings will aid in understanding the molecular network that governs articular cartilage homeostasis and in to elucidate the role of miRNA in the pathogenesis of OA.  相似文献   

3.
Fan Z  Bau B  Yang H  Aigner T 《Cytokine》2004,28(1):17-24
Interleukin-1 (IL-1) is an important catabolic cytokine in rheumatoid and osteoarthritic joint disease. Besides inducing a catabolic response in articular chondrocytes it also strongly induces synergistic mediators such as leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). The molecular basis of this is so far hardly understood. The aim of our study was to evaluate in vitro and in vivo whether IL-6 and LIF are differentially expressed in normal human and osteoarthritic adult articular chondrocytes and to investigate the potential intracellular signaling pathways of IL-1 involved in these gene regulation events. IL-6 and LIF mRNA expressions were found only at low levels in normal adult articular cartilage. Neither IL-6 nor LIF was strongly over-expressed in osteoarthritic cartilage degeneration. Clearly, both IL-6 and LIF can be very efficiently induced by IL-1beta in articular chondrocytes in vitro. However, this induction was somewhat less in osteoarthritic cells, which were overall activated in terms of expression of both cytokines without stimulation. Experiments using pathway selective inhibitors showed that intracellular signaling of IL-1beta for IL-6 and LIF is mediated by a mixture of the IL-1 signaling cascades. However, the ERK-pathway appeared to be particularly important and might be, therefore, of particular potential if one intends to block induction of these molecules by IL-1 in arthritic joint disease.  相似文献   

4.
Effects of diacerein on biosynthesis activities of chondrocytes in culture   总被引:1,自引:0,他引:1  
The maintenance of articular cartilage integrity requires a balance between anabolic and catabolic processes which are under the control of chondrocytes. These cells are living in an anaerobic environment and normally do not divide. They are responsible for the continuous maintenance of the cartilage extracellular matrix (ECM). Although multiple factors are involved in the dynamic homeostasis of cartilage, increases in cytokines such as interleukin-1 (IL-1) are associated with a decrease in synthesis and an increase in degradation of the proteoglycans and collagens. Conversely, growth factors such as transforming growth factor-beta (TGF-beta) stimulate chondrocyte synthesis of collagens and proteoglycans, and reduce the activity of IL-1 stimulated metalloproteases, thus opposing the inhibitory and catabolic effects of IL-1. By its capability to reduce IL-1 effects and to stimulate TGF-beta expression in cultured articular chondrocytes, diacerein could favour anabolic processes in the OA cartilage and, hence may contribute to delay the progression of the disease.  相似文献   

5.
Aigner T  McKenna L  Zien A  Fan Z  Gebhard PM  Zimmer R 《Cytokine》2005,31(3):227-240
In order to understand the cellular disease mechanisms of osteoarthritic cartilage degeneration it is of primary importance to understand both the anabolic and the catabolic processes going on in parallel in the diseased tissue. In this study, we have applied cDNA-array technology (Clontech) to study gene expression patterns of primary human normal adult articular chondrocytes isolated from one donor cultured under anabolic (serum) and catabolic (IL-1beta) conditions. Significant differences between the different in vitro cultures tested were detected. Overall, serum and IL-1beta significantly altered gene expression levels of 102 and 79 genes, respectively. IL-1beta stimulated the matrix metalloproteinases-1, -3, and -13 as well as members of its intracellular signaling cascade, whereas serum increased the expression of many cartilage matrix genes. Comparative gene expression analysis with previously published in vivo data (normal and osteoarthritic cartilage) showed significant differences of all in vitro stimulations compared to the changes detected in osteoarthritic cartilage in vivo. This investigation allowed us to characterize gene expression profiles of two classical anabolic and catabolic stimuli of human adult articular chondrocytes in vitro. No in vitro model appeared to be adequate to study overall gene expression alterations in osteoarthritic cartilage. Serum stimulated in vitro cultures largely reflected the results that were only consistent with the anabolic activation seen in osteoarthritic chondrocytes. In contrast, IL-1beta did not appear to be a good model for mimicking catabolic gene alterations in degenerating chondrocytes.  相似文献   

