首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
初鼎晋  贺康宁  林莎  左亚凡  陈笑 《生态学报》2022,42(18):7362-7371
气候变化引起祁连山东部地区可适植被类型改变,探究植被类型转换的效果对生态环境可持续发展十分重要,但其转换方式及效果仍有待研究,此外传统植被调查的方法有诸多局限性,不能满足大尺度持续的监测,而遥感监测可以弥补这一劣势。基于遥感和样地调查以祁连山生态交错区甘沟小流域为研究地点,对原有灌草地和植树造林的乔木林进行比较,探究二者土壤理化性质、草本植物多样性及植被归一化指数(NDVI),增强植被指数(EVI),植被水分指数(NDMI),水分胁迫指数(MSI),叶绿素红外指数(CI),陆地叶绿素指数(MTCI)的差异。结果表明仅有水分相关指标有显著性差异,其中造林造成浅层土壤水分显著降低(P<0.01),4-5月份MSI和NDMI造林区植被水分高于灌草地(P<0.01),7-8月份两种植被类型水分指数以及其余指数无显著性差异,另外造林后的土壤有机质出现了轻微下降(P>0.05)。遥感指数和样地调查指标相关性分析中,土壤有机质和Shannon多样性指数与CI成正相关(P<0.05),植被覆盖度与NDMI成负相关(P<0.05),由于覆盖度较低的灌草地EVI和NDVI被高估,覆盖度和EVI与NDVI相关性不显著。综合遥感指数和实地调查分析,短时间造林时间内乔木林牺牲了部分土壤水分,提高了植被盖度,且目前造林并未对当地环境产生胁迫,但对生态环境的改善并不明显。基于遥感和样地调查揭示了潜在植被类型转换区原有灌草地和植树造林区的差异,并探讨遥感在小尺度范围内植被监测上的适用性,为植被建设和遥感监测植被状况提供借鉴。  相似文献   

2.
For successful afforestation programs seed quality is crucial, but seedlings are susceptible to climatic stress. Therefore, to improve afforestation success it is necessary to compare performance of seedlings from natural and cultivated populations under different climatic conditions. We investigated growth performance in seedlings of three natural and four afforested Syrian Cupressus sempervirens L. populations under different temperature and moisture regimes. A “warm” climate chamber approximately simulated current mean annual temperatures (day/night: 20/10°C) while a “hot” chamber simulated an average increase of 5°C (day/night: 25/15°C). Seedlings were irrigated twice (drier) or thrice (moist) weekly. Seedlings from natural provenances outperformed those from afforested stands in all growth variables in both chambers. In the warm chamber, root length and biomass were not affected by irrigation for both population types, but shoot height decreased for afforested seedlings under drier treatment while it slightly increased in natural seedlings. In the hot chamber, shoot height decreased but root length and biomass increased for population types under the drier treatment. Comparison between the two chambers showed that under the drier treatment shoot height and biomass decreased at higher temperatures, but root length and biomass were not significantly different. The same response to higher temperatures was observed under the moist treatment, but root biomass decreased too. Our results emphasize the necessity to protect the remaining natural forest of C. sempervirens in Syria and recommend systematic collection of seed material from natural stands for afforestation programs. This might also hold for ex situ cultivation of retrieving rare and endangered plant species.  相似文献   

3.
Groundwater use and salinization with grassland afforestation   总被引:5,自引:0,他引:5  
Vegetation changes, particularly transitions between tree- and grass-dominated states, can alter ecosystem water balances and soluble salt fluxes. Here we outline a general predictive framework for understanding salinization of afforested grasslands based on biophysical, hydrologic, and edaphic factors. We tested this framework in 20 paired grassland and adjacent afforested plots across ten sites in the Argentine Pampas. Rapid salinization of groundwater and soils in afforested plots was associated with increased evapotranspiration and groundwater consumption by trees, with maximum salinization occurring on intermediately textured soils. Afforested plots (10–100 ha in size) showed 4–19-fold increases in groundwater salinity on silty upland soils but 50% of the days, and depressed the water table 38 cm on average compared to the adjacent grassland. Soil cores and vertical electrical soundings indicated that ≈6 kg m−2 of salts accumulated close to the water table and suggested that salinization resulted from the exclusion of fresh groundwater solutes by tree roots. Groundwater use with afforestation in the Pampas and in other regions around the world can enhance primary production and provide a tool for flood control. However, our framework and experimental data also suggest that afforestation can compromise the quality of soils and water resources in predictable ways based on water use, climate, and soil texture.  相似文献   

