首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
重组胸腺素α1的表达、纯化和生物学活性   总被引:4,自引:0,他引:4  
为获得重组人胸腺素α1(recombinantthymosinα1,Tα1) ,采用融合表达方式表达Tα1基因 ,重组融合表达载体Tα1 pGEX 4XT 1转化大肠杆菌DE3(lys)构建工程菌 .对工程菌进行补料分批培养并诱导表达 ,得到目的蛋白的可溶性表达 .亲和层析纯化融合蛋白GST Tα1,经凝血酶裂解融合蛋白 ,亲和层析除去GST ,SourceQ离子交换 ,得到Tα1单体 ,得率为 30mg L发酵液 .生物学活性分析显示 ,重组Tα1能显著促进小鼠脾细胞增殖 (P <0 0 1) ,其活性与天然Tα1相似  相似文献   

2.
目的:构建炭疽芽胞杆菌FtsE蛋白的原核表达载体,实现其在原核表达系统中的可溶性表达,并纯化融合蛋白。方法:用PCR方法从炭疽芽胞杆菌A16R株扩增得到厅sE基因片段,酶切后连接到pET28a原核表达载体,构建重组表达质粒pET28a-ftsE,转化大肠杆菌BL21(DE3)菌株,筛选可溶性诱导表达与纯化融合蛋白的条件,以获得高纯度融合蛋白。结果:构建了FtsE蛋白的融合表达载体,并在大肠杆菌中获得高效表达;在20℃下,经0.1mmol/LIPTG诱导3h表达的产物主要是可溶性蛋白,经Ni-NTA亲和层析纯化获得了高纯度的FtsE融合蛋白,经Western印迹检测,目的蛋白表达正确。结论:实现了炭疽芽胞杆菌FtsE蛋白原核表达系统的可溶性表达并获得了高纯度融合蛋白,为后续研究奠定了基础。  相似文献   

3.
目的:利用基因工程方法原核表达重组融合蛋白ES-Kringle5并进行纯化及活性检测。方法:ES-Kringle5是将内皮抑素N端的前27个氨基酸与Kringle5通过连接肽相连的重组融合蛋白,合成该重组蛋白的基因片段并插入载体pMD18-T中,然后克隆至大肠杆菌表达载体pET25b中并转化E.coli BL21(DE3)。乳糖诱导表达后经Ni-NTA亲和层析纯化后获得目的蛋白。通过抑制HUVEC细胞增殖实验检测其生物学活性。结果:重组质粒构建正确。利用乳糖诱导表达并降低诱导温度能增加目的蛋白的产量及可溶性表达。纯化后的重组蛋白纯度大于95%。生物学活性证明该重组蛋白具有抑制HUVEC的增殖能力。结论:具有生物学活性的重组蛋白ES-Kringle5可在大肠杆菌中高效表达,为研究其体内药效、药代及安全性评价奠定了基础。  相似文献   

4.
目的:在大肠杆菌中表达并纯化人铜锌超氧化物歧化酶(HuSOD1)。方法:合成HuSOD1编码基因,PCR扩增后连入pMAL-p5x质粒构建融合表达载体,转化大肠杆菌BL21(DE3)感受态,IPTG诱导表达,NBT法测定HuSOD1酶活,利用麦芽糖结合蛋白亲和层析柱纯化MBP-HuSOD1融合蛋白,经因子Ⅹa酶切及分子筛柱层析纯化HuSOD1蛋白。结果:构建了pMAL-p5x-HuSOD1表达载体,在大肠杆菌中实现了高表达,目的蛋白占全菌蛋白的30%,其中可溶性表达占63%,具有超氧化物歧化酶活性;通过亲和层析纯化得到纯度大于95%的融合蛋白MBP-HuSOD1,经因子Ⅹa酶切后纯化得到纯度约90%的HuSOD1蛋白。结论:在大肠杆菌中表达并纯化获得有活性的MBP-HuSOD1,经进一步酶切、纯化后得到HuSOD1。  相似文献   