6.
Intervertebral disc degeneration causes low back pain.Interleukin-1β (IL-1β) is a well-known inflammatory mediator that is involved in disc degeneration but its molecular mechanisms on catabolic and anabolic events in nucleus pulposus (NP) cells remain unclear. Krüppel-like factor 5 (KLF5) is associated with inflammation and was previously shown to cause cartilage degradation. In this study, we revealed that KLF5 is involved in IL-1β activated NF-kB cascade by enhancing both p65 phosphorylation and p65 acetylation. Moreover, the catabolic effect of KLF5 can be abolished by transforming growth factor-β (TGF-β) via promoting the proteasomal degradation of KLF5. Therefore, a KLF5 inhibitor ML264 was further proved to synergize with TGF-β to attenuate IL-1β-induced intervertebral disc degeneration. These results indicate the critical role of KLF5 in regulating intervertebral disc metabolism and suggest KLF5 inhibitor such as ML264 as potential compound for treatment of degenerative disc disease.  相似文献   

7.
Several factors are known to be involved in the destruction of the articular cartilage. Interleukin-1 (IL-1) plays an important role in the pathogenesis of osteoarthritis (OA) either directly or through the stimulation of catabolic factors. The action of IL-1 on articular cartilage is multifaceted and it most likely plays an important role in the mechanism of cartilage destruction. IL-1 suppresses the synthesis of the cartilage matrix components and promotes the degradation of cartilage matrix macromolecules. Diacerein is an anthraquinone molecule that has been shown to reduce the severity of OA, both in man and in animal models. The present study was designed to evaluate in vitro effects of diacerein on IL-1beta expression in LPS or IL-1alpha stimulated chondrocytes. Intracellular IL-1beta production was analysed in articular chondrocytes cultured in monolayer or in alginate 3D-biosystems in the presence of lipopolysaccharide (LPS) or IL-1alpha, with or without diacerein. The results show that LPS and IL-1alpha increase intracellular IL-1beta and Diacerein inhibited LPS-induced and IL-1alpha induced IL-1beta production by articular chondrocytes. Moreover, the effect of mechanical stimulation was analysed. An inhibitory effect of DAR at therapeutic concentrations on IL-1beta production in articular chondrocytes is suggested.  相似文献   

8.
Cartilage-specific extracellular matrix synthesis is the prerequisite for chondrocyte survival and cartilage function, but is affected by the pro-inflammatory cytokine TNF-α in arthritis. The aim of the present study was to characterize whether the immunoregulatory cytokine IL-10 might modulate cartilage matrix and cytokine expression in response to TNF-α. Primary human articular chondrocytes were treated with either recombinant IL-10, TNF-α or a combination of both (at 10 ng/mL each) or transduced with an adenoviral vector overexpressing human IL-10 and subsequently stimulated with 10 ng/ml TNF-α for 6 or 24 h. The effects of IL-10 on the cartilage-specific matrix proteins collagen type II, aggrecan, matrix-metalloproteinases (MMP)-3, -13 and pro-inflammatory cytokines were evaluated by real-time RT-PCR and immunohistochemistry. Transduced chondrocytes overexpressed high levels of IL-10 which significantly up-regulated collagen type II expression. TNF-α suppressed collagen type II and aggrecan, but increased MMP and cytokine expression in chondrocytes compared to the non-stimulated controls. The TNF-α mediated down-regulation of aggrecan expression was significantly antagonized by IL-10 overexpression, whereas the suppression of collagen type II was barely affected. The MMP-13 and IL-1β expression by TNF-α was slightly reduced by IL-10. These results suggest that IL-10 overexpression modulates some catabolic features of TNF-α in chondrocytes.  相似文献   

9.
Chondrocytes in situ experience fluctuations in extracellular osmolarity resulting from mechanical loading. The objective of this study was to determine whether hyperosmotic stress causes or exacerbates interleukin-1 (IL-1)-mediated effects in bovine articular cartilage. Disks of cartilage cut from the articular surface of calf radiocarpal joints were incubated for 24h in the presence or absence of IL-1 in Dulbecco's modified Eagle's medium adjusted to various osmolalities with sucrose or NaCl. Cyclooxygenase (COX)-2 levels in the cartilage were examined by Western blot. Culture media were assayed for prostaglandin E(2) (PGE(2)), nitrite as an indicator of nitric oxide (NO) production, and sulfated glycosaminoglycan as an indicator of proteoglycan degradation. We report the osmolality-dependent potentiation of COX-2 and PGE(2) production, and the osmolality-dependent inhibition of NO production and proteoglycan degradation in IL-1-activated cartilage. The data demonstrate that osmotic and cytokine signaling interact to differentially modulate IL-1-stimulated effects in calf articular cartilage.  相似文献   

10.
11.

Background

In osteoarthritis (OA), an inflammatory environment is responsible for the imbalance between the anabolic and catabolic activity of chondrocytes and, thus, for articular cartilage derangement. This study was aimed at providing further insight into the impairment of the anabolic cytokine IL-4 and its receptors in human OA cartilage, as well as the potential ability of IL-4 to antagonize the catabolic phenotype induced by IL-1β.