4.
华北落叶松人工林蒸散及产流对叶面积指数变化的响应   总被引:2,自引:0,他引:2  
定量评价林地蒸散和产流等水文过程对冠层叶面积指数(LAI)的响应,对于深入认识森林植被的生态水文过程及其发生机制,实现半干旱区林水综合管理和区域可持续发展是非常必要的。应用集总式生态水文模型BROOK90,模拟分析了不同降水年型(丰水年、平水年、枯水年)下,位于半干旱区的宁夏六盘山叠叠沟小流域内华北落叶松(Larix principis-rupprechtii)人工林的水文过程对冠层LAI变化的响应关系。结果发现:林分总蒸散量、冠层截留量、蒸腾量与LAI都呈显著的正相关关系(R~20.99,P0.01),而土壤蒸发量、产流量则与LAI均呈显著的负相关关系(R~20.99,P0.01);在不同的降水年型下,各水文过程变量与LAI的关系都可以很好地用指数函数来表达,且都存在着一个LAI阈值。当LAI低于阈值时,各水文过程变量随LAI的变化幅度较大;但高于阈值时,各变量的变化十分缓慢并趋于稳定。在不同降水年型下,各变量LAI阈值之间存在着一定的差异。一般地,丰水年各变量的LAI阈值要大于枯水年,尤其是冠层截留和土壤蒸发。在丰水年,各水文过程变量随LAI增加而变化的速率要比在平水年、枯水年更快,说明在水分充足年份中各变量的波动更多取决于LAI变化,而在水分亏缺的年份中则可能更多地受到水分条件的限制。模拟结果表明,通过减少冠层LAI(如间伐)导致的林分的降低蒸散耗水和增加产流的作用是有限的,这是由于林分蒸散降低的幅度要比LAI降低的幅度小。例如,在平水年,当LAI从4.2变为2.0(减少幅度52.4%)时,林分年蒸散仅从357.2 mm减少至333.9 mm(减少幅度6.5%)。  相似文献   

5.
Retention of interconnected, remnant grassland linkages is proposed here to reduce the adverse effects of alien pine afforestation in Afromontane grasslands. Adult butterflies were sampled at 38 grassland sites, representing increasing levels of disturbance both within the afforested area and outside it. Butterfly species richness and abundance in the lesser disturbed grassland remnants within the afforested area were similar to those of the surrounding natural grasslands. In contrast, butterfly species richness, but not necessarily abundance, decreased significantly in the highly disturbed sites, both in the grassland linkages and outside. Although some highly disturbed sites were relatively rich in species, most were visited by geographically widespread and vagile species. In contrast, wide, relatively undisturbed grassland linkages, as well as grasslands outside, were important for localised, sedentary and local endemic butterfly species. Nectar plants, especially the alien Verbena bonariensis, were the most significant variable explaining local butterfly distribution. In addition, tall grasses, hills, topographical landmarks, thermoregulatory sites, shelter and water features were also vital for particular species. It did not matter how deep the grassland linkages were situated inside the afforested area, as long as they were made up of good habitat. Retention of wide, quality grassland linkages are a way forward to maximise biodiversity alongside agroforestry.  相似文献   