5.
目的:克隆、表达、纯化人免疫缺陷病毒Ⅰ型(HIV-1)Vpu蛋白,为其功能及免疫学研究奠定基础。方法:PCR扩增Vpu基因,纯化、酶切后克隆到原核表达载体pET32a中,转化大肠杆菌BL21(DE3)菌株获得表达工程菌株,IPTG诱导蛋白表达,免疫印迹鉴定目的蛋白,亲和层析纯化蛋白。结果:构建了HIV-1Vpu蛋白的原核表达载体Vpu-pET32a,并在大肠杆菌中高效表达,目的蛋白呈可溶性形式存在,免疫印迹检测显示为目的蛋白,经Ni—NTAAgarose纯化获得了高纯度的目的蛋白。结论:在原核表达系统中表达了可溶性HIV-1Vpu蛋白,为进一步进行HIV-1Vpu蛋白的免疫原性和功能研究奠定了基础。  相似文献   

6.
TNF与多种疾病密切相关。为了获得大量具有生物学活性的可溶性TNF受体用以拮抗TNF的毒性作用,在原核表达系统中表达了TNFR(P55)的胞外区与TrxA的融合蛋白。将TNFR(P55)胞外区去信号肽的前三个结构域基因克隆入融合蛋白表达载体pET-32a,在大肠杆菌BL21(DE3)中高效表达了TrxA-TNFR融合蛋白。表达产物以包涵体形式存在,经过变性和复性,并经镍金属鳌和柱亲和层析纯化,得到了纯度较高的可溶性受体蛋白的初纯品。免疫学实验及L929细胞体外实验均表明:该蛋白具有TNFR(P55)特异的抗原性、与TNF结合的活性以及良好的抑制TNF的TNF生物学活性。  相似文献   

7.
将人源肿瘤坏死因子Ⅰ型受体(hTNFR1)基因克隆到pET-22b表达载体,成功构建了重组表达质粒pETH1,电转到Escherichia coli BL21(DE3)表达菌株中进行摇瓶发酵。实现了hTNFR1在大肠杆菌表达系统中的重组表达。但目的蛋白全部以包涵体的形式存在于沉淀中。为了提高hTNFR1在大肠杆菌中的可溶性表达,融合标签和分子伴侣两种策略被实施用于辅助hTNFR1的可溶性表达。结果表明,在hTNFR1的N端融合NusA标签后,hTNFR1的可溶性有一定提高;在NusA-hTNFR1基础上,过表达了7种分子伴侣,筛选出tig分子伴侣对hTNFR1蛋白可溶性表达有明显的促进作用,可溶性表达量约占总量的90%;对优化后的hTNFR1表达系统的可溶性蛋白进行Ni-NTA亲和层析纯化后,TEV蛋白酶酶切去除N端的NusA标签,结合Western blot分析鉴定,获得了大量高纯度的hTNFR1蛋白。研究结果为进一步研究hTNFR1的生理学活性及其在疾病治疗方面的应用奠定了良好基础。  相似文献   

8.
目的:在原核系统中高效表达手掌参γ-硫素,并对其进行纯化。方法:通过筛选手掌参cDNA文库获得γ-硫素基因(gcthionin),分别对其全长及信号肽编码序列缺失的cDNA片段进行PCR扩增,克隆入原核表达载体pET-32(a),构建重组质粒pET-32(a)/gcthionin和pET-32(a)/Δgcthionin;测序鉴定后,转化大肠杆菌BL21(DE3),经IPTG诱导表达融合蛋白;SDS-PAGE分析后,采用Ni-NTA亲和层析柱及凝胶柱对可溶性蛋白进行纯化,Western blotting鉴定。结果:gcthionin基因开放式阅读框全长225nt,编码一个由74个氨基酸残基组成的蛋白;带有信号肽的重组质粒在大肠杆菌BL21(DE3)中以包涵体形式表达;信号肽缺失可以极大地提高外源蛋白的可溶性,该可溶性产物经Ni-NTA柱及凝胶过滤后可获得纯度较高的蛋白,经Western blotting分析,相对分子质量约21.9×10^3处有明显的蛋白条带,与预期蛋白分子大小一致。结论:信号肽编码序列缺失的Δgcthionin可在大肠杆菌中可溶、高效表达。  相似文献   