Methodology/Principal Findings

The in vivo expression of IL-4 and IL-4 receptor subunits (IL-4R, IL-2Rγ, IL-13Rα1) was investigated on full thickness OA or normal knee cartilage. IL-4 expression was found to be significantly lower in OA, both in terms of the percentage of positive cells and the amount of signal per cell. IL-4 receptor type I and II were mostly expressed in mid-deep cartilage layers. No significant difference for each IL-4 receptor subunit was noted. IL-4 anti-inflammatory and anti-catabolic activity was assessed in vitro in the presence of IL-1β and/or IL-4 for 24 hours using differentiated high density primary OA chondrocyte also exhibiting the three IL-4 R subunits found in vivo. Chemokines, extracellular matrix degrading enzymes and their inhibitors were evaluated at mRNA (real time PCR) and protein (ELISA or western blot) levels. IL-4 did not affect IL-1β-induced mRNA expression of GRO-α/CXCL1, IL-8/CXCL8, ADAMTS-5, TIMP-1 or TIMP-3. Conversely, IL-4 significantly inhibited RANTES/CCL5, MIP-1α/CCL3, MIP-1β/CCL4, MMP-13 and ADAMTS-4. These results were confirmed at protein level for RANTES/CCL5 and MMP-13.

Conclusions/Significance

Our results indicate for the first time that OA cartilage has a significantly lower expression of IL-4. Furthermore, we found differences in the spectrum of biological effects of IL-4. The findings that IL-4 has the ability to hamper the IL-1β-induced release of both MMP-13 and CCL5/RANTES, both markers of OA chondrocytes, strongly indicates IL-4 as a pivotal anabolic cytokine in cartilage whose impairment impacts on OA pathogenesis.  相似文献   

12.
Articular cartilage is an avascular, non-insulin-sensitive tissue that utilizes glucose as the main energy source, a precursor for glycosaminoglycan synthesis, and a regulator of gene expression. Facilitated glucose transport represents the first rate-limiting step in glucose metabolism. Previously, we demonstrated that glucose transport in chondrocytes is regulated by proinflammatory cytokines via upregulation of GLUT mRNA and protein expression. The objective of the present study was to determine differences in molecular mechanisms regulating glucose transport in chondrocytes stimulated with the anabolic transforming growth factor-beta1 (TGF-beta1) vs. the catabolic and proinflammatory cytokine IL-1beta. Both TGF-beta1 and IL-1beta accelerate glucose transport in chondrocytes. Although both IL-1beta and TGF-beta1 enhance glucose transport in chondrocytes to a similar magnitude, IL-1beta induces significantly higher levels of lactate. TGF-beta1-stimulated glucose transport is not associated with increased expression or membrane incorporation of GLUT1, -3, -6, -8, and -10 and depends on PKC and ERK activation. In contrast, IL-1beta-stimulated glucose transport is accompanied by increased expression and membrane incorporation of GLUT1 and -6 and depends upon activation of PKC and p38 MAP kinase. In conclusion, anabolic and catabolic stimuli regulate facilitated glucose transport in human articular chondrocytes via different effector and signaling mechanisms, and they have distinct effects on glycolysis.  相似文献   

13.
14.
Results of both clinical and animal studies show that meniscectomy often leads to osteoarthritic degenerative changes in articular cartilage. It is generally assumed that this process of cartilage degeneration is due to changes in mechanical loading after meniscectomy. It is, however, not known why and where this cartilage degeneration starts. Load induced cartilage damage is characterized as either type (1)--damage without disruption of the underlying bone or calcified cartilage layer--or type (2), subchondral fracture with or without damage to the overlying cartilage. We asked the question whether cartilage degeneration after meniscectomy is likely to be initiated by type (1) and/or type (2) cartilage damage. To investigate that we applied an axisymmetric biphasic finite element analysis model of the knee joint. In this model the articular cartilage layers of the tibial and the femoral condyles, the meniscus and the bone underlying the articular cartilage of the tibia plateau were included. The model was validated with data from clinical studies, in which the effects of meniscectomy on contact areas and pressures were measured. It was found that both the maximal values and the distributions of the shear stress in the articular cartilage changed after meniscectomy, and that these changes could lead to both type (1) and type (2) cartilage damage. Hence it likely that the cartilage degeneration seen after meniscectomy is initiated by both type (1) and type (2) cartilage damage.  相似文献   

15.

