首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partitioning differences between cells in two-polymer aqueous phase systems originate from subtle differences between the surface properties of cells. Because of the exponential relation between the parameters affecting the partition ratio (P) and the P itself, differences in membrane components suspected of effecting the differential partitioning of closely related cell populations cannot be directly established by conventional chemical assay techniques. In order to study the chemical nature of the components responsible for the age-related changes in surface properties of rat red cells we have devised an approach which uses a combination of isotopic labeling of erythrocyte subpopulations of distinct cell age with different enzyme and/or chemical treatments followed by countercurrent distribution in charge-sensitive two-polymer aqueous phase systems. These studies show that: neuraminidase-susceptible sialic acid is not responsible for the cell age-related surface differences detected by partitioning; the component(s) responsible for the cell age-related surface differences can be extracted (from aldehyde-fixed red cells) with ethanol or cleaved with dilute sulfuric acid. Our data are consistent with the hypothesis that ganglioside-linked sialic acid is the chemical moiety responsible for the cell charge-associated surface differences among rat red blood cells of different ages.  相似文献   

2.
Ejaculated, bovine sperm have been subjected to multiple partition in aqueous two-phase systems. This partition, carried out in a countercurrent fashion, reveals heterogeneity of the sperm population with respect to surface properties. The sperm, when partitioned in phase systems that detect non-change associated surface properties (change-insensitive) are largely distributed as two distinct populations. In charge-sensitive phase systems (which principally detect cell surface molecules carrying charge) the sperm do not show any obvious surface heterogeneity. Considerable heterogeneity is revealed in affinity-ligand phase systems containing palmitic acid coupled to one of the phase components-poly(ethylene glycol). There is a difference in surface heterogeneity between sperm which have been washed in buffer or left unwashed, direct from the ejaculate. This is indicative of weak adsorption of proteins to the sperm surface in seminal fluid. These results show that bovine ejaculated sperm is a heterogeneous cell population having unequal distributions of a number of different surface molecules.  相似文献   

3.
The bifunctional imidoester dimethyl suberimidate hydrochloride can stabilize rat red blood cells (RBCs) by membrane protein crosslinking, and in that way they can be used as carrier systems for exogenous substances. Counter-current distribution fractionation in charge-sensitive dextran-polyethyleneglycol two-phase systems has been used to detect slight changes in surface charge in stabilized cells. A decrease in the surface charge of crosslinked RBCs and an apparent masking of the age-related cell surface properties have been found to result from the protein crosslinking. Digitonin treatment used to permeabilize crosslinked RBCs produces a significant decrease of the cell surface charge while the age-related surface properties do not seem to be modified by the treatment.  相似文献   

4.
The surface expression of an integral membrane hemagglutinin, HRA1, cloned from Escherichia coli O9: H10:K99 in heterologous E. coli strains was studied by utilizing a variety of polyethylene glycol-dextran and dextran-Ficoll aqueous two-phase polymer systems. Bacteria containing plasmids that encoded the hemagglutinin were found to partition differently from both the host bacteria lacking the plasmid and the original hemagglutinating strain in several of these systems. By using molecular biological techniques, the origin of the partition difference was unambiguously correlated to the expression of HRA1, providing evidence independent of the agglutination phenotype that the protein was accessible to the surrounding milieu. It was demonstrated by using bacterial partition in charge-sensitive systems that the agglutination event was not likely to be due to the presence of a nonspecific positively charged surface protein, as HRA1-expressing clones showed no less affinity for the relatively positive polyethylene glycol-rich upper phase than did control bacteria. This work demonstrates the utility of aqueous polymer two-phase systems for the study of surface-expressed recombinant proteins, due to the sensitivity of the systems and the presence of excellent controls (the host bacteria before plasmid introduction). In cloning and expression studies of surface-associated proteins, two-phase aqueous polymer systems could be used as an alternative to antibody production for the monitoring of surface expression, and these systems may give valuable information on the surface exposure of the protein.  相似文献   