6.
胡健  胡金娇  吕一河 《生态学报》2021,41(16):6417-6429
区域植被恢复改变了土地利用类型,从而有效控制了水土流失,但土地利用与水土流失关系的空间分异尚未明晰。整合了黄土高原坡面径流小区试验观测研究文献59篇和1121条年径流产沙记录,以8大关键带类型作为空间分层依据,采用地理探测器分析了土地利用与年径流产沙关系的空间分异。结果显示:撂荒地的年均径流量和产沙量最高分别为35.99 mm和4208.82 g/m2,撂荒地、裸地和耕地的产流产沙能力显著高于人工草地、林地、自然草地和灌丛,灌丛和林地的年均产沙量显著低于人工和自然草地(P<0.05);除了撂荒地的年均产沙量在山地森林关键带最高(16240.40 g/m2)外,在丘陵沟壑农林草交错关键带的撂荒地年均径流产沙显著高于丘陵农业-草地关键带,丘陵沟壑农林草交错关键带和丘陵农业-草地关键带裸地、耕地的产流产沙能力较高,人工草地和灌丛年均产沙量显著高于其他关键带类型(P<0.05);在山地森林关键带的林地年均径流量、径流系数和产沙量最低,分别为1.56 mm、0.41%和307.36 g/m2,而自然草地在各关键带类型都有较高的年均产流量和较低的年均产沙量;坡面径流小区的局地特征(如土地利用、面积、坡度、坡长)是影响年径流产沙关键带分异的首要因素,且存在多因子互作、非线性增强的关系。这些结果表明植被恢复能有效地保持水土,但是区域植被恢复时需要选择合适的类型,黄土丘陵沟壑区应首选自然草地、灌丛和林地。研究可为黄土高原区域植被恢复的优化配置提供科学依据。  相似文献   

7.
姚润枝  周在豹  闫国增  田作宝  王朔  李凯 《生态学报》2016,36(22):7393-7400
为探究退耕还林对地面蜘蛛群落的影响,分别于2014和2015年3月—9月期间,采用陷阱法对北京市顺义区南彩镇退耕还林已2a和3a的林带及相邻原非作物生境林带中地面蜘蛛的活动密度进行了系统调查和分析。结果,2014年在调查区域共采集地面蜘蛛1465头,隶属8科18属32种,2015年共收集地面蜘蛛2186头,隶属10科25属45种;退耕还林以后蜘蛛类群发生改变,地面蜘蛛丰富度增加,而部分农田蜘蛛消失;2014年原非作物生境林带中地面蜘蛛的多样性指数、丰富度都极显著高于退耕还林林带(P0.01),均匀性指数不存在显著差异,2015年两个林带的多样性指数仍存在极显著差异(P0.01),丰富度存在显著差异(P0.05),均匀性指数之间不存在显著差异;退耕还林以后第3年新建林带和原非作物生境林带中地面蜘蛛的活动密度随时间的变化趋势相近。研究结果表明:顺义地区退耕还林工程实施3a以后,新建人工林仍处于生境重建阶段,未完全达到稳定状态,退耕还林以后第3年新建林带中地面蜘蛛群落的稳定性高于第2年。退耕还林通过改变原有农田生态系统的植被种类、结构、人为管理等方式,使原有农田生态系统发生了根本性的改变。持续研究退耕还林对地面蜘蛛的类群变化的影响对生境受到干扰后生物群落变化过程的认识有理论意义。  相似文献   

8.
Rainfall simulation experiments were performed in areas of semiarid grassland (Bouteloua eriopoda) and arid shrubland (Larrea tridentata) in the Chihuahuan desert of New Mexico. The objective was to compare the runoff of nitrogen (N) and phosphorus (P) from these habitats to assess whether losses of soil nutrients are associated with the invasion of grasslands by shrubs. Runoff losses from grass- and shrub-dominated plots were similar, and much less than from bare plots located in the shrubland. Weighted average concentrations of total dissolved N compounds in runoff were greatest in the grassland (1.72 mg/1) and lowest in bare plots in the shrubland (0.55 mg/1). More than half of the N transported in runoff was carried in dissolved organic compounds. In grassland and shrub plots, the total N loss was highly correlated to the total volume of discharge. We estimate that the total annual loss of N in runoff is 0.25 kg/ha/yr in grasslands and 0.43 kg/ha/yr in shrublands — consistent with the depletion of soil N during desertification of these habitats. Losses of P from both habitats were very small.  相似文献   

