首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neoplastic transformation is frequently associated with a loss of gap junctional intercellular communication and reduced expression of connexins. The introduction of connexin genes into tumor cells reverses the proliferative characteristics of such cells. However, there is very little comparative information on the effects of different connexins on cancer cell growth. We hypothesized that Cx26, Cx32, or Cx43 would display differential growth suppression of C6 glioma cells and uniquely modulate the bystander effect following transduction of C6 cells with HSVtk followed by suicide gene therapy. The bystander phenomenon is the death of a greater number of tumor cells than are expressing the HSVtk gene, presumably due to the passage of toxic molecules through gap junction channels. To test this hypothesis, we used retroviral vectors to infect C6 glioma cells producing connexin-expressing and HSVtk-expressing cell lines. All three connexin-expressing cell lines grew significantly slower than GFP-infected or native C6 cells. Cx32 and Cx26 were significantly more effective at mediating the bystander effect in cocultures of C6-connexin cells with C6-HSVtk cells. These studies indicate that connexins have unique properties that contribute to their tumor suppressive function.  相似文献   

2.
Photodynamic treatment (PDT) of confluent MDCK II cells resulted in a noticeable clustering of dead cells, consistent with a significant bystander effect. Likewise, PDT of cells in microcolonies resulted in an overabundance of microcolonies that had responded to the treatment as a single unit, that is, in which either all or no cells were dead. Confluent MDCK II cells appeared to communicate via gap junction channels, while cells in microcolonies did not. Monte Carlo simulation models were fitted to the distributions of dead cells in confluent monolayers and in microcolonies. The simulations showed that the degree of the bystander effect was higher in microcolonies than in confluent cells, suggesting that gap junction communication may be involved in the bystander effect. However, when the gap junction hypothesis was tested by treatment of microcolonies with 30 microM dieldrin, an inhibitor of gap junctional intercellular communication, there was no reduction of the bystander effect, indicating that this effect was not mediated by gap junctional intercellular communication. PDT influenced phosphorylation of tyrosine residues in several proteins in the cells. Protein phosphorylation is important in cellular signaling pathways and may be involved in the bystander effect, for example by influencing the mode of cell death.  相似文献   

3.
4.
The Src tyrosine kinase phosphorylates Cas (Crk-associated substrate) to confer anchorage independence and invasive growth potential to transformed cells. Gap junctional communication is often lower between aggressive tumor cells compared with normal or benign precursors. The gap junction protein connexin43 (Cx43) is a tumor suppressor that can inhibit tumor cell growth. Src can phosphorylate Cx43 to block gap junctional communication between transformed cells. However, mechanisms by which this event actually closes intercellular channels have not been clearly defined. Here, we report that Src and Cas associate with each other at intercellular junctions. In addition, Cas is required for Src to reduce dye transfer and electrical coupling between cells expressing Cx43. Thus, Src utilizes Cas to inhibit gap junctional communication mediated by Cx43. This finding introduces a novel role of the Cas focal adhesion linker protein in the gap junction complex. This observation may help explain how gap junctional communication can be suppressed between malignant and metastatic tumor cells.  相似文献   

5.
Gap junction channels enable the direct flow of signaling molecules and metabolites between cells. Alveolar epithelial cells show great variability in the expression of gap junction proteins (connexins) as a function of cell phenotype and cell state. Differential connexin expression and control by alveolar epithelial cells have the potential to enable these cells to regulate the extent of intercellular coupling in response to cell stress and to regulate surfactant secretion. However, defining the precise signals transmitted through gap junction channels and the cross talk between gap junctions and other signaling pathways has proven difficult. Insights from what is known about roles for gap junctions in other systems in the context of the connexin expression pattern by lung cells can be used to predict potential roles for gap junctional communication between alveolar epithelial cells.  相似文献   