5.
Unilamellar vesicles composed of phosphatidylcholine (PC) and either phosphatidic acid (PA) or phosphatidylglycerol (PG) partition to the upper poly(ethylene glycol) (PEG)-rich phase of a charge-sensitive 5%:5% (w/w) PEG 8000/Dextran T-500 phase system containing 10 mM sodium phosphate at pH 7, consistent with the vesicles bearing a net negative charge. When prepared in the presence of a pH gradient (interior acidic), PC/PA vesicles exhibit an increased partition to the top PEG-rich phase, consistent with a redistribution of the PA from the inner to the outer monolayer of the vesicle bilayer. Conversely, when prepared in the presence of a pH gradient (interior basic), PC/PG vesicles exhibit a decreased top-phase partition, consistent with a redistribution of the PG from the outer to the inner monolayer of the vesicle bilayer. Unilamellar vesicles composed of PC and stearylamine partition to the lower dextran-rich phase of a 5%:5% (w/w) PEG 8000/Dextran T-500 phase system containing 10 mM sodium phosphate at pH 8.5, consistent with the vesicles bearing a net positive charge. When prepared in the presence of a pH gradient (interior acidic), conditions under which the stearylamine is trapped on the inner monolayer of the bilayer, the vesicles now partition predominantly to the interface in a manner similar to vesicles composed of PC alone. These results demonstrate that partitioning in aqueous two-phase polymer systems is a sensitive method for monitoring the asymmetry of charged lipids in model membrane systems and also suggests that partitioning in charge-sensitive systems depends only on the physical nature of the exterior surface of the membrane.  相似文献   

6.
When mixed in aqueous solution at low concentrations, the neutral polymers dextran and poly(ethylene glycol) (PEG) rapidly form a two-phase system, consisting of a dextran-enriched lower phase and a PEG-enriched upper phase. Two B16 mouse melanoma cell lines, B16-F1 (low lung colonizing capability) and B16-F10 (high lung colonizing capability) were found to partition differentially into the upper phase in a variety of two-phase systems. Upper-phase partition depends primarily on either hydrophilic (i.e., surface charge density) or hydrophobic (i.e., affinity for the hydrocarbon chain of a PEG-fatty acid ester) cell surface properties, depending on the system used. In single-step partition studies, cells of the B16-F10 subline displayed a greater preference than B16-F1 cells for the upper phase in the hydrophilic system and less preference in systems sensitive to hydrophobic properties. Countercurrent distribution (CCD) experiments, performed with [125I]deoxyuridine DNA-labelled cells, were consistent with single-step partition results. These CCD results demonstrated that B16-F10 cells exhibited greater DNA synthesis than B16-F1 cells and that considerable heterogeneity, in both hydrophobic and hydrophilic surface properties, was present in subpopulations of cells of both sublines. The data also showed considerable enrichment of 125I-specific cell activity in certain sections of the distributions, indicating that differences in cellular DNA synthesis are reflected in the surface properties to which partition is sensitive.  相似文献   

7.
When rat red blood cells were incubated in a cadmium (Cd)-free medium following 1-h pretreatment with 0.5 mM CdCl2, incorporated Cd was retained in the cell during 14-h incubation and progressively accumulated in the membrane fraction, especially in the cytoskeleton fraction. In parallel to this accumulation, red cell filterability decreased and echinocytic cells increased, although intracellular ATP was maintained at the control level. The echinocytic shape was maintained in ghosts and cytoskeletons prepared from the Cd-loaded cells. In addition, the association of bands 2.1, 3, 4.2, and 4.5 with cytoskeletons increased and dissociation of cytoskeletal networks at low ionic strength decreased as the incubation time increased. Pretreatment of red blood cells with Cd also induced a release of small vesicles. These vesicles contained hemoglobin but were depleted of spectrin and actin, showing a phospholipid composition similar to that of red cell ghosts. These results suggest that the organization of cell membranes, especially cytoskeletal networks, is altered by Cd accumulation in the cytoskeleton fraction, which results in acceleration of age-related changes of red blood cells such as shape change and decreased filterability.  相似文献   