9.
Grassland to forest conversions currently affect some of the world's most productive regions and have the potential to modify many soil properties. We used afforestation of native temperate humid grassland in the Pampas with eucalypts as an experimental system to 1) isolate forest and grassland imprints on soil acidity and base cation cycling and 2) evaluate the mechanisms of soil acidification. We characterized soil changes with afforestation using ten paired stands of native grasslands and Eucalyptus plantations (10–100 years of age). Compared to grasslands, afforested stands had lower soil pH (4.6 vs.5.6, p < 0.0001) and 40% lower exchangeable Ca (p < 0.001) in the top 20 cm of the soil. At three afforested stands where we further characterized soil changes to one meter depth, soil became increasingly acidic from 5 to 35 cm depth but more alkaline below 60 cm compared to adjacent grasslands, with few differences observed between 35 and 60 cm. These changes corresponded with gains of exchangeable acidity and Na in intermediate and deeper soil layers. Inferred ecosystem cation balances (biomass + forest floor + first meter of mineral soil) revealed substantial vertical redistributions of Ca and Mn and a tripling of Na pools within the mineral soil after afforestation. Soil exchangeable acidity increased 0.5–1.2 kmolc.Ha–1.yr–1 across afforested stands, although no aboveground acidic inputs were detected in wet + dry deposition, throughfall and forest floor leachates. Our results suggest that cation cycling and redistribution by trees, rather than cation leaching by organic acids or enhanced carbonic acid production in the soil, is the dominant mechanism of acidification in this system. The magnitude of soil changes that we observed within half a century of tree establishment in the Pampas emphasizes the rapid influence of vegetation on soil formation and suggests that massive afforestation of grasslands for carbon sequestration could have important consequences for soil fertility and base cation cycles.  相似文献   

10.
Carbon sequestration in arid-land forest   总被引:7,自引:0,他引:7  
Rising atmospheric CO2 concentrations may lead to increased water availability because the water use efficiency of photosynthesis (WUE) increases with CO2 in most plant species. This should allow the extension of afforestation activities into drier regions. Using eddy flux, physiological and inventory measurements we provide the first quantitative information on such potential from a 35‐year old afforestation system of Aleppo pine (Pinus halepensis Mill.) at the edge of the Negev desert. This 2800 ha arid‐land forest contains 6.5 ± 1.2 kg C m?2, and continues to accumulate 0.13–0.24 kg C m?2 yr?1. The CO2 uptake is highest during the winter, out of phase with most northern hemispheric forest activity. This seasonal offset offers low latitude forests ~10 ppm higher CO2 concentrations than that available to higher latitude forests during the productive season, in addition to the 30% increase in mean atmospheric CO2 concentrations since the 1850s. Expanding afforestation efforts into drier regions may be significant for C sequestration and associated benefits (restoration of degraded land, reducing runoff, erosion and soil compaction, improving wildlife) because of the large spatial scale of the regions potentially involved (ca. 2 × 109 ha of global shrub‐land and C4 grassland). Quantitative information on forest activities under dry conditions may also become relevant to regions predicted to undergo increasing aridity.  相似文献   