6.
Neoplastic transformation is frequently associated with a loss of gap junctional intercellular communication and reduced expression of connexins. The introduction of connexin genes into tumor cells reverses the proliferative characteristics of such cells. However, there is very little comparative information on the effects of different connexins on cancer cell growth. We hypothesized that Cx26, Cx32, or Cx43 would display differential growth suppression of C6 glioma cells and uniquely modulate the bystander effect following transduction of C6 cells with HSVtk followed by suicide gene therapy. The bystander phenomenon is the death of a greater number of tumor cells than are expressing the HSVtk gene, presumably due to the passage of toxic molecules through gap junction channels. To test this hypothesis, we used retroviral vectors to infect C6 glioma cells producing connexin-expressing and HSVtk-expressing cell lines. All three connexin-expressing cell lines grew significantly slower than GFP-infected or native C6 cells. Cx32 and Cx26 were significantly more effective at mediating the bystander effect in cocultures of C6-connexin cells with C6-HSVtk cells. These studies indicate that connexins have unique properties that contribute to their tumor suppressive function.  相似文献   

7.
Innumerable toxic substances present in the environment inhibit gap junctions, intercellular membrane channels that play fundamental roles in coordinated function of cells and tissues. Included are persistent organochlorine compounds, which pose health risks to humans and animals owing to their widespread use, bioaccumulation, and ability to inhibit gap junction channel-mediated intercellular communication in liver, lung, skin, heart, and brain cells. In this study, the organochlorine xenobiotics dieldrin and endosulfan, at micromolar concentrations, were found to inhibit gap junction-mediated intercellular communication and induce hypophosphorylation of connexin 43 in cultured rat astrocytes, the predominant cell type in the brain coupled through gap junctions. This inhibition of gap junctional communication was substantially reduced by preincubation with chaetoglobosin K (ChK), a bioactive natural produce previously shown to have ras tumor suppressor activity. Chaetoglobosin K also prevented dieldrin and endosulfan-induced hypophosphorylation of connexin 43 and prevented dieldrin-induced connexin 43 plaque dissolution in both astrocytes and cultured liver epithelial cells. The results suggest that stabilization of the native, phosphorylated form of connexin 43 by ChK may contribute to its ability to prevent organochlorine-induced inhibition of gap junction-mediated communication and dissolution of gap junction plaques within the plasma membrane. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Direct cell-to-cell transfer of ions and small signaling molecules via gap junctions plays a key role in vessel wall homeostasis. Vascular endothelial gap junctional channels are formed by the connexin (Cx) proteins Cx37, Cx40, and Cx43. The mechanisms regulating connexin expression and assembly into functional channels have not been fully identified. We investigated the dynamic regulation of endothelial gap junctional intercellular communication (GJIC) by fluid flow and the participation of each vascular connexin in functional human endothelial gap junctions in vitro. Human aortic endothelial cells (HAEC) were exposed for 5, 16, and 24 h to physiological flows in a parallel-plate flow chamber. Connexin protein expression and localization were evaluated by immunocytochemistry, and functional GJIC was evaluated by dye injection. Connexin-mimetic peptide inhibitors were used to assess the specific connexin composition of functional channels. HAEC monolayers in culture exhibited baseline functional communication at a striking low level despite abundant expression of Cx43 and Cx40 localized at cell-to-cell appositions. Upon exposure to flow, GJIC by dye spread demonstrated a significant time-dependent increase from baseline levels, reaching 7.5-fold in 24 h. Inhibition studies revealed that this response was mediated primarily by Cx40, with lesser contributions of the other two vascular connexins assembled into functional homotypic and/or heterotypic channels. This is the first study to demonstrate that flow simultaneously and differentially regulates expression of the Cx37, Cx40, and Cx43 proteins and their involvement in the augmentation of intercellular communication by dye transfer in human endothelial cells in vitro.  相似文献   

9.
Pathways and control of connexin oligomerization   总被引:6,自引:0,他引:6  
Connexins form gap junction channels that link neighboring cells into an intercellular communication network. Many cells that express multiple connexins produce heteromeric channels containing at least two connexins, which provides a means to fine tune gap junctional communication. Formation of channels by multiple connexins is controlled at two levels: by inherent structural compatibilities that enable connexins to hetero-oligomerize and by cellular mechanisms that restrict the formation of heteromers by otherwise compatible connexins. Here, I discuss roles for secretory compartments beyond the endoplasmic reticulum in connexin oligomerization and evidence that suggests that membrane microdomains help regulate connexin trafficking and assembly.  相似文献   