9.
目的:构建人Hepassocin的原核表达载体,可溶性表达并纯化得到高纯度的重组人Hepassocino方法:将人Hepassocin基因克隆到原核表达载体pET40b(+),转化大肠杆菌BL21(DE3),于28℃经0.1mmol/LIPTG诱导6h,表达Ds-bC-Hepassocin融合蛋白,经镍柱纯化可溶性融合蛋白,用肠激酶切除融合蛋白的DsbC-His标签,再用镍柱纯化分离酶切后的Hepassocin,通过超滤进一步纯化并浓缩,用Western blot验证纯化后的Hepassocin。结果:构建了pET40b-Hepassocin原核表达载体,经诱导表达、亲和层析和肠激酶切除融合标签,获得了相对分子质量约32000的可溶性高纯度蛋白,Western blot鉴定证实该蛋白为不含融合标签的重组人Hepassocin。结论:实现了人Hepassocin的原核可溶性表达,通过纯化获得了较高纯度的重组人Hepassocin,为制备其单克隆抗体,进一步研究其生物学功能奠定了基础。  相似文献   

10.
人受精蛋白β整联蛋白配体区cDNA的克隆、表达及抗体制备   总被引:4,自引:0,他引:4  
从人睾丸中抽提mRNA,合成双链cDNA,利用合成的PCR引物扩增受精蛋白β(fertilinβ)的整联蛋白配体区cDNA(hf279)。序列分析表明,该区编码93个氨基酸,与文献报道安全相同。将hf29插入质粒pGEX-4T-2,构建pGEX-hf279表达质粒,转化大肠杆菌BL21(DE3),表达菌株经IPTG诱导,可产生大量可溶性的表达蛋白GST-HF93。SDS-PAGE分析表明融合蛋白表观分子量为38kD,其含量占菌体可溶性蛋白的50%以上。表达产物经谷胱甘肽转硫酶(GST)亲和层析柱纯化,得到90%以上纯度的凳晤蛋白。融合蛋白经凝血酶切2h可得HF93肽。再经GST新和层析柱去除GST,得到纯度大于80%的HF93肽。将其和SDS-PAGE凝胶上切下的HF03多肽条带一起用于免疫BALB/c小鼠,经ELISA检测,证明获得了较高滴度的抗体。  相似文献   

11.
The smaller isoform of the enzyme glutamic acid decarboxylase (GAD65) is a major islet autoantigen in autoimmune type 1 diabetes mellitus (T1DM). Transgenic plants expressing human GAD65 (hGAD65) are a potential means of direct oral administration of the islet autoantigen in order to induce tolerance and prevent clinical onset of disease. We have previously reported the successful generation of transgenic tobacco and carrot that express immunoreactive, full-length hGAD65. In the present study, we tested the hypothesis that the expression levels of recombinant hGAD65 in transgenic plants can be increased by targeting the enzyme to the plant cell cytosol and by mediating expression through the potato virus X (PVX) vector. By substituting the NH2-terminal region of hGAD65 with a homologous region of rat GAD67, a chimeric GAD671-87/GAD6588-585 molecule was expressed in transgenic tobacco plants. Immunolocalization analysis showed that immunoreactive GAD67/65 was found in the plant cell cytosol. By using a radio-immuno assay with human serum from a GAD65 autoantibody-positive T1DM patient, the highest expression level of the recombinant GAD67/65 protein was estimated to be 0.19% of the total soluble protein, compared to only 0.04% of wild-type hGAD65. Transient expression of wild-type, full-length hGAD65 in N. benthamiana mediated by PVX infection was associated with expression levels of immunoreactive protein as high as 2.2% of total soluble protein. This substantial improvement of the expression of hGAD65 in plants paves the way for immunoprevention studies of oral administration of GAD65-containing transgenic plant material in animal models of spontaneous autoimmune diabetes.  相似文献   

12.
13.
The genetic contribution of antigen-presenting molecules and the environmental ignition of an antigen-specific immune attack to pancreatic β-cells define autoimmune diabetes. We focused here on generating an antigen-specific model of autoimmune diabetes in humanized double-transgenic mice carrying antigen-presenting HLA-DQ8 diabetes-linked haplotype and expressing human autoantigen GAD65 in pancreatic β-cells using a relatively diabetes-susceptible strain of mice. Double transgenic (DQ8-GAD65) mice and controls were immunized with cDNA encoding human GAD65 in adenoviral vectors and monitored for glucose intolerance and diabetes. Human-GAD65 immunization induced insulitis, glucose intolerance and diabetes in double-transgenic mice, while controls were insulitis free and glucose tolerant. Glucose intolerance 10 weeks post-immunization was followed by diabetes later on in most animals. Destructive insulitis characterized by inflammation and apoptosis correlated with the diabetes outcome. Humoral immune responses to hGAD65 were sustained in mice with diabetes while transient in non-responders. Insulitis was massive in mice with diabetes while mild in non-responders by the end of the study. Our results show for the first time the occurrence of antigen-specific induced insulitis, impaired glucose homeostasis and diabetes after immunization with a clinically relevant, human autoantigen in the context of HLA-DQ8 diabetes-susceptibility transgenes and human GAD65 expression in β-cells. This animal model will facilitate studies of mechanisms of disease involved in development of autoimmunity to GAD65 in the context of HLA-DQ8. Furthermore, this model would be ideal for testing therapeutic strategies aimed at preventing human β-cell loss and/or restoring function in the setting of autoimmune diabetes.  相似文献   