11.
刺槐是广泛分布于黄土高原的典型水土保持植物。以黄土丘陵区甘肃天水吕二沟小流域为研究区,分析了刺槐径向生长过程及其对气候因子的响应,并开展了利用刺槐年轮估算小流域年径流量、年输沙量的适用性评估。研究表明:(1)吕二沟刺槐人工林的径向生长随林龄呈明显的下降趋势,在幼龄林阶段(1—10 a)刺槐处于快速径向生长期((4.17±0.74)mm/a),之后逐渐下降,中龄林、成熟林、过熟林阶段(11—40 a)平均生长速率为(2.31±0.41)mm/a,较前期下降了44.60%。刺槐胸高断面积增量(BAI)在1—10 a平均以(5.46±2.13)cm2/a的速度生长,在11—40 a仍保持上升趋势但年际间生长波动较大,生长速率平均为(10.80±1.95)cm2/a,流域刺槐生长并未发生明显衰退。(2)刺槐的径向生长与温度多呈负相关,与降水、相对湿度及帕默尔干旱指数(PDSI)多呈正相关。其中刺槐径向生长与上年8月、9月(P<0.05)及当年7月均温、最高温呈显著负相关(P<0.01),与当年5月最低温呈显著正相关(P<0.05);...  相似文献   

12.
Although belowground biomass (BGB) plays an important role in global cycling, the storage of BGB and climatic effects on it are remaining unclear. With data from 49 sites, we aimed to investigate BGB and its climatic controls in alpine shrublands in the Tibetan Plateau. Our study showed that the BGB (both grass‐layer and shrub‐layer biomass) storage in the alpine shrublands was 67.24 Tg, and the mean BGB density and shrublands area were 1,567.38 g/m2 and 4.29 × 104 km2, respectively. Shrub layer had a larger BGB stock and accounted for 66% of total BGB this area, while only 34% was accumulated in the grass layer. BGB of the grass layer in the Tibetan Plateau shrublands was larger than that of Tibetan alpine grasslands, indicating that shrubland ecosystem played a critical importance role in carbon cycle on the Tibetan Plateau. The BGB in the grass layer and shrub layer demonstrated different correlations with climatic factors. Specifically, the effects from mean annual temperature on shrub‐layer BGB were not significant, similarly to the relationship between mean annual precipitation and grass‐layer BGB. But shrub‐layer BGB had a significantly positive relationship with mean annual precipitation (p < .05), while grass‐layer BGB showed a trend of decrease with increasing mean annual temperature (p < .05). Consequently, the actual and potential increases of BGB varied due to different increases of mean annual precipitation and temperature among different areas of the Tibetan Plateau. Therefore, in the warmer and wetter scenario, due to contrary relationships from mean annual precipitation and temperature on shrub‐layer BGB and grass‐layer BGB, it is necessary to conduct a long‐term monitoring about dynamic changes to increase the precision of assessment of BGB carbon sequestration in the Tibetan Plateau alpine shrublands.  相似文献   

13.
植被恢复及其对年均径流量影响的空间格局对黄土高原生态环境建设及水资源管理具有重要指导作用。在分析植被适宜性分布规律的基础上, 基于黄河中游河口-龙门区间100 m 地形高程模型(DEM)和专家经验进行了区域植被适宜性制图, 并基于参数率定后的多年平均蒸散量计算公式和水平衡模型, 估算了不同植树造林情景下年均径流量的变化。结果表明, 河龙区间符合植被带分布规律的适宜区植树面积为6.6×103 km2, 次适宜区植树面积为4.8×103 km2, 分别占研究区总面积的5.8%和4.3%。土地覆被现状条件下区域产水约为33.8 mm (38.07×108m3)。适宜区植树后, 区域产水减少量约为1.9 mm (2.12×108m3), 减少5.6%。适宜区和次适宜区均植树后, 区域产水减少量约为3.1 mm (3.49×108m3), 减少9.2%。空间分布格局表明, 区域局部减水最大达到48 mm。受气候条件影响, 东南部高降雨量地区的流域适宜植树面积达45.1%, 相应减水比例达36.0%。西北部低降雨量地区的流域植树面积约为0.7%, 相应的减水比例为0.4%。  相似文献   