10.
Propagation of electrical activity between myocytes in the heart requires gap junction channels, which contribute to coordinated conduction of the heartbeat. Some antipsychotic drugs, such as thioridazine and its active metabolite, mesoridazine, have known cardiac conduction side-effects, which have resulted in fatal or nearly fatal clinical consequences in patients. The physiological mechanisms responsible for these cardiac side-effects are unknown. We tested the effect of thioridazine and mesoridazine on gap junction-mediated intercellular communication between cells that express the major cardiac gap junction subtype connexin 43. Micromolar concentrations of thioridazine and mesoridazine inhibited gap junction-mediated intercellular communication between WB-F344 epithelial cells in a dose-dependent manner, as measured by fluorescent dye transfer. Kinetic analyses demonstrated that inhibition by 10 μmol/L thioridazine occurred within 5 min, achieved its maximal effect within 1 h, and was maintained for at least 24 h. Inhibition was reversible within 1 h upon removal of the drug. Western blot analysis of connexin 43 in a membrane-enriched fraction of WB-F344 cells treated with thioridazine revealed decreased amounts of unphosphorylated connexin 43, and appearance of a phosphorylated connexin 43 band that co-migrated with a “hyperphosphorylated” connexin 43 band present in TPA-inhibited cells. When tested for its effects on cardiomyocytes isolated from neonatal rats, thioridazine decreased fluorescent dye transfer between colonies of beating myocytes. Microinjection of individual cells with fluorescent dye also showed inhibition of dye transfer in thioridazine-treated cells compared to vehicle-treated cells. In addition, thioridazine, like TPA, inhibited rhythmic beating of myocytes within 15 min of application. In light of the fact that the thioridazine and mesoridazine concentrations used in these experiments are in the range of those used clinically in patients, our results suggest that inhibition of gap junction intercellular communication may be one factor contributing to the cardiac side-effects observed in some patients taking these medications.  相似文献   

11.
He LQ  Cai F  Liu Y  Liu MJ  Tan ZP  Pan Q  Fang FY  Liang de S  Wu LQ  Long ZG  Dai HP  Xia K  Xia JH  Zhang ZH 《Cell research》2005,15(6):455-464
INTRODUCTION Gap junctions consisting of connexins, are able tomediate cell-cell communication via direct exchange ofintercellular small molecules (< 1 kD). Generally, gap junc-tions are formed by homomeric or heteromeric hemi-channels that are assembled …  相似文献   

12.
Cell-to-cell communication is achieved by passage of small molecules through gap junction membrane channels. The expression of the transforming gene from Rous sarcoma virus, v-src, induces a rapid and dramatic reduction in cell-to-cell communication in cultured cells. To determine whether connexin43, a major gap junction protein expressed in fibroblasts, is a target for the v-src protein tyrosine kinase activity, we examined the phosphorylation state of connexin43 in cells expressing variants of src. Using an antipeptide serum that recognizes connexin43, we demonstrate that this protein is phosphorylated on serine and tyrosine residues in avian and mammalian cells expressing activated src proteins. Connexin43 from control cells and cells expressing nonactivated variants of the src protein was phosphorylated solely on serine residues. In lysates from v-src-transformed cells, all phosphorylated connexin43 molecules were cleared from the lysate by sequential immunoprecipitations using the phosphotyrosine antibodies, suggesting that each molecule of phosphorylated connexin43 contains both phosphoserine and phosphotyrosine. We have also examined junctional permeability in cells expressing src variants and find that loss of cell-to-cell communication correlates with tyrosine phosphorylation of connexin43.  相似文献   

13.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells and are important in development and maintenance of cell homeostasis. Phosphorylation has been implicated in the regulation of gap junctional communication at several stages of the cell cycle and the connexin “lifecycle”, such as trafficking, assembly/disassembly, degradation, as well as in the gating of “hemi” channels or intact gap junction channels. This review focuses on how phosphorylation can regulate the early stages of the connexin life cycle through assembly of functional gap junctional channels. The availability of sequences from the human genome databases has indicated that the number of connexins in the gene family is approximately 20, but we know mostly about how connexin43 (Cx43) is regulated. Recent technologies and investigations of interacting proteins have shown that activation of several kinases including protein kinase A, protein kinase C (PKC), p34cdc2/cyclin B kinase, casein kinase 1 (CK1), mitogen-activated protein kinase (MAPK) and pp60src kinase can lead to phosphorylation of the majority of the 21 serine and two of the tyrosine residues in the C-terminal region of Cx43. While many studies have correlated changes in kinase activity with changes in gap junctional communication, further research is needed to directly link specific phosphorylation events with changes in connexin oligomerization and gap junction assembly.  相似文献   