8.
The normal, discoid shape of red blood cells represents an equilibrium between two opposing factors, i.e., stomatocytic and echinocytic transformations. Most stomatocytic agents were found to be inhibitors of calmodulin, a regulator of the phosphorylation of membrane proteins. We determined whether red cell shape transformations could be caused by changes in phosphorylation of membrane proteins, specifically the cAMP-dependent phosphorylation of ankyrin and band 4.1. Red blood cells were incubated with 32P and 100 microM chlorpromazine (stomatocytic transformation) or 30 mM sodium salicylate (echinocytic transformation) for various time intervals. Ghost membrane proteins were examined by polyacrylamide gel electrophoresis and autoradiography. Spectrin (beta-chain), ankyrin, band 3, band 4.1 and 4.9 were phosphorylated. No change was found in the degree and pattern of phosphorylation after stomatocytic transformation. Salicylate caused a reversible inhibition of transmembranous phosphate transport in both directions. The results indicate that the stomatocytic transformation induced by chlorpromazine and the echinocytic transformation induced by salicylate do not involve a change in phosphorylation, but that the echinocytic transformation induced by salicylate is associated with an inhibition of transmembranous transport of phosphate. Studies with salicylate suggest that the phosphorylation sites of band 3 are found mainly on the endofacial side of the membrane.  相似文献   

9.
Partitioning behavior of cells in dextran-poly(ethylene glycol) aqueous phase systems is a sensitive reflection of the cells' surface properties. A decrease in partition ratio, in charge-sensitive phases, of a variety of cell lines as a function of culture growth has been reported by a number of investigators. The basis for this phenomenon remains unclear. We have now studied the surface properties of K-562 cells (a human cell line originally derived from a patient with chronic myelogenous leukemia in blast crisis) during suspension culture growth by countercurrent distribution. The mean partition ratio of viable cells remained constant during 220 h of culture (i.e., well into stationary phase). The decrease in mean partition ratio of the cell population as a whole during culture, previously observed and reported by others, is attributed to the lower partition ratio of non-viable cells which increase with time of culture.  相似文献   

10.
Human and rabbit red blood cells were subjected to partition in an aqueous, buffered Ficoll-Dextran two-phase system. The effect of neuraminidase treatment on the cell partition behaviour was examined and compared with the amount of sialic acids released from the cell surface and with the change in the electrophoretic mobility of the cells. The data obtained in the study indicate that there are two main groups of sialic acids differing in their topochemical arrangement on the human erythrocyte surface, and their relative hydrophobicity was evaluated. The results obtained in the case of rabbit red cells seem to indicate that sialic acids present on the cell surface are not the only major ionogenic surface components as is the case for human red cells. The data obtained support the assumption that the membrane surface charge is the determinant of cell partition only as a factor affecting the relative hydrophobicity of the cell surface.  相似文献   

11.
The separation of host and recombinant Escherichia coli bacterial cells has been studied using the surface-sensitive technique of partitioning in aqueous two-phase polymer systems. Experiments were designed to probe charge-and hydrophobicity-related property differences of antibiotic-resistant recombinant cells and their antibiotic-sensitive hosts. Differential partitioning was observed in both charge-sensitive and non-charge-sensitive phase systems for three host-recombinant cell systems, but the non-charge-related effects appear to have a greater impact on partitioning behavior. This result suggests that plasmid-encoded products related to antibiotic resistance modify the surface hydrophobicity of the E. coli bacterial cell and that these differences can be exploited for cell separation.  相似文献   

12.
Counter-current distribution (CCD) of red blood cells (RBC) from individuaks with homozygous sickle cell (HbSS) disease in a charge-sensitive aqueous dextran-poly(ethylene glycol) phase system, which fractionates cells on the basis of surface properties, indicates that the percentage of irreversibly sickled cells (ISC) increases and the percentage of reticulocytes decreases with increasing cell partition ratios. The high partition ratios of ISC correspond to those of older RBC when RBC from normal individuals are subjected to CCD. Our results thus indicate that ISC differ in surface properties from those of the bulk of sickle RBC (including reticulocytes) in the population and that the difference is, most likely, charge-related. While the question as to whether ISC are indeed old cells has not yet been unequivocally answered, this view finds support in the fact that the independent parameters of ISC surface properties, as reflected by partition ratios, and densities correlate as they do in older RBC from normal individuals.  相似文献   