14.
泾河流域上游是黄土高原的重要水源地和退耕还林工程区,在较大空间尺度上定量评价区内森林覆盖增加的水文影响对科学指导林业生态环境建设、保障区域水安全和可持续发展均有重要意义。为了在尽量排除地形、土壤、气候等作用的基础上定量评价森林的影响,将泾河上游划分为土石山区和黄土区,分别制定了多种森林恢复情景,利用分布式流域生态水文模型(SWIM)模拟评价了森林覆盖率及其空间分布变化对流域年蒸散量、年产流量、年地下水补给量、年土壤深层渗漏量及日径流洪峰的影响。土石山区模拟结果表明,增加森林覆盖将增加流域蒸散和减少流域产流,如现有森林覆盖(占全流域面积比例为13.8%)情景与现有森林变为草地(占全流域面积比例为0)情景相比时,流域年蒸散量从445.4 mm变为427.7 mm(减少了17.4 mm和4%);年产流量从42.4 mm变为53.5 mm(增加了11.1 mm和26.3%),年地下水补给量从61.6 mm变为76.9 mm(增加了15.3 mm和24.8%),年深层渗漏量从72.9 mm变为88.3 mm(增加了17.7 mm和24.3%);平均森林覆盖率每增加10%,导致流域年蒸散量增加12.8 mm,年产流量减少8.0 mm,年地下水补给量减少11.1 mm。在比较干旱和土层深厚的黄土区,增加森林覆盖将同样增大流域蒸散和减少流域产流,但变化幅度明显小于降水相对丰富和土层浅薄的土石山区,平均森林面积增加10%导致流域年蒸散量增加9.0 mm,年产流量减少4.5 mm,年地下水补给量减少8.8 mm;此外,在较缓坡面造林的水文影响大于较陡坡面造林。从森林水文影响的年内变化来看时,森林覆盖率升高的水文影响在土石山区和黄土区也有差别,如土石山区5—7月份的蒸散显著增加,5—10月份的深层渗漏均有减少;而黄土区是蒸散量在5—10月均有增加,深层渗漏在7—10月份显著减少。另外,土石山区森林覆盖率增加对日径流峰值的影响不显著,而黄土区则能明显削弱,这可能主要是因土石山区的高石砾含量土壤的渗透性能明显高于黄土区的黄土,而黄土区的森林能够明显改善土壤入渗性能和减少地面径流形成。  相似文献   

15.
The target rate of afforestation in Ireland over the next 30 years is 20,000 ha per year, which would result in an increase of the forest cover from the current 10% to 17%. In order to promote sustainable forest management practices, it is essential to know the composition and conservation value of habitats where afforestation is planned and the effects of subsequent planting upon biodiversity. The objectives of this study were to investigate changes in vegetation composition and diversity of grasslands 5 years after afforestation with Sitka spruce (Picea sitchensis) and determine the primary ecological and management factors responsible for these changes. Species cover, environmental and management data were collected from 16 afforested and unplanted improved and wet grassland site pairs in Ireland. Our results indicate that 5 years after tree planting, there were significant changes in richness, composition, and abundance of species. Competitive and vigorous grasses were more abundant in planted than in unplanted sites, as were generalist species found in both open and wooded habitats, while small-stature shade-sensitive species were less abundant. Vascular plant species richness and Shannon’s diversity index were higher in unplanted wet grassland, than in the planted sites. Bryophyte species richness was higher in planted improved grassland than in unplanted sites. The differences were primarily the result of the exclusion of grazing, ground preparation, changes in nutrient management and drainage for afforestation. Drainage ditches provided a temporary habitat for less competitive species, but the overall effect of drainage was to reduce the diversity of species dependent on wet conditions. Variance partitioning showed differences in the relative influences of environmental and management variables on biodiversity in the two habitats, probably due to the greater pre-afforestation grazing pressure and fertilisation levels in improved grasslands. The differences in biodiversity between planted and unplanted grasslands indicate that afforestation represents a threat to semi-natural habitats where distinctive and highly localised plant communities could potentially occur.  相似文献   