14.
Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The aim of this study was to investigate the effect of early and delayed preconditioning on gap junction communication, connexin abundance, and phosphorylation in cultured neonatal rat cardiac myocytes. Prolonged ischemia followed 5 minutes after preconditioning in the early protocol, whereas 20 hours separated preconditioning and prolonged ischemia in the delayed preconditioning protocol. Gap junctional intercellular communication (GJIC) was assessed by Lucifer yellow dye transfer. An initial reduction in communication in response to sublethal ischemia was observed. This may be one mechanism whereby neighboring cells are protected from damaging substances produced during the first phase of subsequent regional ischemia in early preconditioning protocols. With respect to delayed preconditioning, the transient decrease in GJIC disappeared prior to prolonged ischemia, indicating that other mechanisms are responsible for delayed protection. Both early and delayed preconditioning preserved intercellular coupling after prolonged ischemia and this correlated with presence of less connexin43 dephosphorylation assessed by immunoblot.  相似文献   

15.
Connexins constitute a large family of trans-membrane proteins that allow intercellular communication and the transfer of ions and small signaling molecules between cells. Recent studies have revealed complex translational and post-translational mechanisms that regulate connexin synthesis, maturation, membrane transport and degradation that in turn modulate gap junction intercellular communication. With the growing myriad of connexin interacting proteins, including cytoskeletal elements, junctional proteins, and enzymes, gap junctions are now perceived, not only as channels between neighboring cells, but as signaling complexes that regulate cell function and transformation. Connexins have also been shown to form functional hemichannels and have roles altogether independent of channel functions, where they exert their effects on proliferation and other aspects of life and death of the cell through mostly-undefined mechanisms. This review provides an updated overview of current knowledge of connexins and their interacting proteins, and it describes connexin modulation in disease and tumorigenesis.  相似文献   

16.
《The Journal of cell biology》1990,111(5):2077-2088
Connexin43 is a member of the highly homologous connexin family of gap junction proteins. We have studied how connexin monomers are assembled into functional gap junction plaques by examining the biosynthesis of connexin43 in cell types that differ greatly in their ability to form functional gap junctions. Using a combination of metabolic radiolabeling and immunoprecipitation, we have shown that connexin43 is synthesized in gap junctional communication-competent cells as a 42-kD protein that is efficiently converted to a approximately 46-kD species (connexin43-P2) by the posttranslational addition of phosphate. Surprisingly, certain cell lines severely deficient in gap junctional communication and known cell-cell adhesion molecules (S180 and L929 cells) also expressed 42-kD connexin43. Connexin43 in these communication-deficient cell lines was not, however, phosphorylated to the P2 form. Conversion of S180 cells to a communication-competent phenotype by transfection with a cDNA encoding the cell-cell adhesion molecule L-CAM induced phosphorylation of connexin43 to the P2 form; conversely, blocking junctional communication in ordinarily communication-competent cells inhibited connexin43-P2 formation. Immunohistochemical localization studies indicated that only communication-competent cells accumulated connexin43 in visible gap junction plaques. Together, these results establish a strong correlation between the ability of cells to process connexin43 to the P2 form and to produce functional gap junctions. Connexin43 phosphorylation may therefore play a functional role in gap junction assembly and/or activity.  相似文献   