13.
Rat carrier erythrocytes prepared by hypotonic dialysis (80 mOsm/kg) are a heterogeneous cell population that can be fractionated into two-well-defined cell subpopulations by a single partition step, in charge-sensitive dextran-poly(ethylene glycol) aqueous two-phase systems. One subpopulation (65% of total cells) has a decreased cell surface charge and is partitioned at the interface in a single step and then fractionated by counter-current distribution as a low-G subpopulation. The other subpopulation (35% of total cells) has charge surface properties more like those of the untreated control rat erythrocytes. These last cells are partitioned in the top phase in a single step and then fractionated by counter-current distribution as a high-G subpopulation. Partitioning is more effective in reducing cell heterogeneity in hypotonized rat erythrocyte populations than is density separation in Ficoll-paque which only separates a small less dense cell subpopulation (5% of total cells), with the most fragile cells, from a larger and more dense cell subpopulation (95% of total cells), with a mixture of fragile and normal cells. This simple cell separation procedure quickly reduces carrier erythrocyte heterogeneity in a single partitioning step so it can be used to prepare cells for in vivo studies.  相似文献   

14.
In this study, the effect of several factors that govern the partitioning behaviour of three model proteins, such as bovine serum albumin, lysozyme and trypsin was analysed in a two-phase system formed by maltodextrin and a copolymer of ethylene and propylene oxides. The protein partition coefficient (K(r)) showed to be very sensitive to temperature changes, protein molecular weight, pH medium and the lyotropic ion presence. The phase diagram obtained for these novel polymer-polymer two-phase systems shows two phases with high polymer concentrations. The maltodextrin is enriched in the bottom phase while the copolymer of ethylene and propylene oxides is found in the upper phase. Since this copolymer is thermoreactive, the upper phase can be removed and heated above the copolymer's cloud point resulting in the formation of a new two-phase system with a lower water phase, containing the target protein and an upper copolymer-rich phase. Our results show that systems formed by maltodextrin and a copolymer of ethylene and propylene oxides may be considered as an interesting alternative to be used in protein purification due to their low cost, and also because they offer a viable solution to problems of polymer removal and recycling.  相似文献   

15.
Partitioning in charge-sensitive dextran-poly(ethylene glycol) aqueous phase systems reveals that fixation with even small concentrations of glutaraldehyde (e.g., 0.1% w/v) changes the surface properties of cells. While fixation with larger concentrations of glutaraldehyde (i.e., 1.85%) increases erythrocyte partition ratios, the effect of lower glutaraldehyde concentrations on the partition ratios appears to be species-specific. The differential effect of glutaraldehyde on rat reticulocytes and erythrocytes indicates that fixation is also cell-dependent. These data, together with the previous report that glutaraldehyde fixation does not change the characteristicrelative partition ratios of rat mature erythrocytes of different cell ages, suggest that the nature and extent of glutaraldehyde alteration of cell surfaces must, in each case, be empirically evaluated.  相似文献   

16.
Partitioning in dextran-poly(ethylene glycol) aqueous two-phase systems is an established method for the separation of biomaterials. Size and surface properties are generally regarded as parameters which contribute to the determination of the materials' partition coefficients, K. While molecular weight or surface area can be one of the determinants of the K value of biomaterials in the size range of macromolecules to very small particulates (e.g. some viruses), partitioning liposomes of identical surface properties and different but distinct sizes indicate that surface areas greater than about 0.2 μm2 do not affect the K value obtained. Analysis of available partitioning data of much larger particulates (i.e. cells) reveals that surface properties per unit area outweigh surface area per se in determining the K value in non-charge-sensitive, charge-sensitive and biospecific affinity phase systems.  相似文献   

17.
The possibility of producing biospecific affinity ligands for separating cells in two polymer aqueous phase systems on the basis of cell surface antigens was investigated. Rabbit anti-human erythrocyte IgG was reacted with cyanuric chloride-activated monomethyl poly(ethylene glycol) (PEG) fractions (molecular weights approximately 200, 1900, and 5000) at various molar ratios of PEG to protein lysine groups. The partition coefficient of the protein in a Dextran/PEG two-phase system increased with increasing degree of modification and increasing PEG molecular weight. There was a concomitant loss in ability to agglutinate human erythrocytes. The ability of the modified IgG to bind to a DEAE-cellulose column was almost eliminated by reaction with the PEG 5000, and was decreased to a lesser extent by PEG 1900. This PEG 1900-modified IgG substantially increased the partition of fresh or fixed human erythrocytes into the PEG-rich phase of a suitable phase system, while having no effect on rabbit cell partition. The partition increase could be inhibited by unmodified anti-human red cell IgG but not by nonspecific unmodified human IgG, demonstrating that the ligand effects were specific for the cell type against which the antibody was raised. A mixture of rabbit and human erythrocytes, which ordinarily have very similar partitions in the phase systems used, could be separated on a countercurrent distribution apparatus using the modified IgG. These results demonstrate the feasibility of producing immunologically specific affinity partition ligands for cell separation.  相似文献   