Background  

Nitric oxide and prostaglandin E2 (PGE2play pivotal roles in both the pathogenesis of osteoarthritis and catabolic processes in articular cartilage. These mediators are influenced by both IL-1β and mechanical loading, and involve alterations in the inducible nitric oxide synthase (iNOS) and cyclo-oxygenase (COX)-2 enzymes. To identify the specific interactions that are activated by both types of stimuli, we examined the effects of dynamic compression on levels of expression of iNOS and COX-2 and involvement of the p38 mitogen-activated protein kinase (MAPK) pathway.  相似文献   

16.
Functional tissue engineering of chondral and osteochondral constructs   总被引:5,自引:0,他引:5  
Lima EG  Mauck RL  Han SH  Park S  Ng KW  Ateshian GA  Hung CT 《Biorheology》2004,41(3-4):577-590
Due to the prevalence of osteoarthritis (OA) and damage to articular cartilage, coupled with the poor intrinsic healing capacity of this avascular connective tissue, there is a great demand for an articular cartilage substitute. As the bearing material of diarthrodial joints, articular cartilage has remarkable functional properties that have been difficult to reproduce in tissue-engineered constructs. We have previously demonstrated that by using a functional tissue engineering approach that incorporates mechanical loading into the long-term culture environment, one can enhance the development of mechanical properties in chondrocyte-seeded agarose constructs. As these gel constructs begin to achieve material properties similar to that of the native tissue, however, new challenges arise, including integration of the construct with the underlying native bone. To address this issue, we have developed a technique for producing gel constructs integrated into an underlying bony substrate. These osteochondral constructs develop cartilage-like extracellular matrix and material properties over time in free swelling culture. In this study, as a preliminary to loading such osteochondral constructs, finite element modeling (FEM) was used to predict the spatial and temporal stress, strain, and fluid flow fields within constructs subjected to dynamic deformational loading. The results of these models suggest that while chondral ("gel alone") constructs see a largely homogenous field of mechanical signals, osteochondral ("gel bone") constructs see a largely inhomogeneous distribution of mechanical signals. Such inhomogeneity in the mechanical environment may aid in the development of inhomogeneity in the engineered osteochondral constructs. Together with experimental observations, we anticipate that such modeling efforts will provide direction for our efforts aimed at the optimization of applied physical forces for the functional tissue engineering of an osteochondral articular cartilage substitute.  相似文献   

17.

Introduction

The present study examined the effect of C-type natriuretic peptide (CNP) and biomechanical signals on anabolic and catabolic activities in chondrocyte/agarose constructs.

Methods

Natriuretic peptide (Npr) 2 and 3 expression were compared in non-diseased (grade 0/1) and diseased (grade IV) human cartilage by immunofluoresence microscopy and western blotting. In separate experiments, constructs were cultured under free-swelling conditions or subjected to dynamic compression with CNP, interleukin-1β (IL-1β), the Npr2 antagonist P19 or the Npr3 agonist cANF4-23. Nitric oxide (NO) production, prostaglandin E2 (PGE2) release, glycosaminoglycan (GAG) synthesis and CNP concentration were quantified using biochemical assays. Gene expression of Npr2, Npr3, CNP, aggrecan and collagen type II were assessed by real-time qPCR. Two-way ANOVA and a post hoc Bonferroni-corrected t-test were used to analyse the data.

Results

The present study demonstrates increased expression of natriuretic peptide receptors in diseased or older cartilage (age 70) when compared to non-diseased tissue (age 60) which showed minimal expression. There was strong parallelism in the actions of CNP on cGMP induction resulting in enhanced GAG synthesis and reduction of NO and PGE2 release induced by IL-1β. Inhibition of Npr2 with P19 maintained catabolic activities whilst specific agonism of Npr3 with cANF4-23 had the opposite effect and reduced NO and PGE2 release. Co-stimulation with CNP and dynamic compression enhanced anabolic activities and inhibited catabolic effects induced by IL-1β. The presence of CNP and the Npr2 antagonist abolished the anabolic response to mechanical loading and prevented loading-induced inhibition of NO and PGE2 release. In contrast, the presence of the Npr3 agonist had the opposite effect and increased GAG synthesis and cGMP levels in response to mechanical loading and reduced NO and PGE2 release comparable to control samples. In addition, CNP concentration and natriuretic peptide receptor expression were increased with dynamic compression.