17.
Connexin hemichannels, that is, half gap junction channels (not connecting cells), have been implicated in the release of various messengers such as ATP and glutamate. We used connexin mimetic peptides, which are, small peptides mimicking a sequence on the connexin subunit, to investigate hemichannel functioning in endothelial cell lines. Short exposure (30 min) to synthetic peptides mimicking a sequence on the first or second extracellular loop of the connexin subunit strongly supressed ATP release and dye uptake triggered by either intracellular InsP3 elevation or exposure to zero extracellular calcium, while gap junctional coupling was not affected under these conditions. The effect was dependent on the expression of connexin-43 in the cells. Connexin mimetic peptides thus appear to be interesting tools to distinguish connexin hemichannel from gap junction channel functioning. In addition, they are well suited to further explore the role of connexins in cellular release or uptake processes, to investigate hemichannel gating and to reveal new unknown functions of the large conductance hemichannel pathway between the cell and its environment. Work performed up to now with these peptides should be re-interpreted in terms of these new findings.  相似文献   

18.
Direct cell-to-cell communication in the heart is maintained via gap junction channels composed of proteins termed connexins. Connexin channels ensure molecular and electrical signals propagation and hence are crucial in myocardial synchronization and heart function. Disease-induced gap junctions remodeling and/or an impairment or even block of intercellular communication due to acute pathological conditions results in derangements of myocardial conduction and synchronization. This is critical in the development of both ventricular fibrillation, which is a major cause of sudden cardiac death and persistent atrial fibrillation, most common arrhythmia in clinical practice often resulting in stroke. Many studies suggest that alterations in topology (remodeling), expression, phosphorylation and particularly function of connexin channels due to age or disease are implicated in the development of these life-threatening arrhythmias. It seems therefore challenging to examine whether compounds that could prevent or attenuate gap junctions remodeling and connexin channels dysfunction can protect the heart against arrhythmias that cause sudden death in humans. This assumption is supported by very recent findings showing that an increase of gap junctional conductance by specific peptides can prevents atrial conduction slowing or re-entrant ventricular tachycardia in ischemic heart. Suppression of ischemia-induced dephosphorylation of connexin seems to be one of the mechanisms involved. Another approach for identifying novel treatments is based on the hypothesis that even non-antiarrhythmic drugs with antiarrhythmic ability can modulate gap junctional communication and hence attenuate arrhythmogenic substrates.  相似文献   

19.
Cells within the vascular wall are coupled by gap junctions, allowing for direct intercellular transfer of low molecular weight molecules. Although gap junctions are believed to be important for vascular development and function, their precise roles are not well understood. Mice lacking either connexin37 (Cx37) or connexin40 (Cx40), the predominant gap junction proteins present in vascular endothelium, are viable and exhibit phenotypes that are largely non-blood vessel related. Since Cx37 and Cx40 are coexpressed in endothelial cells and could overlap functionally, some roles of junctional communication may only be revealed by the elimination of both connexins. In this study, we interbreed Cx37 and Cx40 knockout mice to generate Cx37-/- Cx40-/- animals and show that they display severe vascular abnormalities and die perinatally. Cx37-/- Cx40-/- animals exhibit localized hemorrhages in skin, testis, gastrointestinal tissues, and lungs, with pronounced blood vessel dilatation and congestion occurring in some areas. Vascular anomalies were particularly striking in testis and intestine. In testis, abnormal vascular channels were present, with these channels coalescing into a cavernous, endothelium-lined blood pool resembling a hemangioma. These results provide evidence of a critical role for endothelial gap junction-mediated communication in the development and/or functional maintenance of segments of the mouse vasculature.  相似文献   

20.
Gap junctions and tumour progression   总被引:3,自引:0,他引:3  
Gap junctional intercellular communication has been implicated in growth control and differentiation. The mechanisms by which connexins, the gap junction proteins, act as tumor suppressors are unclear. In this review, several different mechanisms are considered. Since transformation results in a loss of the differentiated state, one mechanism by which gap junctions may control tumour progression is to promote or enhance differentiation. Processes of differentiation and growth control are mediated at the genetic level. Thus, an alternative or complimentary mechanism of tumour suppression could involve the regulation of gene expression by connexins and gap junctional coupling. Finally, gap junction channels form a conduit between cells for the exchange of ions, second messengers, and small metabolites. It is clear that the sharing of these molecules can be rather selective and may be involved in growth control processes. In this review, examples will be discussed that provide evidence for each of these mechanisms. Taken together, these findings point to a variety of mechanims by which connexins and the gap junction channels that they form may control tumour progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号