14.
The 65-kDa isoform of human glutamic acid decarboxylase (hGAD65) is a major diabetes autoantigen that can be used for the diagnosis and (more recently) the treatment of autoimmune diabetes. We previously reported that a catalytically-inactive version (hGAD65mut) accumulated to tenfold higher levels than its active counterpart in transgenic tobacco plants, providing a safe and less expensive source of the protein compared to mammalian production platforms. Here we show that hGAD65mut is also produced at higher levels than hGAD65 by transient expression in Nicotiana benthamiana (using either the pK7WG2 or MagnICON vectors), in insect cells using baculovirus vectors, and in bacterial cells using an inducible-expression system, although the latter system is unsuitable because hGAD65mut accumulates within inclusion bodies. The most productive of these platforms was the MagnICON system, which achieved yields of 78.8 μg/g fresh leaf weight (FLW) but this was substantially less than the best-performing elite transgenic tobacco plants, which reached 114.3 μg/g FLW after six generations of self-crossing. The transgenic system was found to be the most productive and cost-effective although the breeding process took 3 years to complete. The MagnICON system was less productive overall, but generated large amounts of protein in a few days. Both plant-based systems were therefore advantageous over the baculovirus-based production platform in our hands.  相似文献   

15.

Background  

Human glutamic acid decarboxylase 65 (hGAD65) is a key autoantigen in type 1 diabetes, having much potential as an important marker for the prediction and diagnosis of type 1 diabetes, and for the development of novel antigen-specific therapies for the treatment of type 1 diabetes. However, recombinant production of hGAD65 using conventional bacterial or mammalian cell culture-based expression systems or nuclear transformed plants is limited by low yield and low efficiency. Chloroplast transformation of the unicellular eukaryotic alga Chlamydomonas reinhardtii may offer a potential solution.  相似文献   

16.
Previously, we have shown that brain glutamate decarboxylase (GAD) is greatly inhibited by sulfhydryl reactive reagent suggesting cysteine residue(s) may play an important role in GAD function. In this report, we determined the role of cysteine residues in the recombinant human 65-kDa GAD isoform (hGAD65) and 67-kDa GAD isoform (hGAD67), using a combination of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry and site-directed mutagenesis. Here, we report that cysteine 446 (C446) in hGAD65 is important for its activity and is present as free sulfhydryl group. This conclusion is based on the following observations: (i) mutation of C446 in hGAD65 to alanine reduced hGAD65 activity by more than 90%, (ii) MALDI-TOF analysis of the non-reduced, trypsin-digested GAD65 revealed that C446 is present as a free sulfhydryl group as indicated by a peak at m/z (mass/charge) 647.3446 (peptide 443-448) and, when GAD65 was treated with sulfhydryl reagent, N-ethylmaleimide (NEM), the peak is shifted to m/z 772.3702,a mass increase of 125.1 daltons (Da) as a result of modification of cysteine by NEM. Parallel studies have also been conducted with hGAD67. Cysteine 455 was found to be important for GAD67 activity.  相似文献   

17.
Type 1 diabetes is a T cell-mediated disease in which B cells serve critical Ag-presenting functions. In >95% of type 1 diabetic patients the B cell response to the glutamic acid decarboxylase 65 (GAD65) autoantigen is exclusively directed at conformational epitopes residing on the surface of the native molecule. We have examined how the epitope specificity of Ag-presenting autoimmune B cell lines, derived from a type 1 diabetic patient, affects the repertoire of peptides presented to DRB1*0401-restricted T cell hybridomas. The general effect of GAD65-specific B cells was to enhance Ag capture and therefore Ag presentation. The enhancing effect was, however, restricted to T cell determinants located outside the B cell epitope region, because processing/presentation of T cell epitopes located within the autoimmune B cell epitope were suppressed in a dominant fashion. A similar effect was observed when soluble Abs formed immune complexes with GAD65 before uptake and processing by splenocytes. Thus, GAD65-specific B cells and the Abs they secrete appear to modulate the autoimmune T cell repertoire by down-regulating T cell epitopes in an immunodominant area while boosting epitopes in distant or cryptic regions.  相似文献   