16.
Large-scale afforestation programs have had some beneficial effects on reducing severity of dust storms and controlling desertification in arid and semi-arid regions. However, the influences of selective afforestation on soil arthropod community are largely unknown in desertified ecosystems. Soil macrofaunal communities, soil physico-chemical properties, and herb vegetation were investigated in afforested shrublands and woodlands (both approximately 30 years old post-afforestation), which were compared to shifting sand lands in Horqin, northern China. In the shrublands, environmental parameters (soil and vegetation properties) indicated a significant improvement of soil organic carbon, total nitrogen, and herbaceous density and cover, in comparison to the woodlands and shifting sand lands. The improved shrubland habitat maintained significantly higher soil macrofaunal abundance and group richness together with higher diversity compared with the woodlands and shifting sand lands. There were no significant differences in soil macrofaunal diversity between the woodlands and shifting sand lands. The results suggest that shrubs can facilitate macrofaunal assemblies and improve soil and vegetation properties when planted in shifting sand lands. Shrub afforestation is beneficial for the restoration of shifting sand lands, and is recommended for management of artificial plantations in these sandy ecosystems.  相似文献   

17.
The effects of herbivory on plant invasions are broadly discussed, and many studies have led to widely debated theories. In particular, the effects of herbivores on pine invasion found in different studies vary; in some cases, they controlled their expansion, and in others, they promoted it. On the other hand, vulnerability to invasion by pines differs between community types. Sites with dunes and bare ground are the most heavily invaded, followed by grasslands, while shrublands and forests are least invaded. Because current evidence is mostly observational, some of the varying responses of pine invasions to herbivory should be examined further through replicated experiments. Here, we address experimentally the extent to which preference for the non‐native invasive Pinus contorta by domestic sheep (Ovis aries) depends on the vegetation type. We installed experimental enclosures within two adjacent communities, grassland and shrubland, and in each one, we planted seedlings of P. contorta Douglas and established a sheep density typically recommended for the study area. The number of browsed seedlings, the number and type of branches browsed per seedling, the reduction in height and probability of survival immediately after browsing period were recorded. The number of browsed seedlings and damage to the terminal bud were higher in grassland than in shrubland, while the number of browsed branches per seedling was higher in shrubland than grassland. The reductions in height and probability of survival immediately after browsing were similar in both communities. These results show that moderate levels of sheep herbivory could reduce 20% seedling survival in both communities; nevertheless, the damage patterns differ between them. The sheep browsed more substantial number of seedlings in grasslands than in shrublands. However, if sheep find the seedlings, they damage it more in shrublands. These results suggest that experimental studies comparing communities are important for pine invasion management.  相似文献   

18.
Vegetation changes, particularly those involving transitions between tree‐ and grass‐dominated covers, often modify evaporative water losses as a result of plant‐mediated shifts in moisture access and demand. Massive afforestation of native grasslands, particularly important in the Southern Hemisphere, may have strong yet poorly quantified effects on the hydrological cycle. We explored water use patterns in Eucalyptus grandis plantations and the native humid grasslands that they replace in Central Argentina. In order to uncover the interactive effects that land cover type, soil texture and climate variability may have on evaporative water losses and water use efficiency, we estimated daily evapotranspiration (ET) in 117 tree plantations and grasslands plots across a soil textural gradient (clay‐textured Vertisols to sandy‐textured Entisols) using radiometric information from seven Landsat scenes, existing timber productions records, and 13C measurements in tree stems. Tree plantations had cooler surface temperatures (?5°C on average) and evaporated more water (+80% on average) than grasslands at all times and across all sites. Absolute ET differences between grasslands and plantations ranged from ~0.6 to 2 mm day?1 and annual up‐scaling suggested values of ~630 and ~1150 mm yr?1 for each vegetation type, respectively. The temporal variability of ET was significantly lower in plantations compared with grasslands (coefficient of variation 36% vs. 49%). Daily ET increased as the water balance became more positive (accumulated balance for previous 18 days) with a saturation response in grassland vs. a continuous linear increase in plantations, suggesting lower ecophysiological limits to water loss in tree canopies compared with the native vegetation. Plantation ET was more strongly affected by soil texture than grassland ET and peaked in coarse textured sites followed by medium and fine textured sites. Timber productivity as well as 13C concentration in stems peaked in medium textured sites, indicating lower water use efficiency on extreme textures and suggesting that water limitation was not responsible for productivity declines towards finer and coarser soils. Our study highlighted the key role that vegetation type plays on evapotranspiration and, therefore, in the hydrological cycle. Considering that tree plantations may continue their expansion over grasslands, problematic changes in water management and, perhaps, in local climate can develop from the higher evaporative water losses of tree plantations.  相似文献   