18.
Aqueous two-phase partition involving thin-layer counter current distribution (TLCCD) has been used to assess surface heterogeneity of ejaculated bovine sperm. When partitioned in charge-insensitive aqueous two-phase systems, which detect non-charge associated surface properties, the sperm fractionates into two distinct populations. Using a Y-chromosome-specific DNA marker, it has been shown that one of these populations is enriched in Y chromosome bearing sperm. However, this population is not pure—it consists of 80% Y sperm, with the other 20% being X sperm. All the sperm in the original population that had begun to undergo the acrosome reaction were separated into this same peak; the sex chromosome composition of these sperm is unknown. Since the aqueous partition of sperm is based on surface properties these results suggest that two populations of Y sperm exist that have different surface characteristics. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Partitioning of cells in dextran-poly(ethylene glycol) aqueous two-phase systems depends on the interaction between the surface properties of the cells and the physical properties of the phases. The latter can be manipulated to a considerable extent by selection of polymer concentrations and ionic composition and concentration. If salts (e.g., phopshate) are used that have an unequal affinity for the two phases, an electrostatic potential difference between the phases results and, at appropriately high polymer concentrations, the partition coefficient of cells is determined predominantly by membrane charge-associated properties. By “balancing” the magnitude of the electrostatic potential difference against that of the interfacial tension (primarily a function of polymer, but also phosphate, concentrations) one can obtain phase systems that give usable partition coefficients for most cell populations (1). In work under way in our laboratory on the effects of different chemical and enzymatic modifications on the relative surface properties of rat red blood cells of different ages, we have now found that certain phase compositions did not resolve such treated cell subpopulations while other phase compositions did. Thus not all charged phase systems in which cell populations as a whole have usable partition coefficients are equally capable of detecting or subfractionating cell subpopulations. It is therefore essential, before drawing conclusions on the nonseqarability of cell subpopulations, to test cell separability in charged phase systems of different compositions if the system initially chosen does not afford a subfractionation.  相似文献   

20.
Aqueous solutions of dextran and of poly(ethylene glycol) when mixed give rise to two-phase systems useful in separating cells, on the basis of their surface properties, by partitioning. Depending on whether salts with unequal or equal affinity for the two phases are chosen, phases with or without an electrostatic potential difference between the phases are obtained. At appropriate polymer concentrations the former yield cell partition coefficients (i.e., the quantity of cells in the top phase as a percentage of total cells added) based on charge-associated surface properties while the latter reflect membrane lipid-related parameters. With increasing cell age, rat erythrocytes have diminishing partition coefficients in both charged and uncharged phases. Using the elevated aspartate aminotransferase levels of younger red cells as a marker, we have not found that young mature erythrocytes of human do not have the highest partition coefficient in the red cell population as they do in rat. Experiments with isotopically labeled dog red cells yield results similar to those found with human erythrocytes. Furthermore, density-separated young and old red cells from human give overlapping countercurrent distribution curves. Finally, countercurrent distribution of human red blood cells followed by pooling of cells from the left and right ends of the distribution and subjection of these cells to a redistribution gives curves that overlap with each other and with the original countercurrent distribution. This indicates that not only are human red cells not subfractionated based on possible age-related surface alterations, but also that they are not subfractionated by partitioning based on any surface parameter. These results are consistent with our previous findings that membrane sialic acid/hemoglobin absorbance is essentially constant through the extraction train after countercurrent distribution of human erythrocytes in a charged phase system; and with the recent reports of others that there is no difference in electrophoretic mobility between human young and old red cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号