Conclusions

Mechanical loading mediates endogenous CNP release leading to increased natriuretic peptide signalling. The loading-induced CNP/Npr2/cGMP signalling route mediates anabolic events and prevents catabolic activities induced by IL-1β. The CNP pathway therefore represents a potentially chondroprotective intervention for patients with OA, particularly when combined with physiotherapeutic approaches to stimulate biomechanical signals.  相似文献   

18.
Osteoarthritis (OA) and degenerative disc disease (DDD) are similar diseases involving the breakdown of cartilage tissue, and a better understanding of the underlying biochemical processes involved in cartilage degeneration may allow for the development of novel biologic therapies aimed at slowing the disease process. Three members of the fibroblast growth factor (FGF) family, FGF‐2, FGF‐18, and FGF‐8, have been implicated as contributing factors in cartilage homeostasis. The role of FGF‐2 is controversial in both articular and intervertebral disc (IVD) cartilage as it has been associated with species‐ and age‐dependent anabolic or catabolic events. Recent evidence suggests that FGF‐2 selectively activates FGF receptor 1 (FGFR1) to exert catabolic effects in human articular chondrocytes and IVD tissue via upregulation of matrix‐degrading enzyme production, inhibition of extracellular matrix (ECM) accumulation and proteoglycan synthesis, and clustering of cells characteristic of arthritic states. FGF‐18, on the other hand, most likely exerts anabolic effects in human articular chondrocytes by activating the FGFR3 pathway, inducing ECM formation and chondrogenic cell differentiation, and inhibiting cell proliferation. These changes result in dispersed chondrocytes or disc cells surrounded by abundant matrix. The role of FGF‐8 has recently been identified as a catabolic mediator in rat and rabbit articular cartilage, but its precise biological impact on human adult articular cartilage or IVD tissue remains unknown. The available evidence reveals the promise of FGF‐2/FGFR1 antagonists, FGF‐18/FGFR3 agonists, and FGF‐8 antagonists (i.e., anti‐FGF‐8 antibody) as potential therapies to prevent cartilage degeneration and/or promote cartilage regeneration and repair in the future. J. Cell. Biochem. 114: 735–742, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Dynamic loading has emerged as an important part of cartilage tissue engineering strategies for enhancing tissue production and producing cartilage with functionally competent mechanical properties. As patients in need of cartilage span a range of age groups, questions arise as to the role of age in a cell's ability to respond to dynamic loading. Therefore, this study's goal was to characterize age‐related anabolic and catabolic responses of chondrocytes to dynamic compressive loading. Bovine chondrocytes isolated from juvenile (3‐week‐old) and adult (2‐ to 3‐year‐old) donors were encapsulated in poly(ethylene glycol) hydrogels and subjected to dynamic loading applied intermittently in a sinusoidal waveform at 1 or 0.3 Hz with 5 or 10% amplitude strain up to 2 weeks. Loading significantly enhanced total sulfated glycosaminoglycan (sGAG) production by 220% for juvenile chondrocytes with 0.3 Hz/5% loading and by 88% for adult chondrocytes with 1 Hz/5% loading, while all other loading regimes did not affect or inhibited total sGAG production. Contrarily, deposition of larger matrix molecules of aggrecan and collagen II was either not affected or inhibited by loading. Collagen VI deposition was significantly upregulated by loading but only in adult chondrocytes and under different loading regimes (1 Hz/10% and 0.3 Hz/5%) when compared to total sGAGs. Both cell populations displayed catabolic activity, which appeared to be stimulated by loading. Taken together, findings from this study suggest that loading differentially regulates matrix synthesis and the response is highly dependent on donor age. Biotechnol. Bioeng. 2013; 110: 2046–2057. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Articular cartilage has distinct histological depth zones. In each zone, chondrocytes are subject to different hydrostatic (HP) and osmotic pressure (OP) due to weight-bearing and joint-loading. Previous in vitro studies of regeneration and pathophysiology in cartilage have failed to consider the characteristics of histological heterogeneity and the effects of combinations of changes in HP and OP. Thus, we have constructed molecular, biochemical, and histological profiles of anabolic and catabolic molecules produced by chondrocytes from each depth zone isolated from bovine articular cartilage in response to changes in HP and OP. We cultured the chondrocytes with combinations of loading or off-loading of HP at 0-0.5 MPa, 0.5 Hz, and changes in OP of 300-450 mosM over 1 wk, and evaluated mRNA expression and immunohistology of both anabolic and catabolic molecules and amounts of accumulated sulfated glycosaminoglycan. Any changes in HP and OP upregulated mRNA of anabolic and catabolic molecules in surface-, middle-, and deep-zone cells, in descending order of magnitude. Off-loading HP maintained the anabolic and reduced the catabolic mRNA; high OP retained upregulation of catabolic mRNA. These molecular profiles were consistent with immunohistological and biochemical findings. Changes in HP and OP are essential for simulating chondrocyte physiology and useful for manipulating phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号