19.
米槠次生林转换成米槠人工幼林和米槠人工促进天然更新幼林(以下简称"人促幼林")后,以这三种森林类型为研究对象,连续监测每次降雨后地表径流量及径流水中可溶性有机碳(DOC)的含量及通量,比较不同森林类型观测结果的差异,并分析降雨对实验结果的影响。结果表明:米槠人工幼林单次产流量是米槠次生林的1.5—19.0倍,观测期间总径流量为5.9倍;米槠人促幼林单次径流量和总径流量均与米槠次生林无显著差异(P0.05)。观测期间米槠次生林、人工幼林、人促幼林径流水DOC浓度值范围为5.9—18.4 mg/L,4.3—13.5 mg/L和3.2—9.9 mg/L,米槠次生林径流水浓度均值(12.6 mg/L)分别是米槠人促幼林(7.6 mg/L)和米槠人工幼林(5.3 mg/L)的1.6和2.4倍。回归分析表明,径流水中DOC浓度与降雨前土壤含水率呈显著相关;降雨前土壤含水率20.8%是一个临界值,含水率低于20.8%时,径流水DOC浓度与降雨前含水率呈显著正相关(P0.05);高于20.8%时,径流水DOC浓度与降雨前土壤含水率呈显著负相关(P0.05)。米槠人工幼林地表径流DOC输出通量是米槠次生林的0.7—5.4倍,观测期间总输出通量为2.1倍;米槠人促林DOC单次通量和观测期间总通量均与米槠次生林差异不显著(P0.05)。三种森林类型DOC输出通量均与降雨量呈显著相关(P0.05)。可见,米槠次生林转变成米槠人工幼林后DOC输出浓度降低,但径流量显著增加,导致DOC输出通量增加;而转变成米槠人促幼林后DOC输出浓度也降低,但径流量并未增加,因而并未增加DOC输出通量。  相似文献   

20.
Global climate models predict significant changes to the rainfall regimes of the grassland biome, where C cycling is particularly sensitive to the amount and timing of precipitation. We explored the effects of both natural interannual rainfall variability and experimental rainfall additions on net C storage and loss in annual grasslands. Soil respiration and net primary productivity (NPP) were measured in treatment and control plots over four growing seasons (water years, or WYs) that varied in wet‐season length and the quantity of rainfall. In treatment plots, we increased total rainfall by 50% above ambient levels and simulated one early‐ and one late‐season storm. The early‐ and late‐season rain events significantly increased soil respiration for 2–4 weeks after wetting, while augmentation of wet‐season rainfall had no significant effect. Interannual variability in precipitation had large and significant effects on C cycling. We observed a significant positive relationship between annual rainfall and aboveground NPP across the study (P=0.01, r2=0.69). Changes in the seasonal timing of rainfall significantly affected soil respiration. Abundant rainfall late in the wet season in WY 2004, a year with average total rainfall, led to greater net ecosystem C losses due to a ~50% increase in soil respiration relative to other years. Our results suggest that C cycling in annual grasslands will be less sensitive to changes in rainfall quantity and more affected by altered seasonal timing of rainfall, with a longer or later wet season resulting in significant C losses from annual grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号