18.
To purify the protein encoding the small capsid protein (SCP) of KSHV and analyze its immunogenicity, the carboxyl terminus of orf65 of Kaposi's sarcoma associated-herpesvirus (KSHV) was expressed in a prokaryotic expression system. The expression of recombinant E. coli containing pQE-80L-orf65 was induced by isopropyl-β-D-thiogalactopyranoside (IPTG) and the fusion protein was purified by chromatography. The expressed protein and its purified product were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and showed that 9 kDa was the expected size of the purified orf65 protein. The antiserum was produced in rabbit which was immunized by purified orf65 protein. An ELISA assay was established to analyze the immunogenicity of the purified orf65 protein. The ELISA analysis demonstrated that orf65 protein has strong immune activity, and the immune activity of polyclonal antibody against orf65 was more than 4 fold higher than that in the serum of the non-immunized rabbit. These results demonstrate that purified orf65 protein has very strong immunogenicity and can be used in screening KSHV infection in the general population using ELISA.  相似文献   

19.
Protein phosphorylation plays an important role in regulating soluble L-glutamic acid decarboxylase (GAD) and membrane-associated GAD activity. Previously, we reported the effect of phosphorylation on the two well-defined GAD isoforms, namely, GAD65 and GAD67, using highly purified preparations of recombinant human brain GAD65 (hGAD65) and GAD67. GAD65 was activated by phosphorylation, while GAD67 was inhibited by phosphorylation. The effect of phosphorylation on GAD65 and GAD67 could be reversed by treatment with protein phosphatases. We further demonstrated that protein kinase A (PKA) and protein kinase C isoform ε were the protein kinases responsible for phosphorylation and regulation of GAD67 and GAD65, respectively. In the current study, using MALDI-TOF, a total of four potential phosphorylation sites were identified in GAD65, two of which (threonine-95 (T-95) and Ser-417) were not reported previously. We have identified one specific phosphorylation site, (T95), in hGAD65 that can be phosphorylated by kinase C ε (PKCε) using MALDITOF. When T95 is mutated to alanine, hGAD65 could no longer be phosphorylated by PKCε, and the effect of PKC-mediated activation on hGAD65 is abolished. However, when T95 is mutated to glutamic acid, which mimics the phosphorylation status of hGAD65, the activity was greatly increased. An increase of GAD65 activity by 55 % compared to the wild type hGAD65 was observed indicating that mutation of T95 to glutamic acid mimics the effect of phosphorylation. A model depicting the role of phosphorylation of GAD65 in regulation of GABA neurotransmission is presented.  相似文献   

20.
Glutamic acid decarboxylase 65 (GAD65) is one of the major autoantigens in type 1 diabetes. We investigated whether there is variation in the processing of GAD65 epitopes between individuals with similar HLA backgrounds and whether the processing characteristics of certain immunogenic epitopes are different in distinct APC subpopulations. Using DR401-restricted T cell hybridomas specific for two immunogenic GAD65 epitopes (115-127 and 274-286), we demonstrate an epitope-specific presentation pattern in human B-lymphoblastoid cell lines (B-LCL). When pulsed with the GAD protein, some DRB1*0401-positive B-LCL, which presented GAD65 274-286 epitope efficiently, were unable to present the GAD65 115-127 epitope. However, all B-LCL presented synthetic peptides corresponding to either GAD epitope. In addition, when pulsed with human serum albumin, all cell lines gave equal stimulation of a DR4-restricted human serum albumin-specific T hybridoma. GAD65-transfected cell lines displayed the same presentation phenotype, showing that lack of the presentation of the 115-127 epitope was not due to inefficient uptake of the protein. Blood mononuclear adherent cells, B cells, or dendritic cells derived from the same individual displayed the same presentation pattern as observed in B cell lines, suggesting that the defect most likely is genetically determined. Therefore, individual differences in Ag processing may result in the presentation of distinct set of peptides derived from an autoantigen such as GAD65. This may be an important mechanism for the deviation of the immune response either into a regulatory pathway or into an inflammatory autoimmune reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号